
Traffic to Protocol Reverse Engineering

Antonio Trifilò, Stefan Burschka, Ernst Biersack

Abstract— Network Protocol Reverse Engineering (NPRE)
has played an increasing role in honeypot operations. It allows
to automatically generate Statemodels and scripts being able
to act as realistic counterpart for capturing unknown mal-
ware. This work proposes a novel approach in the field of
NPRE. By passively listening to network traces, our system
automatically derives the protocol state machines of the peers
involved allowing the analyst to understand its intrinsic logic.
We present a new methodology to extract the relevant fields
from arbitrary binary protocols to construct a statemodel.
We prove our methodology by deriving the statemachine of
documented protocols ARP, DHCP and TCP. We then apply it
to Kademlia, the results show the usefulness to support binary
reverse engineering processes and detect a new undocumented
feature.

I. INTRODUCTION

The vision to reverse engineer the logic of unknown
programs or the intent of users interacting on the Internet
solemnly from the network traces is not new. Several ap-
proaches in the area of honey pot Malware analysis have been
proposed mostly interested in interacting with the infected
host to capture the Malware ([2], [3], [5]). The goal of
their research ranges from capturing zero-day attacks to the
long term gathering of data allowing to retrieve all available
information about the malware’s spread and activity in the
network. Scripts are automatically generated being able to
answer and retrieve the malware in an automatic way without
a priori knowledge about the protocol. Given that their main
goal is the interaction, they mainly focused on the derivation
of a precise protocol message format. It allows to construct a
state machine being able to answer and retrieve the malware.

In this work we go a step beyond. By passively eavesdrop-
ping an IP switch Span port we intend to reverse engineer
the complete logic of the programs involved in a conversa-
tion. Therefore the traffic will not only be reproduced but
its intrinsic logic, enabling the human analyst to actually
understand the protocol or the human interaction in form of
a comprehensible protocol state machine.

The idea for our work originates from the well established
design of binary protocols in HW. A binary protocol is
defined as a binary coded protocol intended to be read by
a machine rather than a human being. Plain text protocols
instead are human understandable and generally related to the
application layer of the OSI model. In the design of binary
protocols in HW binary time dependent sequences are coded
directly into a complete state machine. It is straightforward

Antonio Trifilò and Stefan Burschka are working at Swisscom
Schweiz AG, Bern, Switzerland. (email: {antonio.trifilo, ste-
fan.burschka}@swisscom.com). Ernst Biersack is in the Internet Research
Group at Eurecom, Sophia Antipolis, France. (email: erbi@eurecom.fr)

We thank Vincent Lenders and Stefan Engel from armasuisse for co-
financing.

to assume that it should be also possible for binary IP
protocol traces, provided these bits or bytes coding into a
state machine are known. Thus, for new protocols these
groups of bits have to be detected in IP traces first. At
least binary protocols are position dependent, meaning a Bit
does not change its position over time. Modern text based
protocols are more erratic; they have key value pairs which
can be in any given position. Thus, the idea was to consider
first a binary representation where the problem of Network
Protocol Reverse Engineering (NPRE) seems to be solvable.
The basic workflow solving the principal problem is outlined
in Figure 1:

Fig. 1. Workflow for NPRE

• We record in a tcpdump file all network traffic gener-
ated by the protocol to be reverse engineered by just
eavesdropping an IP switch Span port.

• We extract with a statistical analysis all relevant features
in a protocol message format for understanding the logic
of the protocol.

• From the selected features of the previous step we
reconstruct the state machine of the protocol using our
algorithms.

• A graphical representation of the state machine is pro-
vided to the human analyst.

The result of the entire workflow will be the automatic
generation of the state machine of an unknown protocol from
its network traces. Thus reverse engineering the logic of the
protocol from its output represented by network traffic.

In order to present our method, the paper is structured as
follows. Section II presents the theoretical background and
algorithms for feature selection and state machine derivation.
Section III provides the experimental results concerning the
extraction of relevant fields and the protocol state machine
derivation. Finally Section IV concludes the paper denoting
the main contribution and future research.



II. METHODOLOGY

A. Overview

Our approach can be described by three functional mod-
ules. For a detailed description of each module and the
algorithms refer to the work of [1].

a) IP Sniffer: An IP sniffer is used to capture passively
the raw traffic passing through an IP span port. The traffic
is filtered appropriately selecting the protocol to be reverse
engineered and then stored in a standard tcpdump file.

b) Binary Features Selector (BFS): The basic idea is
that only certain fields of a protocol message capture the
logic of the protocol, while the others specify only additional
parameters. For instance in the case of an HTTP request
“GET /pub/WWW/TheProject.html HTTP/1.1” only the field
“GET” is necessary to understand the basic logic of the
protocol because it defines the type of action requested.

The reduction to a subset of interesting features is achieved
by a statistical analysis of several flows based on the “Vari-
ance of the Distribution of Variances” (VDV) of each byte in
the binary protocol message. The result indicates the relevant
fields for state machine construction. For instance in the case
of the Transmission Control Protocol (TCP) the Flags are
selected representing the connection management logic.

c) State Machine Builder (SMB): The SMB module
is deputed to the construction of the protocol state machine
starting from the features selected by the BFS. This module
defines the notion of state and the proper transitions which
interconnects every state. Both of these two main steps
are performed by the “State Splitting Algorithm” which is
the core of the SMB. The final result will be a graphical
presentation of the protocol state machine to the human
analyst.

In the following section we will describe in details the
BFS and the SMB being the novel contribution of the
paper. Before describing these two modules, a theoretical
background is presented serving as a prior information being
required in all traffic mining activities.

B. Background: “Father of all Protocols”

The definition of basic principles at the base of protocols is
a fundamental step in the process of reverse engineering of a
network protocol. It states that even a yet unknown protocol
will always contain certain common concepts required for
proper functionality in network environments. Consequently
it allows to make assumptions and guide any mining activity
and in particular the NPRE task. The following principles,
termed as “Father of all Protocols”, are identified concerning
either the format of a message or the principle of communi-
cation:
• Stability in time and space: The protocol of a specific

version and its message format does not change even
when the experiment is repeated at different location
and times. Thus several flows generated by a certain
protocol are similar in behavior.

• Grammar: Defines the format of a message in a
protocol. This assumption states that the format of a

message is not randomly chosen and that a structure, i.e.
grammar, is defined in order to allow a communication
between two entities.

• Positional information: The grammar of a message
follows a positional rule where left is more important
than right. This assumption is true for text protocols
where the left part of a message contains the command
while the following part contains the parameters.

• Error control: During an exchange of data between
two different entities via a specific protocol, an error
mechanism is always present in order to deal with
unknown events or situations.

• Indication of peer state change: This assumption states
that an entity has to be able to communicate to the other
peers whether a state change happened.

• Request-Response Paradigm: There are two different
communication paradigms enabling a communication
between two entities via a protocol: “Idle Repeat Re-
quest” (IRR) and “Continuous Repeat Request” (CRR).
IRR allows that the sender only sends one data packet
and waits for the answer of the receiver before sending
another packet. Whereas CRR allows to send a collec-
tion of packets before receiving the first correct answer
from the receiver.

In the following section, we will refer to these principles
as background for the development of our methodologies.

C. Binary Features Selector

The BFS module identifies relevant fields in a protocol
message format in contrast to the attributes which specify
additional parameters. The methodology for feature selection
presented here is based on a statistical analysis of the raw
packets based on the “Variance of the Distribution of the
Variances” (VDV) of each byte field in the protocol message.

In our IP related case the following feature extraction
rules apply, representing an essence of the said “Father of
all Protocol”:
• Different flows of the same protocol have common

underlying logic allowing the communication.
• Common logic is represented by relevant fields.
• Relevant fields always show similar behavior between

different flows.
The theoretical motivation and the assumption that the

traces supplied hold all truth leads now directly to our
methodology:
• We defined the Byte as the basic feature unit. It reflects

the assumption that most of binary protocols are orga-
nized in byte order. Each byte field in a flow of a certain
protocol shows a certain change in value, represented by
the Byte statistic in Figure 2.

• The distributions of the same field i over different flows
are compared in Figure 3. For the comparison, the
variance of the distributions σ2

i,j is considered denoting
the degree of dispersion of byte field i in flow j. The
assumption behind this choice is related to the low
degree of variability we are interested in.



Fig. 2. Relevant Byte fields in different packets show characteristic Byte
statistics

Fig. 3. Relevant Byte fields of different flows of same protocol show
characteristic Variance of their Flow Statistic, Variance of Variance of the
Byte field statistics

• For each byte field i, we compute for the entire set of
flows 1..n the distribution of the Variance. The shape of
the distribution gives an indication of the variability of
the field between several flows.

• We consider the variance of the previously computed
distribution σ2{σ2

i,1, σ
2
i,2...σ

2
i,n} for each byte field i

considering all flows 1..n. Therefore the methodology
is defined as “Variance of the Distribution of the Vari-
ances” (VDV).

• The most relevant field has the lowest value of the
Variance. This conclusion denotes that relevant fields
always show similar behavior between different flows,
and therefore lowest variability. If more fields show a
value of variance near to 0, they are both considered as
relevant fields in the protocol.

At the end of this step the BFS has identified the most
relevant field in a protocol message discarding all irrelevant
attributes. Now the final protocol state machine has to be
constructed by the SMB considering the most relevant field.

D. State Machine Builder

This module defines the notion of state and the proper
transitions which interconnect every state. Both of these steps
are performed by the “State Splitting algorithm” which is the
core of the SMB and the novelty in our work. The algorithm
II.1 can be divided into three different main steps which will
be described below:

Algorithm II.1: STATE SPLITTING(InputTrace)

comment: Reconstruct Protocol State Machine

CONSTRUCT INITIAL STATE MACHINE(i)
for each i ∈ InputTrace

do
{

CREATE INITIAL STATES(i)
CONNECT STATES(StateMachine, i)

SPLITTING(InputTrace, StateMachine)COMPUTE SEQUENCE(InputTrace, Window)
COMPUTE SEQUENCE(StateMachine, Window)
SPLIT STATE(StateMachine, InvalidSequence)

PRUNING(StateMachine, InputTrace)
for each i ∈ InputTrace

do
{

PARSE(StateMachine, i)
ELIMINATE TRANSITION(StateMachine, i)

1) Initial Construction of the State Machine: The first step
of the algorithm constructs an initial protocol state machine
where the states are identified as follows:
• START and END states are introduced defining a ref-

erence for the state model.
• Binary numbers are assigned for each state with a dif-

ferent value of the selected field. This step is motivated
by the fact that different values of the relevant field
represent different logic parts of the protocol.

• Different states are created considering the opposite side
of a conversation, i.e if a message is sent or received.
Thus the value of the relevant field in a message sent
leads to a different state than the state generated by a
value in a response message.

In the case of the TCP handshake, three different states
are created, SENT SYN, RECEIVED SYN ACK, SENT
ACK. Then they are interconnected according to the order
appearing in the input traces. Thus an edge is created from
the first state to the second and from the second to the third
and so on.

2) Splitting: The splitting process aims at the reduction
to minimum amount of possible states allowing all cor-
rect transitions. The minimum amount of states consists of
only connected states, not equal and not being a subset of
other states already present. The splitting step distinguishes
between unequal states represented by the same feature
value by additional inspection of the always present previ-
ous and following states using a time window. Assuming
a request/response behavior in the protocol, and therefore
considering two messages, to reveal a new state we only
need an additional message. For instance in the case of
TCP protocol we may distinguish between an ACK sent
in the handshake phase after a SYN from an ACK sent
in the closing connection after a FIN by looking one step
ahead in time. In the first case we expect the starting of the
connection, therefore a push or an ack message, in the latter
the ending of the conversation and no more messages. This
observation motivates the choice of a sliding time window of
three messages for the derivation of the correct states. The
necessary steps for the splitting outlined in Figure 4 are the
following:

1) From the initial input traces, every sequence of states
with a window of three is computed. For instance



Fig. 4. State Machine transition with time window=3; Comparison with
input trace to identify invalid transitions

SENT SYN, RECEIVED SYN ACK, SENT ACK is
an example of sequence with window three.

2) From the state machine created in the Initial Construc-
tion step every sequence of states with a window of
three is computed.

3) Both sequences are compared and states with se-
quences not present in the input trace are split. From
the original state with invalid transitions, several states
with only correct ones are created, as sketched in
Figure 5.

Fig. 5. State Splitting: Elimination of invalid transitions

3) Pruning: After the State Splitting Phase the state
machine often comprises unnecessary edges. The reason lies
in the nature of the splitting process itself. For each split state
all the edges with no conflict are duplicated even if they may
be originally related to only one particular state. In order
to obtain the irreducible representation of the final protocol
again the input traces have to be used in the same way as
a regular expression is parsed by a finite state automaton.
All non existing transitions in the parsing process are deleted
because being redundant. The principal steps of the algorithm
are the following:
• Parse traces with state machine.
• Keep transition visited at least once.

III. RESULTS

A. Identification of relevant fields in protocols

The feature selection methodology based on the statistical
analysis previously presented has been tested with several

protocols: the Address Resolution Protocol (ARP), the Dy-
namic Host Configuration Protocol (DHCP), the Transmis-
sion Control Protocol (TCP) and the KAD protocol. We
considered protocols ranging in different levels of the OSI
model, from the second up to application level, with the final
goal of proving the generality of our approach.

a) ARP: According to the message format specification
of the ARP protocol, the “Operation Code” specifies the
operation the sender is performing: “1” for request, “2” for
reply. Therefore it expresses the logic of the protocol and it
is eligible as relevant field. All the other fields of the ARP
protocols are attribute parameters depending on the specific
request and response. The result obtained with our BFS is
shown in Figure 6.

Fig. 6. “Operation Code” Field (red circle) in ARP protocol selected
according to the Binary Feature Selector

The x-axis value represents the index of each byte in the
protocol message, while the values on the y-axis represent
the Variance with a logarithmic scale shifted by one in order
to avoid negative values. Fields with constant values during
the entire flow are automatically discarded because state
transition is defined by a change in value. The lowest value
of variance is in correspondence with the byte eight, i.e. the
last byte of the “Operation Code” field. Thus our feature
selection approach is able to identify the field carrying the
logic of the ARP protocol.

b) DHCP: The application of our BFS to the DHCP
protocol outlines two different fields with the lowest value of
Variance as shown in Figure 7. The first one is the “Operation
Code” (OPC) which specifies if a message is a request or a
response. The second field is the “DHCP Message Type op-
tion” specifying the actual type of DHCP message. This field
distinguishes between different types of requests, such as
“DHCP REQUEST” or “DHCP DISCOVER”, and different
types of responses such as “DHCP ACK” or “DHCP NACK”.
Both fields express the logic of the DHCP protocol. The first
captures the request/response behavior of the protocol, while
the second specifies the type of request and response.

c) TCP: Same approach for the TCP protocol. The
Variance for each field of the TCP header is computed and
compared to the other fields in the TCP header. The Flags
(byte 14) have the lowest value of Variance, as outlined in



Fig. 7. “Operation Code” and “Message Type Option” are selected as
relevant features in the DHCP protocol. (s. red circles)

Figure 8. This result is expected because TCP flags allow the
establishment and management of the TCP connection thus
representing the logic of the protocol.

Fig. 8. TCP Flags selected by the Binary Features Selector

d) KAD: The application level protocol selected as a
test case is the Kademlia protocol implemented in the KAD
network, a peer to peer (P2P) overlay network based on
a Distributed Hash Table algorithm (DHT). The choice of
this protocol allows us to test our approach on a complex
P2P protocol with a binary message format. Because of the
unavailability of the RFC, we use as reference the work of
[9]. The packet format is defined as follows:
• Protocol Type (one Byte): It specifies the type of

protocol message. It states that a packet is part of the
KAD protocol or of other protocols such as Edonkey
[10].

• Operation Code (one Byte): It specifies the type of op-
eration performed by the KAD protocol such as HELLO
REQ or HELLO RES being used for the discovery of
new peers in the network. It is representative for the
logic of the protocol because it specifies its different
actions.

• Payload (variable size): It contains the payload accord-
ing to the command being specified in the “Operation
Code” field.

Our Binary Features Selector is applied to diverse traces of
the KAD protocol with around 1000 UDP packets. Because
of the variable size of the payload in the various types of
messages, packets are truncated to the size of the minimum
one. As outlined in Figure 9, the field with the lowest

Fig. 9. “Operation Code” (red circle) is selected as the relevant feature in
the KAD protocol message

variance is the “Operation Code”, the second byte position,
which represents the actions performed by the protocol and
therefore its logic.

B. Protocol State Machine Derivation

The derived protocol state machines presented in this
section refer to the protocols previously examined with the
BFS and in particular to TCP and KAD. The TCP protocol is
analyzed due to its high relevance, various implementations
and very good documentation. Nevertheless, we also focused
on the KAD protocol because it is commonly used in P2P
networks, rather complex, with binary format and poorly
documented, thus being an interesting challenge.

TCP protocol state machine: After identifying the TCP
flags as the most relevant field, the SMB module is applied
to tcpdumps representing live sessions with real users in
Swisscom’s operational Testnetwork. We captured around
100 different TCP flows carrying different application level
protocols such as FTP, HTTP/HTTPS and SSH. Due to the
size of the state models the graph is divided into a main
(Figure 10) and a sub graph s (Figure 11). Figure 10 is
divided into different groups labeled with letters for a better
visualization of the results.

We refer to the TCP connection state diagram as presented
in the RFC 793 for a comparison with the results obtained.
Group A in the proposed state machine represents the TCP
handshake observed from the point of view of the initiator
of the connection. The training traces also include a case of
“Connection Reset” by the other peer.

Group B outlines the “Responder Sequence” in the TCP
handshake, i.e. from the point of view of the peer receiving
a request of a new connection. In our training traces an
example of simultaneous opening of the connection is not
available and thus not present in the state machine.

Group D represents the close of the connection initiated
by the sender with the states SENT FIN ACK, RECEIVED
FIN ACK, SENT ACK. After the SENT ACK, the connection
ends reaching directly the end state.



Fig. 10. Derived TCP state machine

Group E represents instead a simultaneous close where
the ACK in the RECEIVED FIN ACK is not acknowledging
the previous FIN. Thus the sequence of states SENT FIN
ACK and RECEIVED FIN ACK generate a simultaneous
close. This simultaneous close generates an additional ACK
message necessary for acknowledging the first FIN. The state
machine inferred realizes the simultaneous close by adding
an additional RECEIVED ACK state before the END state.
Thus both simultaneous close and a close initiated by only
one side of the connection are correctly handled.

The group C is the “Responder Sequence” of a closing
connection, as seen from the other side of the connection. It
is the specular case of the previous two mentioned groups.

Sub Graph B in Figure 11 represents the established
state of the TCP connection in which both error control
and application specific logic is interconnected. These two
mechanisms are respectively represented by the ACK Flag
for error control and by the PUSH Flag controlled by the ap-
plication layer. The interconnection of these two mechanisms
generates several different sequences of messages where
error control logic and the logic of different applications are
combined.

Comparing the derived state machine with the one pre-
sented in the RFC proves the correctness of the result.
Due to missing training data only the simultaneous open of
the connection is missing, then the state model would be
complete. Moreover only a “Connection Reset” state after a
SYN in the TCP handshake is present. Correct appropriate

Fig. 11. Derived TCP state machine: subgraph B

transitions to the connection reset state from other states are
part of the TCP state machine. These missing transitions
depend only on missing training data.

KAD protocol state machine: We will present the
KAD protocol state machine derived by the SMB module
comparing it to the diagrams presented in the work of [9]. In
particular we decided to focus on the “Initialization Process”
which is the initial step of the entire set of operations per-
formed in the lifetime of a KAD client. These Initialization
processes seem to be very important for traffic and protocol
identification and the complex behavior with many different
operations makes it an interesting and challenging candidate
to test our approach.

The initialization process is divided in the following steps:

• Bootstrap Process: In order to join the KAD network
a client sends a BOOTSTRAP REQ to a known client
asking for new peers in the network. The response is a
BOOTSTRAP RES containing a list of several nodes in
the network.

• Initial Handshake with a New Peer: In order to verify
whether a peer is online, a REQ is sent to the new
contact which will reply, if still online, with a RES
message.

• Firewall Check: In order to verify whether it is behind
a firewall or a NAT, the client sends a FIREWALLED
REQ to a peer in the network. The peer will answer
with a FIREWALLED RES trying to connect to the
checking client. If the connection is successful it will
send a FIREWALLED ACK.

• Finding a Buddy: A client in a firewalled state tries to
connect to a non firewalled client, a buddy, for receiving
incoming messages. The client sends a FINDBUDDY
REQ to a peer in the network which will answer with



a FINDBUDDY RES if it is not firewalled.

Keeping in mind these main steps, we present in Figure 12
the derived KAD protocol state machine. In order to observe
the initialization process a Tcpdump capture of the initial 10
minutes of the KAD activity with around 1000 UDP packets
was captured.

The state machine in Figure 12 is graphically divided into
different parts for a precise comparison to the previous pre-
sented logical steps. Group R outlines the initial handshake
performed when contacting a new peer. Our client sends a
REQ which is followed by a RES if the client is online.
Starting from this initial handshake several phases follow
such as searching for a buddy or starting a firewall check.

Group A represents the firewall check performed by the
client. A FIREWALLED REQ is sent by our client while a
FIREWALLED RES is returned by the responding client.
In this case a FIREWALLED ACK RES is not present
because our client is behind a NAT. During a firewall check
normal communication between peers is performed. Thus in
the group A a HELLO REQ and HELLO RESP messages
are exchanged to verify the online status of a peer. After
the firewall check the client may start a new firewall check
(group A), find a buddy peer (group C), receive a firewall
check (group B) or end the conversation (END state).

Group B represents a request for a firewall check per-
formed by another client in the network. It is the specular
case of a request performed by our client as explained before
for group A. In this case however there is a successful FIRE-
WALLED ACK RES sent to the opposite client meaning that
the demanding client is not firewalled.

Group C represents the search for a buddy peer being
capable of forwarding incoming connections. The message
sent by our client is a FINDBUDDY REQ. The responding
client may answer positively with a FINDBUDDY RES if
its state is not firewalled. It does not answer ending the
conversation if its state is firewalled.

Groups D and D’ model the exchange of packets between
peers for checking whether they are still online and available
for communication. In group D our client sends a HELLO
REQ to a new peer which in turn answers with a HELLO
RES message if it is online. Other HELLO REQ messages
are sent if the peer is not answering. A firewall check
procedure may be started if the peer is online.

Compared to the theoretical description previously pre-
sented and the work of [9], our state machine models
perfectly the exchange of packets between our client and
the other peers in the network. Only the messages for the
bootstrapping phase are not present because our particular
client uses an external file for bootstrapping. Moreover the
protocol state machine outlines additional correct transitions
and sequences of states being not present in the diagrams
of [9]. For instance, in the state machine it is clearly visible
that a FIREWALL REQ is always followed by a HELLO
REQ. Instead in the diagrams of [9] such a state is postponed
after the FIREWALL RES. Additionally our state machine
outlines the link between a firewall check and the search

for a buddy connecting the two subgroups. Therefore our
approach derives the correct state machine and enriches the
model of the protocol as presented in the previous work.

IV. CONCLUSIONS

Our work demonstrated a valid approach for reconstructing
the state machine of an unknown protocol only from its
network traces. From raw network traces first we derive
the protocol’s features being relevant for capturing the logic
of the protocol. Therefore we presented a Binary Features
Selector module based on a statistical analysis of each field
among all flows. We obtained that the most relevant field in
a protocol has the lowest value of variance of the distribution
of the variance computed for each flow. The approach has
been evaluated with several protocols ranging in different
layers of the OSI model: ARP, DHCP, TCP and KAD. For
each of these protocols the relevant fields are automatically
derived.

As a second step we started from the identified relevant
features to derive the state machine of the protocol. We
presented our State Machine Builder module based on the
“State Splitting” algorithm for the correct reconstruction of
the state machine. Focusing on the evolution in time of the
sequence of states, the algorithm splits each state creating
all correct transitions in the state machine. The result of the
algorithm is a graphical representation of the state machine
of the protocol immediately outlining its logic.

The approach is empirically evaluated with two different
protocols: the Transmission Control Protocol (TCP) and
the Kademlia peer to peer (P2P) protocol. Compared to
the RFCs and our knowledge about the protocol, both the
resulting state machines have proven the correctness of the
methodology. In particular the reverse engineering of the
Kademlia protocol outlines that our approach is successfully
applied to complex problems. Kademlia is a binary protocol
with an emerging complexity and poor documentation. Our
approach without previous knowledge of the protocol is able
to derive the state machine of the initialization process.
Moreover it identifies correct transitions not documented in
previous works, denoting the future potential of our work.

The most promising future work is related to the proto-
col state machine derivation from encrypted traffic. In this
context Deep Packet Inspection is not feasible due to the
encryption of the channel. However previous research in the
context of encrypted traffic mining [11] has demonstrated
a way to derive different types of commands in encrypted
sessions. Starting with features selected by encrypted mining
techniques, our State Machine Builder module may be ap-
plied to derive the state machine of even encrypted protocols.
If the protocol transfers information of human behavior onto
the IP layer, such as Telnet, SSH, FTP detailed robust state
models, or signatures of normal or thus abnormal behavior
could be created. While in state-full protocols first the human
part has to be extracted, in non state-full ones such as
HTTP/HTTPS every message directly codes into a human
state. Hence, HTTP/HTTPS being generally used might be



Fig. 12. State machine of the initialization process in KAD

a good protocol to produce human behavior models in order
to detect abnormal behavior.

REFERENCES

[1] A. Trifilò. Traffic to Protocol Reverse Engineering, Master Thesis
Report, Eurecom (France), Swisscom Innovation (Switzerland), Po-
litecnico di Torino (Italy), September 2008.

[2] C. Leita, K. Mermoud, and M. Dacier. ScriptGen: An Automated
Script Generation Tool for Honeyd. In 21st Annual Computer Security
Applications Conference (ACSAC), 2005

[3] C. Leita, M. Dacier, and F. Massicotte. Automatic Handling of Protocol
Dependencies and Reaction to 0-Day Attacks with ScriptGen-based
Honeypots. In Symposium on Recent Advances in Intrusion Detection
(RAID), 2006.

[4] W. Cui, J. Kannan, and H. Wang. Discoverer: Automatic Protocol
Reverse Engineering from Network Traces. In 16th Usenix Security
Symposium, 2007.

[5] W. Cui, V. Paxson, N. Weaver, and R. Katz. Protocol-Independent
Adaptive Replay of Application Dialog. In 13th Symposium on Net-
work and Distributed System Security (NDSS), 2006.

[6] G. Wondracek, P. M. Comparetti, C. Kruegel, and E. Kirda. Automatic
Network Protocol Analysis. Network and Distributed System Security
Symposium (NDSS), Internet Society. USA, February 2008.

[7] J. Newsome, D. Brumley, J. Franklin, and D. Song. Replayer: Auto-
matic Protocol Replay by Binary Analysis. In 13th ACM Conference
on Computer and Communications Security (CCS), 2006

[8] X. Haijun, P. Fang, W. Ling, L. Hongwei. Ad hoc-based feature
selection and support vector machine classifier for intrusion detection.
In Grey Systems and Intelligent Services (GSIS), 2007.

[9] R. Brunner. A performance evaluation of the kad-protocol , Masters
thesis. Eurecom (France), Mannheim University (Germany). Novem-
ber 2006.

[10] Wikipedia. eDonkey Network. http://en.wikipedia.org/wiki/EDonkey network.
August, 2008.

[11] J. R. Borque. Encrypted Traffic Mining: SSH Command Guess-
ing, Master Thesis Report, Eurecom (France), Swisscom Innovation
(Switzerland), January 2007.


