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Abstract. In order to provide a reliable service, a video server must be
able to reconstruct lost information during disk failure. We focus in this pa-
per on reliability schemes that add redundancy within the server. We study
two redundancy-based alternatives: mirroring-based schemes and parity-based
schemes. We analyze in this paper these two alternatives and propose their
adequate data layouts. We then compare them in terms of the server perfor-
mance (throughput) and the costs of a single stream. Our results show that
mirroring-based reliability is more cost e�ective than parity-based reliability.
We obtain the, at �rst glance, surprising result that a server that uses mir-
roring, which doubles the storage requirement, has lower per stream costs
than a server that uses parity-based reliability.
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1 Introduction

1.1 Reliability Issues

Video servers typically store a huge number of voluminous video �les. As the number
of �les to be stored increases, the number of storage components required, typically
SCSI hard disks, increases as well. However, the larger the video server is, the more
vulnerable to disk failures it becomes. In order to ensure uninterrupted service even
in the presence of a disk failure, a server must be able to reconstruct lost informa-
tion. This can be achieved by using redundant information 1. We distinguish two
ways to add redundancy within a server: a mirroring-based and a parity-based way.
The main disadvantage of mirroring schemes is that it doubles the amount of stor-
age required. Although mirroring-based schemes require more storage volume than
parity-based schemes, they signi�cantly simplify the design and the implementation
of video servers, since mirroring does not require any synchronization of reads or
additional processing time to decode lost information. The steep decrease of mag-
netic disk cost may make it more and more attractive as a reliability mechanism.
The video server is assumed to use round based scheduling: The service time is di-
vided into equal-size time intervals. Each admitted client is served once every time
interval: the service round. Additionally, the server uses the SCAN algorithm for
data retrieval from disks. We also assume CBR-coded streams with constant block
size.

1 There are also non-redundancy based schemes to mask the loss of data that we do not
discuss in this paper.



1.2 Striping Granularity vs. Throughput

A very important design issue of a video server concerns the layout (striping) of video
data on the multiple disks. We assume that each video object is partitioned into
video segments that are stored/distributed over the disks. Two striping techniques
were studied and compared in the literature: the Coarse-Grained Striping algorithm
(CGS) and the Fine-Grained Striping algorithm (FGS). CGS retrieves for one
client a large video segment from a single disk during one service round. During the
next service round, the next video segment is read from the next disk. In contrast
to CGS, FGS retrieves for one client D small video segments from all D disks of
the server during each service round. Thus, the number of disk accesses per service
round is D for each client. The following example illustrates the di�erence between
CGS and FGS. Assume a video object V stored on the server and having a size of
1:2 GByte = 9:6 Gbit = 9:6 � 103 Mbit. For CGS, a typical video segment size is
bCGSdr = 1Mbit. To deliver the video object V , the server needs 9600 disk accesses.
For FGS, a typical video segment size is bFGSdr = 0:1 Mbit. Therefore, to retrieve
the whole video object, 96000 disk accesses are needed, which is 10 times as much as
the number of accesses required for CGS. Since the seek overhead by data retrieval
is proportional to the number of disk accesses, FGS has a higher seek overhead
than CGS. Hence the higher throughput for CGS.

Many papers have shown that the Coarse-Grained Striping algorithm (CGS)
performs better than the Fine-Grained Striping algorithm (FGS) in terms of through-
put for the same amount of resources when assuming a non-fault tolerant video
server as well as for a fault-tolerant video server using parity (RAID5 for CGS vs.
RAID3 for FGS) [1{6]. The terms video segment and disk retrieval block are used
interchangeably and denote the amount of data retrieved (or stored) for one client
from one disk during a service round.

1.3 Related Work

Reliability in video servers has been addressed in lots of work, either in the context
of parity-based schemes, e.g. [7, 8, 1, 9{15], or in the context of mirroring-based
schemes [16{22]. In [23], several parity-based schemes are compared in terms of
disk storage overhead, bu�er requirement, bandwidth utilization, reliability, and
cost per stream.

There is very little literature on modeling cost issues in video servers. In [24], the
authors compare distributed and centralized approaches to VOD in terms of server
costs. They show that distributing the video server over many sub-servers reduces
total server costs, compared with a centralized approach. Doganata [25] looks at
the di�erent components of a video server that has both, secondary and tertiary
storage, and is mainly concerned with the modeling of a video server based on using
a storage hierarchy.

A detailed cost comparison of di�erent reliability schemes in disk-based video
servers as presented in this paper has to the best of our knowledge not been done
previously.

2 Reliability

To be fault-tolerant, a video server must store some redundant information that is
used to reliably deliver a video object even when one or more disks fail. The amount
and the placement of redundant information are decisive in terms of the number
of disk failures that can be tolerated and also for the load balancing between the
surviving disks in the server. There are two major models for a fault-tolerant video
server: (i) mirroring-based and (ii) parity-based.



A �rst choice to make when using redundant information is to decide whether to
store the redundant data separately on (i) dedicated disks or to store the original and
redundant data on (ii) the same disks. We will limit our discussion to the second case
since it allows us to achieve higher throughput and better load balancing [26] than
(i) . We now consider what kind of redundant information to store. We distinguish
between mirroring-based and parity-based reliability.

2.1 Parity-Based Reliability

The parity-based technique consists of storing parity data in addition to the ex-
isting original video data. RAID2-6 schemes use this approach to ensure against
disk failures. When a disk failure occurs, parity information is used to reconstruct
the failed original data. RAID5 [27] requires a small amount of additional stor-
age volume for each video to protect against failure, since one parity disk retrieval
block is needed for each (D � 1) original disk retrieval blocks. The (D� 1) original
and the one parity disk retrieval blocks build a parity group. We �rst assume a
RAID5 scheme with sequential parity placement, as shown in Fig. 1. Fig. 1 shows
for a video server with D disks, how one video object is stored using the RAID5
scheme considered: A video object is assumed to be partitioned exactly into Nvs

video segments where Nvs = Z �D � (D � 1); Z 2 f1; 2; :::g.
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Fig. 1. RAID5 data layout.

As Fig. 1(a) shows, the data placement within the server is represented by
placing the numbers inside a matrix that contains D columns (the disks) and (Z �D)
retrieval lines (the parity groups). Fig. 1(b) shows the storage layout of original
and parity disk retrieval blocks that are stored on a given disk i (i 2 [1; :::; D]) of
the server.



Although the additional storage volume is small for RAID5, the server needs
additional resources in terms of I/O bandwidth and main memory requirements
when working with a disk failure. The amount of additional resources for RAID5
depends on the choice between the second-read strategy and the strategy that stores
a whole retrieval line as we will explain in details in section 3.3. Let us call the
RAID5 scheme described in this section CGSPar.

2.2 Mirroring-Based Reliability

The mirroring-based technique consists of entirely replicating each video segment,
with the original and the copy being on di�erent disks. Mirroring is also called
RAID1 by Lee et al. [28] [9]. Mirroring will double the storage volume required but
prevents the I/O bandwidth from doubling in case of failure as does RAID5 with the
second-read strategy [29]. In the following discussion, we use the terms mirroring and
replication interchangeably. Many papers propose mirroring to achieve reliability
within a video server. In [18], a mirroring scheme was proposed that uniformly
distributes the load of a failed disk over all the remaining disks in the server. The
Microsoft Tiger [19] video server uses independent clusters to store data. Each
original segments of a disk is partitioned into d�1 small sub-segments and mirrored
on the remaining d�1 disks of the cluster that this disk belongs to. This organization
is analogous to the streaming RAID approach of [1] and enables protection against
more than one disk failure. In order to coherently compare RAID5 and mirroring,
we chose a mirroring scheme that only protects against a single disk failure as is
the case for RAID5. Thus, the mirroring scheme considered is similar to the one
proposed in [18] (the doubly striped scheme) and also discussed in [30] (the one-to-
all assignment scheme).

The data layout of one video object and its replica is as follows. The storage
of the original disk retrieval blocks follows a round-robin order. As for RAID5,
we assume a video object containing Z �D � (D � 1) original disk retrieval blocks.
The storage of the replicated disk retrieval blocks is also round-robin in order to
distribute the load of a failed disk over as many disks as possible. A disk di contains
Z � (D � 1) original disk retrieval blocks and additionally Z replicated disk retrieval
blocks from each of the other disks d1,..,di�1,di+1,..,dD. Each disk is assumed to
be partitioned into two parts. The �rst part contains original data and the second
one stores replicated data. Fig. 2 shows the storage layout of original disk retrieval
blocks of one video object and how the original blocks of disk di are replicated
over the remaining disks. Let us call the mirroring scheme considered in this paper
CGSMirr.

Line

1

2

j

1

2

n

Disk 1 Disk i Disk DDisk 2

D

2.D

j.D

(D-2).D+i

(2.D-3).D+i

i

D+i

2

D+2

(j-1).D+2

D+i

D.D+i

D+1

1

(j-1).D+1

i

(D-1).D+i

((n-1).D+(1-n)).D+i ((n-1).D+(2-n)).D+i ((n-1).D+(D-n-1)).D+i

(j-1).D+i

Original Data

Replicated Data
of disk i  
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3 CGSMirr vs. CGSPar

We distinguish two operation modes for a video server: the normal operation mode,
where all server components work, and the disk failure mode, where one of the
disks failed. In order to perform reliability, the video server should allocate a part
of its available resources (disk space, I/O bandwidth, bu�er) to be needed in disk
failure mode. In this section, we calculate the amount of these resources needed for
CGSMirr as well as for CGSPar . Finally, we compare both schemes with respect
to the costs of a single admitted stream.

3.1 Storage Volume Requirement

We assume the following situation. Let the size of a video object be 1:2 GByte and
the disk storage capacity be 2 GByte. The size of a disk retrieval block is �xed to
1Mbit. For CGSPar , a parity group consists of (D�1) original disk retrieval blocks
and one parity block. Thus, for each (D�1) Mbit of original data, 1 Mbit overhead is
needed for CGSPar. Therefore, one additional disk is needed for CGSPar. CGSMirr,
however, needs double as many disks as required to store original video data.

3.2 Bandwidth Allocation for Reliability

During disk failure mode, where a single disk fails, the remaining (D � 1) disks of
the server should retrieve additional information (parity blocks or mirrored blocks)
in order to reconstruct the lost blocks. Thus, during normal operation mode, each
disk can not exploit its entire available I/O bandwidth. It must keep unused a
part of its I/O bandwidth that is needed when working during disk failure mode,
which reduces the maximum number of streams 2 that can be admitted. Let us
de�ne the throughput as the maximum number of clients that the video server can
simultaneously admit. We use in this paper the throughput results that are derived
in [5]. Let Qnom

d denote the maximum number of streams that can be served from
a single disk during normal operation mode. When one out of the D disks fails, the
remaining D � 1 disks must support more streams than when working in normal
operation mode. Let Qfom

d be the maximumnumber of clients that can be supported

from each of the surviving disks after one disk failed 3. We calculate Qfom
d as Eq.

1 shows, where rp, rd, tstl, tseek, and trot denote respectively video playback rate,
inner track transfer rate, settle time, seek time, and worst case rotational latency.
These parameters take the following values: rp = 1:5 Mbps, rd = 24 Mbps, tstl = 1:5
ms, tseek = 20 ms, and trot = 11:11 ms.

Q
fom

d =

bdr
rp

� 2 � tseek
bdr
rd

+ trot + tstl
(1)

Qnom
d and Q

fom
d have the following relationship: Qnom

d =
j
D�1

D
�Qfom

d

k
Consequently, the overall server throughput Qnom during normal operation

mode follows Eq. 2:

Qnom = D �Qnom
d = D �

�
Q
fom
d �

�
Qnom
d

D � 1

��
(2)

Note that the overall server throughput Qnom is the same during both, normal
operation mode and disk failure mode.

2 We use the terms streams and clients interchangeably throughout the paper.
3 nom denotes normal operation mode and fom denotes failure operation mode.



3.3 Bu�er requirement vs. Throughput

We assume that the bu�er requirement is for the case of shared bu�er management
where each video stream has been assigned a dynamically changing portion of a
common bu�er. We have shown in [5] that the total bu�er requirement Bnom for
CGS during normal operation mode is :Bnom = Qnom � bdr , where Qnom is the
server throughput as described in Eq. 2, and bdr denotes the size of a disk retrieval
block. During disk failure mode, the amount of bu�er needed may change depending
on the reliability scheme and the retrieval strategy used. The bu�er requirement also
depends on the throughput that the server can achieve. We focus in sections 3.3
and 3.3 on the bu�er requirement as well as on the throughput for both, CGSMirr

and CGSPar.

Bu�er requirement and Throughput for CGSMirr CGSMirr replicates orig-
inal disk retrieval blocks belonging to a single disk over all the other (D � 1) disks
of the server. During disk failure mode, disk retrieval blocks that would have been
retrieved from the failed disk are retrieved from the remaining disks. Thus, origi-
nal disk retrieval blocks are replaced by mirrored disk retrieval block. Accordingly,
CGSMirr requires the same amount of bu�er during normal operation mode (Bnom)

as well as during disk failure mode (Bfom
Mirr):

B
fom
Mirr = Bnom (3)

Note that the throughput Qnom
Mirr of CGSMirr equals Q

nom (Eq. 2):

Qnom
Mirr = Qnom (4)

Bu�er requirement and Throughput for CGSPar In a parity-based scheme,
a group of disk retrieval blocks are needed to reconstruct a lost disk retrieval block:
When one original block is lost, a X-OR operation is performed over (D�2) original
blocks and one parity block to decode the information initially contained in the lost
block. We see two alternatives to ensure a reliable service for CGSPar . The �rst
alternative is called the bu�ering strategy (CGSParBu� ) and the second one is
the second-read strategy (CGSParSec).

Further, we see two modes how to manage the retrieval of parity information: the
reactive mode and the preventive mode. The reactive mode means that parity
information is only sent when a disk failure occurs. During normal operation mode,
parity is not used. Immediately after a disk failure occurs, a temporal degradation
is observed at some clients until the server is able to reconstruct the lost blocks.
The degradation can take many service rounds. In order to avoid temporal degra-
dations for the admitted streams when a disk failure occurs, the video server can
be preventive to be able to reconstruct the failed block at any time. This requires
that blocks of a parity group be retrieved from disks and kept in the bu�er even
during normal operation mode. However, the preventive mode requires more bu�er
than the reactive mode, since more disk retrieval blocks are read in normal opera-
tion mode. With the preventive mode, the bandwidth used for each of the surviving
disks is the same during both normal operation and disk failure mode. Since we
considered only the reactive mode for CGSMirr, we will only consider the reactive
mode for CGSPar in the rest of the paper.

The Bu�ering Strategy : During normal operation mode, the bu�er is immediately
liberated after consumption. When a single disk fails, original as well as parity
disk retrieval blocks are sequentially retrieved (during consecutive service rounds)



from disks and must be temporarily stored on the bu�er (for many service rounds)
to reconstruct the lost original disk retrieval block. This requires additional bu�er
space. In the following, we calculate the amount of needed bu�er when assuming
the worst case situation.

Assume a single disk failure is happening during service round k � 1. At most,
all Qnom

d disk retrieval blocks that should have been retrieved from this failed disk
must be reconstructed. However, to reconstruct one failed disk retrieval block for
one stream, (D � 1) disk retrieval blocks are sequentially retrieved (during (D � 1)
successive service rounds) and temporarily stored in the bu�er.

The retrieval schedule of a CGSParBu� -based server is depicted in Fig. 3(a) for
a simple scenario with 4 disks. Q1, Q2, Q3, and Q4 denote lists of clients. Each
client is in exactely one list. Each list is served from one disk (d1, d2, d3, or d4)
during one service round and from the next disk (round robin order) during the
next service round. In Fig. 3(a), we attribute to each of the lists (Q1; Q2; Q3; and
Q4) the corresponding disk (d1, d2, d3, or d4) from which data must be retrieved
during service rounds k, k + 1, k + 2, k + 3, and k + 4. Let us assume that disk d1
fails during service round k � 1 and let us focus on the data retrieval for clients in
list Q4: During service round k, blocks are retrieved from disk d4; during service
round (k+ 1) no data is retrieved, since d1 has failed, during service round (k+ 2)
data is retrieved from disk d2, and during service round (k + 3) from disk d3. At
the end of service round (k + 3), blocks of disk d1 can be reconstructed.

Fig. 3(b) shows the bu�er occupancy for one stream during disk failure mode.
A parity group contains 3 original disk retrieval blocks and one parity disk retrieval
block (Drb) . The �rst block is assumed to be lost. To reconstruct the stream, three
times bdr bu�er space is needed.
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Fig. 3. Disk failure mode for CGSParBu� with D = 4.

Generally, given a server with D disks, each stream needs (D � 1) times bdr
bu�er space during disk failure mode. Thus, the bu�er requirement for all Qnom

streams during disk failure mode is:

B
fom
ParBu� = (D � 1 ) �Qnom � bdr = (D � 1 ) �Bnom (5)



Eq. 5 shows that the bu�er requirement dramatically increases for a CGSParBu� .
For the amount of bu�er calculated in Eq. 5, the throughput Qnom

ParBu� equals Qnom

(Eq. 2): Qnom
ParBu� = Qnom.

The Second-Read Strategy : We have seen that the bu�er requirement is very high
for CGSParBu� . In order to reduce the amount of bu�er needed, one can use the
second read strategy that performs as follows. Instead of temporarily storing all
remaining disk retrieval blocks that belong to the same parity group, the server
retrieves every original disk retrieval block twice: one read to deliver the original
block and another read to reconstruct the lost block. Using a second read strat-
egy, the number of reads will double and therefore the number of clients admit-

ted per disk Qnom
d�ParSec for CGSParSec is the half of Qnom

d : Qnom
d�ParSec =

Qnom
d

2

and the server throughput Qnom
ParSec is to get as: Qnom

ParSec = Qnom

2
. Further, an ad-

ditional bu�er is needed ((D � 1) � Qnom
d�ParSec � bdr to store data during the sec-

ond read and perform decoding of the missing disk retrieval block. Thus the total
bu�er requirement Bfom

ParSec for the second read strategy during disk failure mode is:

B
fom
ParSec = Qnom

ParSec � bdr + (D � 1) �Qnom
d�ParSec � bdr .

3.4 Comparison between CGSMirr and CGSPar

Comparison Metrics In order to compare CGSMirr and CGSPar in terms of
both, the server costs and the server performance, we derive in this section the
comparison metric the costs of a single stream Cstream. To get the costs of a single
stream, we proceed as follows. We calculate the total server costs Cserver as the
costs of the storage volume (hard disks) and the main memory volume (bu�er
requirements): Cserver = Pmem �B + Pdisk � V

Where Pmem, B, Pdisk, and V denote respectively the price of 1 Mbyte of main
memory, the bu�er requirements in MByte, the price of 1 Mbyte of hard disk, and
the storage volume required in MByte. Typically price �gures are Pmem = 13$ and
Pdisk = 0:5$. Since these prices change very fast, we will consider the relative costs
by introducing the cost ratio between Pmem and Pdisk: Pmem = � �R �Pdisk, where
R is the initial ratio between Pmem and Pdisk, with: R = 13

0:5
= 26, and � is the

so called relative ratio factor. Thus, we derive the relative server costs function as
4: Cserver = Pmem �B + Pmem

��R
� V . The costs of a single stream are then obtained

by dividing the total server costs Cserver over the server throughput Q that can be
reached:

Cstream =
Pmem �B + Pmem

��R
� V

Q
(6)

Results In order to coherently compare the two reliability schemes CGSMirr and
CGSPar

5 and calculate the corresponding throughput and bu�er requirement for
each scheme. Subsequently, we calculate the costs per stream (Eq. 6) for each of the
schemes.

Fig. 4 shows the throughput of CGSMirr, CGSParBu� , and CGSParSec. For the
same total number of disks D in the server, CGSMirr and CGSParBu� achieve the
same throughput, whereas CGSParSec has a lower throughput.

Fig. 5 plots the server and stream costs for CGSMirr and CGSParBu� . The
relative ratio parameter � takes the values 2; 1; and 0:5. Decreasing the value of �

4 The term "relative" means that the server costs are determined by Pmem and and the
relative ratio factor �.

5 For CGSPar , we will consider both strategies CGSParBu� and CGSParSec
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means decreasing the ratio between the costs per unit (1 MByte) of memory and
hard disk. Since we �xed the memory costs per unit, decreasing � will increase the
costs per unit of hard disk and therefore the total server costs.

In Fig. 5(a), we show that the total server costs for CGSMirr is lower than the
one for CGSParBu� for all values of �. More relevant are the costs per stream,
which are depicted in Fig. 5(b). We observe that CGSMirr is more cost e�ective
than CGSParBu� for all values of �. We also observe that the costs of one stream
are independent from the number of disks in the server for CGSMirr. However, for
CGSParBu� , the costs per stream grow when the total number of disks increases.
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Fig. 5. Server costs and stream costs for CGSMirr and CGSParBu� with � = 2; 1; 0:5.

CGSMirr is much more cost e�ective than CGSParBu� . This is due to the very
high amount of bu�er that is required for CGSParBu� . We saw in section 3.3 that
CGSParSec avoids the huge bu�er requirement of CGSParBu� when working during
disk failure mode. However, CGSParSec keeps unused the half of each disk I/O
bandwidth. In the following, we compare CGSMirr with CGSParSec. Fig. 6 shows
the costs results of these two schemes.

In Fig. 6(a), we plot the total server costs for the di�erent values of �. We see
that CGSMirr and CGSParSec are close in terms of the server costs.

The costs of a single stream are shown in Fig. 6(b). We observe that a single
stream for CGSParSec costs more than a single stream for CGSMirr. Compared
with the costs of a single stream for CGSParBu� (Fig. 5(b)), we see that CGSParSec



reduces the costs of a single stream. Since CGSParSec cuts the throughput into half,
the costs per stream are twice the costs for CGSMirr.
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Fig. 6. Server costs and stream costs for CGSMirr and CGSParSec with � = 2; 1; 0:5.

We have seen in this section that CGSMirr has the highest throughput and
has always the lowest costs per stream. CGSParBu� su�ers under a very high bu�er
requirement during disk failure mode and CGSParSec looses the half of the available
I/O bandwidth to perform the second-read strategy.

4 Improving the Performance of Parity-Based Schemes

The results of section 3 show that CGSMirr outperforms RAID5 (CGSPar) in terms
of throughput and the costs of a single stream. To improve the performance and cost
e�ectiveness of parity-based schemes, a parity scheme is needed that (i) avoids the
huge bu�er requirement as for CGSParBu� , and (ii) avoids cutting the throughput
into half as for CGSParSec.

In order to reduce the bu�er requirement during disk failure mode, the parity
group size should be reduced: for RAID5, the size of a parity group increases with
the number of disks in the server. Hence the dramatical increase of the bu�er re-
quirement when the number of disks grows. In order to keep the bu�er requirement
independent from the increase of the number of disks, the parity group size should
be constant. Let us assume that the total number of disks is a multiple of the
parity group size. Note that decreasing the parity group size decreases the bu�er
requirement, whereas the storage overhead to store parity blocks increases.

Furthermore, a small parity group size decreases the disruption time of the
stream playback after a disk fails. In fact, for RAID5, the retrieval of consecutive
disk retrieval blocks belonging to the same stream is carried out during it consecutive
service rounds and from consecutive disks. After a disk failure, the worst case time
that elapses until the lost block is reconstructed (the disruption time) is D times
the service round duration, where D is the total number of disks in the server.
Increasing D for RAID5 therefore increases the disruption time for each stream.
In order to reduce the disruption time, the parity group size Dg should be much
smaller than D. Let us call the parity-based scheme that uses a parity group with
Dg disks CGScluster .



Let us keep constant the parity group size (Dg = 10) 6. The retrieval order of
data for one stream during normal operation mode is as follows. During Dg � 1
service rounds, Dg � 1 original disk retrieval blocks are sequentially retrieved from
a parity group. During the next Dg�1 service rounds, the next Dg�1 original disk
retrieval blocks are sequentially retrieved from the next parity group. During disk
failure mode, only the retrieval from the parity group the failed disk belongs to will
change. For this parity group, Dg � 2 original disk retrieval blocks and one parity
disk retrieval block are sequentially retrieved.

Fig. 7 shows data layout for CGScluster for a parity group. Original disk retrieval
blocks of one video object are stored in a Round Robin manner among all available
D disks of the server. A parity group is built out of only (Dg � 1) original disk
retrieval blocks and one parity disk retrieval block. In Fig. 7we only show the data
layout of the �rst retrieval group (disks 1 to Dg) of the server.
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Fig. 7. Parity data layout of the �rst retrieval group (disks 1 to Dg) for CGScluster .

5 CGSMirr vs. CGScluster

5.1 Storage Volume Requirement

For each (Dg�1) disks, one additional disk is needed with CGScluster . For instance,
if original data require 36 disks 7, 4 additional disks are needed to build 4 parity
groups, each containing Dg = 10 disks. Since we maintain Dg constant, the storage
overhead for CGScluster increase when the total number of disks increments. Based
on the number of disks Dorg needed to store original data, we calculate in Eq. 7 the
number of disks needed for CGScluster .

Dcluster = d
Dorg

Dg � 1
e �Dg (7)

CGScluster requires more disks than CGSPar , since the former has a smaller
parity group size than the latter. However, CGScluster is able to cope with many
disk failures so far disks that fail do not belong to the same parity group.

6 The parity group size is the number of disks belonging to the same parity group. Parity
groups are assumed to be independent from each other. Thus, one disk exclusively
belongs to one parity group.

7 We use the same assumptions as in section 3.1



5.2 Throughput and Bu�er Requirement

The bu�er requirement and throughput of CGSMirr are already given in Eqs. 3
and 4 respectively.

For CGScluster , the load of a failed disk is not distributed over surviving disks of
the server, but only over the remaining disks of the parity group. Thus, each disk has
to keep unused a higher fraction of its available I/O bandwidth than for CGSPar.

The relationship between Qnom
d and Q

fom
d for CGScluster is (compare with section

3.2): Qfom

d = Qnom
d +

l
Qnom
d

Dg�1

m
. Consequently, the overall server throughput Qnom

cluster

for CGScluster follows the following formula: Qnom
cluster = D �

�
Q
fom

d �
l
Qnom
d

Dg�1

m�
.

During disk failure mode, additional bu�er space is needed to store disk retrieval
blocks that belong to the same parity group in order to reconstruct the lost block.
Since only one parity group is concerned, only streams that are consuming data
from the a�ected parity group will need additional bu�er space. Therefore, the
bu�er requirement Bfom

cluster for CGScluster is:

B
fom

cluster = Qnom
g � (Dg � 1) � bdr + (Qnom

cluster �Qnom
g ) � bdr (8)

Where Qnom
g is the maximumnumber of streams that can be served within one

parity group (with Dg disks): Qnom
g = (Dg � 1) �Qnom

d

5.3 Comparison between CGSMirr and CGScluster

We use for the comparison between CGSMirr and CGScluster the same comparison
metrics as presented in section 3.4 (Eq. 6). We plot in Fig. 8 the server throughput
for CGSMirr and CGScluster . The throughput for CGSMirr is slightly higher than
the one for CGScluster .
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Fig. 8. Overall Server Throughput for CGSMirr and CGScluster

Next we study the costs of the server and per stream for CGSMirr and CGScluster .
Fig. 9 shows these costs for di�erent values of the relative ratio � (� = 2; 1; 0:5).
Fig. 9(a) plots the total server costs for CGSMirr and CGScluster . We observe that
the server costs are close to each other for both schemes for all three values of �.

We show in Fig. 9(b) that the costs per stream are always higher for CGScluster
than for CGSMirr. When we consider only parity-based schemes, we see that
CGScluster , Compared with the results of Figs. 4, 5(b), and 6(b), provides the best
performance in terms of the server throughput and the costs of a single stream.



100 200 300 400 500
10

4

10
5

10
6

Number of Disks D in the Server

T
ot

al
 B

uf
fe

r 
an

d 
D

is
ks

 c
os

ts
 in

 $
 

Server Costs (Buffer and Disks)

PClus−R
Mirr−R
PClus−2.R
Mirr−2.R
PClus−0.5.R
Mirr−0.5.R

(a) Total server costs.

100 200 300 400 500
0

20

40

60

80

100

120

140

Number of Disks D in the Server

S
tr

ea
m

 C
os

ts
 in

 $

Costs of a Single Stream

PClus−R
Mirr−R
PClus−2.R
Mirr−2.R
PClus−0.5.R
Mirr−0.5.R

(b) Costs of a single stream.

Fig. 9. Server costs and stream costs for CGSMirr and CGScluster with � = 2; 1; 0:5.

6 Conclusion

Mirroring-based schemes, as compared with parity-based schemes, signi�cantly sim-
plify the design and the implementation of video servers. In fact, mirroring does
not require any synchronization of reads or additional processing time to decode
lost information, which is needed for parity. Another advantage of mirroring is the
disruption time after a disk failure: Mirroring takes one service round to send the
mirrored data block expected. Parity, however, takes many service rounds to retrieve
all blocks belonging to the parity group of the lost block. Thus, the disruption time
is higher for parity-based schemes than for mirroring-based schemes.

In addition to the well known advantages of mirroring-based schemes cited
above, we have shown in this paper that mirroring outperforms parity: Our re-
sults show that CGSMirr is the most cost e�ective scheme, compared with all
parity-based schemes considered (CGSParBu� , CGSParSec, and CGScluster). Fur-
thermore, mirroring always achieves highest throughput, compared with each of the
parity-based schemes.
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