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Abstract. Mirroring-based reliability as compared to parity-based relia-
bility signi�cantly simpli�es the design and the implementation of video
servers, since in case of failure mirroring does not require any synchro-
nization of reads or decoding to reconstruct the lost video data. While
mirroring doubles the amount of storage volume required, the steep de-
crease of the cost of magnetic disk storage makes it more and more at-
tractive as a reliability mechanism. We present in this paper a novel data
layout strategy for replicated data on a video server. In contrast to clas-
sical replica placement schemes that store original and replicated data
separately, our approach stores replicated data adjacent to original data
and thus does not require additional seek overhead when operating with
disk failure. We show that our approach considerably improves the server
performance compared to classical replica placement schemes such as the
interleaved declustering scheme and the scheme used by the Microsoft
Tiger video server. Our performance metric is the maximum number of
users that a video server can simultaneously support (server throughput).
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1 Introduction

In order to store a large number of voluminous video �les, a video server requires
numerous storage components, typically magnetic disk drives. As the number of
server disks grows, the server mean time to failure degrades and the server be-
comes more vulnerable to data loss. Hence the need of fault tolerance in a video
server. Two techniques are mainly applied in the context of fault tolerant video
servers: mirroring and parity. Parity adds small storage overhead for parity
data, while mirroring requires twice as much storage volume as in the non-fault
tolerant case. Mirroring as compared to parity signi�cantly simpli�es the design
and the implementation of video servers since it does not require any synchro-
nization of reads or additional processing time to decode lost information, which
must be performed for parity. For this reason, various video server designers
[1{3] have adopted mirroring to achieve fault-tolerance. This paper only focuses
on the mirroring-based technique.

The video server is assumed to use round-based data retrieval, where each
stream is served once every time interval called the service round. For the



data retrieval from disk, we use the SCAN scheduling algorithm that optimizes
the time spend to seek the di�erent video blocks needed. A video to store on the
server is partitioned into video blocks that are stored on all disks of the server
in a round robin fashion and that each video is distributed over all disks of the
server.

The literature distinguishes two main strategies for the storage/retrieval of
original blocks on/from server; the Fine Grained Striping (FGS) strategy and
Coarse Grained Striping (CGS) strategy. FGS retrieves for one stream multiple

blocks from many disks during one service round. A typical example of FGS is
RAID3 as de�ned by Katz et al. [4]. Other researchers proposed some derivations
of FGS like the streaming RAID of Tobagi et al. [5], the staggered-group scheme
of Muntz et al. [6], and the con�guration planner scheme of Ghandeharizadeh
et al. [7], and our mean grained striping scheme [8]. FGS generally su�ers from
large bu�er requirements. CGS, however, retrieves for one stream one block from
a single disk during each service round. RAID5 is a typical CGS scheme. Oezden
et al. [9, 10] have shown that CGS provides higher throughput than FGS (RAID5
vs. RAID3) for the same amount of resources (see also Vin et al. [11], Beadle
et al. [12], and our contribution [8]). Accordingly, in order to achieve highest
throughput, we adopt CGS to store and retrieve original blocks.

What remains to solve is the way original blocks of a single disk are replicated
on the server. Obviously, original blocks of one disk are not replicated on the
same disk. Mirroring schemes di�er on whether a single disk contains original
and/or replicated data. The mirrored declustering scheme sees two (many)
identical disk arrays, where original content is replicated onto a distinct set of
disks. When the server works in normal operation mode (disk failure free mode),
only the half of the server disks are active, the other half remains idle, which
results in load imbalances within the server.

Unlike mirrored declustering, chained declustering [13,14] partitions each
disk into two parts, the �rst part contains original blocks and the second part
contains replicated blocks (copies): Original blocks of disk i are replicated on disk
(i + 1)modD, where D is the total number of disks of the server. Interleaved
declustering is an extension of chained declustering, where original blocks of
disk i are not entirely replicated on another disk (i + 1)modD, but distributed
over multiple disks of the server. Mourad [1] proposed the doubly striped scheme
that is based on interleaved declustering, where original blocks of a disk are
evenly distributed over all remaining disks of the sever. We can consider chained
declustering as a special case of interleaved declustering having a distribution
granularity of replicated blocks that equals 1.

We will restrict our discussion to interleaved declustering schemes, since these
schemes distribute the total server load evenly among all components during
normal operation mode. Note that interleaved declustering only indicates that
the replica of the original blocks belonging to one disk are stored on one, some,
or all remaining disks, but does not indicate how to replicate a single original
block.



This paper is organized as follows. Section 2 classi�es and studies several in-
terleaved declustering schemes. We present our novel replica placement strategy
in section 3. In section 4, we show that our approach outperforms the other ex-
isting schemes in terms of the server throughput. The conclusions are presented
in section 5.

2 Interleaved Declustering Schemes

We present in Table 1 di�erent interleaved declustering schemes. We adopt two
classi�cation metrics. The �rst metric examines how a single block is replicated.
The second metric concerns the number of disks that store the replica of the
original content of a single disk.

We consider for the �rst metric the following three alternatives:

1. The copy of the original block is entirely stored on a single disk (One).
2. The copy of the original block is divided into a set of sub-blocks, which are

distributed among some disks building an independent group (Some).

3. The copy of the original block is divided into exactly (D � 1) sub-blocks,
which are distributed over all remaining (D � 1) server disks (All).

We distinguish three alternatives for the second metric:

1. The original blocks that are stored on one disk are replicated on a single

disk (One).
2. The original blocks of one disk are replicated on a set of disks that build an

independent group (Some).
3. The original blocks of one disk are replicated on the remaining (D�1) server

disks (All).

The symbol "XXX" in Table 1 indicates combinations that are not useful
for our discussion. The name of each scheme contains two parts. The �rst part
indicates how an original block is replicated (the �rst metric) and the second part
gives the number of disks, on which the content of one disk is distributed (the
second metric). For instance, the scheme One/Some means that each original
block is entirely replicated (One) and that the original content of one disk is
distributed among a set of disks (Some).

Single disk (One) Set of disks (Some) (D� 1) disks (All)

Entire block (One) One/One One/Some One/All
Set of sub-blocks (Some) XXX Some/Some XXX
(D� 1) sub-blocks (All) XXX XXX All/All

Table 1. Classi�cation of interleaved schemes



Let s assume a video server containing 6 disks (disks 0 to 5) and a video to
store consisting of 30 original blocks. Each disk is partitioned into two equal-size
parts, the �rst part stores original blocks and the second part stores replicated
blocks (copies) (see Figures 1 and 2).

Figure 1(a) shows the One/One organization. For instance, original blocks
of disk 0 are replicated on disk 1 (dashed blocks). During disk failures, the load
of a failed disk is entirely shifted to another single disk, which results in load
imbalances within the server. On the other hand, the One/One organization has
the advantage of surviving up-to D

2
disk failures in the best case.

Figure 1(b) shows the One/All organization. The replication of original blocks
of disk 0 are stored on the other disks 1; 2; 3; 4; and 5 (dashed blocks). This
organization allows, in the best case, to evenly distribute the load of one failed
disk among all remaining disks. Its fault tolerance, however, is limited to a single

disk failure.

We show in Figure 1(c) an example of the One/Some organization that di-
vides the server into 2 independent groups, where each group contains a set
Dc = 3 of disks. Original blocks of one disk are entirely replicated over the re-
maining disks of the group, e.g. original blocks of disk 0 are replicated on disks
1 and 2.

In order to ensure deterministic admission control, each disk of the server
must reserve a proportion of its available I/O bandwidth, which is needed to
retrieve replicated data during disk failure mode. The amount of I/O bandwidth
that is reserved on each disk must respect the worst case scenario. Obviously,
the One/One organization needs to reserve on each disk one half of the available
I/O bandwidth for disk failure mode. For both, the One/Some and the One/All
organizations, the original blocks of one disk are spread amongmultiple (some for
One/Some and (D� 1) for One/All) disks. However, all blocks that would have
been retrieved from the failed disk for a set of streams can, in the worst case, have
their replica stored on the same disk. This worst case scenario therefore requires
the reservation of one half of the I/O bandwidth of each disk. Consequently, all
of the three schemes One/One, One/All, and One/Some must reserve the half
of each disk's available I/O bandwidth in order to ensure deterministic service
when operating in disk failure mode.

The Microsoft Tiger [2, 3] introduced a replication scheme, where an original
block is not entirely replicated on a single disk. Indeed, the replica of an original
block consists of a set of sub-blocks, each being stored on a di�erent disk. Original
blocks of one disk are replicated across the remaining disks of the group, to
which this disk belongs. We have called this organization Some/Some in Table
1. Figure 2(a) illustrates an example of this organization, where dashed blocks
show how original blocks of disk 0 (3) are replicated on disks 1 and 2 (4 and 5)
inside group 1 (2). As the One/Some organization, the Some/Some organization
allows to survive one disk failure inside each group.

The last organization of Table 1 is All/All, for which we show an example
in Figure 2(b). Dashed original blocks of disk 0 are replicated as indicated. The
main advantage of All/All is its perfect load balancing. In fact, the load of a
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Fig. 1. Entire block replication.

failed disk is always evenly distributed among all remaining disks of the server.
However, the All/All organization, as the One/All organization, only allows to
survive a single disk failure, which might be not su�cient for large video servers.

Contrarily to the entire block replication organizations (Figure 1), the two
sub-block replication organizations (Figure 2) avoid to reserve the half of each
disk's I/O bandwidth to ensure deterministic service during disk failure mode.
However, the number of seek operations will double for these two schemes when
operating in disk failure mode compared to normal operation mode. Exact values
of the amount of I/O bandwidth to be reserved are given in section 4.1.

The main drawback of all replication schemes considered in this section is
their additional seek overhead when operating with disk failure as we will see
in section 4.1. In fact, these schemes require additional seek times to retrieve
replicated data that are stored separately from original data. Unfortunately, high
seek overhead decreases disk utilization and therefore server performance. We
present in the following our replication approach that resolves this problem by
eliminating the additional seek overhead. In fact, we will see that our approach
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Fig. 2. Sub-blocks replication.

requires for the disk failure mode the same seek overhead as for the normal
operation mode.

3 A Novel Replica Placement Strategy

3.1 Motivation

If we look at the evolution of SCSI disk's performance, we observe that (i) data
transfer rates double every 3 years, whereas (ii) disk access time decreases by
one third every 10 years [15]. Figure 3(a) shows data transfer rates of di�erent
Seagate disks' generations (SCSI-I, SCSI-II, Ultra SCSI, and �nally Ultra2 SCSI)
[16]. Figure 3(b) depicts the evolution of average access time for Seagate disks.
We see that Figures 3(a) and 3(b) well con�rm the observations (i) and (ii)
respectively.

A disk drive typically contains a set of surfaces or platters that rotate in
lockstep on a central spindle 1. Each surface has an associated disk head re-
sponsible for reading data. Unfortunately, the disk drive has a single read data
channel and therefore only one head is active at a time. A surface is set up to
store data in a series of concentric circles, called tracks. Tracks belonging to
di�erent surfaces and having the same distance to the spindle build together a
cylinder. As an example of today's disks, the seagate Barracuda ST118273W
disk drive contains 20 surfaces; 7; 500 cylinders; and 150; 000 tracks.

The time a disk spends for performing seek operations is wasted since it can
not be used to retrieve data. One seek operation mainly consists of a rotational
latency and a seek time. Rotational latency is the time the disk arm spends
inside one cylinder to reposition itself on the beginning of the block to be read.

1 Regarding mechanical components of disk drives and their characteristics, we are
based in this paper on [16] and also on the work done in [17].
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Fig. 3. Performance evolution of Seagate SCSI disks

The maximumvalue of the rotational latency trot is directly given by the rotation
speed of the spindle. This rotation speed is actually at about 7; 200 rpm, which
results in trot = 10 ms. Seek time tseek as studied in [17, 18] is mainly composed
of four phases: (i) a speedup phase, which is the acceleration phase of the arm,
(ii) a coast phase (only for long seeks), where the arm moves at its maximum
velocity, (iii) a slowdown phase, which is the phase to rest close to the desired
track, and �nally (iv) a settle phase, where the disk controller adjusts the head
to access the desired location. Note the duration tstl of the the settle phase
is independent of the distance traveled and is about tstl = 3 ms. However,
the durations of the speedup phase (tspeed), the coast phase (tcoast), and the
slowdown phase (tslowdown) mainly depend on the distance traveled. The seek
time tseek takes then the following form:

tseek = tspeed + tcoast + tslowdown + tstl

Let us assume that the disk arm moves from the outer track (cylinder) to
the inner track (cylinder) to retrieve data during one service round and in the
opposite direction (from the inner track to the outer track) during the next
service round (CSCAN). If a single disk can support up-to 20 streams, at most
20 blocks must be retrieved from disk during one service round. If we assume
that the di�erent 20 blocks expected to be retrieved are uniformly spread over
the cylinders of the disk, we then deal only with short seeks and the coast phase
is neglected (distance between two blocks to read is about 300 cylinders). Wilkes
et al. have shown that seek time is a function of the distance traveled by the
disk arm and have proposed for short seeks the formula tseek = 3:45+0:597 �

p
d

, where d is the number of cylinders the disk arm must travel. Assuming that
d � 300 cylinders, the seek time is then about tseek � 13:79 ms. Note that short
seeks spend the most of their time in the speedup phase.



3.2 Our Approach

The Some/Some scheme (see table 1) ensures a perfect distribution of the load
of a failed disk over multiple disks and reduces the amount of bandwidth re-
served for each stream on each surviving disk as compared to the interleaved
declustering schemes (One/One, One/Some, and One/All). Since the content of
one disk is replicated inside one group, Some/Some allows a disk failure inside
each group. We call our approach, which is based on the Some/Some scheme,
the Improved Some/Some scheme. The basic idea is to store original data
as well as some replicated data in a continuous way so that when a disk fails,
no additional seeks are performed to read the replica. In light of this fact, our
approach does not divide a disk in two separate parts, one for original blocks
and the other for replicated blocks. Figure 4 shows an example of the Improved
Some/Some scheme.
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Fig. 4. Layout example of the Improved Some/Some scheme.

Let us consider only the disks' content of group 1 (disks 0, 1, and 2). Let
us now consider original block 9 that is stored on disk 2 (dashed block). The
replication is performed as follows. We divide the original block into 3 � 1 = 2
2 sub-blocks 9:1 and 9:2 that are stored immediately contiguous to the original
blocks 7 and 8 respectively. Note that original blocks 7 and 8 represent the
previous original blocks to block 9 inside the group. If we take original block
13, its previous original blocks inside the group are blocks 8 and 9. Now assume
that disk 2 fails. Block 9 is reconstructed as follows. During the service round i
where block 7 is retrieved, block 7 and sub-block 9:1 are simultaneously retrieved
(neither additional seek time nor additional rotational latency, but additional
read time). During the next service round i + 1 , block 8 and sub-block 9:2
are simultaneously retrieved. Sub-blocks 9:1 and 9:2 are retrieved from server in
advance and kept in bu�er to be consumed during service round i+2. Generally,
sub-blocks that are read in advance are bu�ered for several service rounds before
being consumed. The number of bu�ering rounds mainly depends on how large
the server is (total number of server disks). If we assume that disk 0 is the failed

2 3 is the group size and therefore the number of su-blocks is 2.



disk, the reconstruction of block 19 is performed during the service rounds where
blocks 14 (sub-block 19:1) and 15 ( sub-block 19:2) are retrieved. The sub-blocks
are kept in the bu�er at most during 5 service rounds before they are consumed.
The example shows that in order to simultaneously read one original block and
one sub-block for one stream, data to be retrieved have a size of at most two
original blocks. In order to ensure continuous read, one original block as well
as the corresponding replicated blocks must be contained on the same track.
Fortunately, today's disk drives satisfy this condition. In fact, the track size is
continuously increasing. The actual mean track size for seagate new generation
disk drives is about 160 KByte, which is about 1:3 Mbit. Hence the possibility
to store inside one track the original block and the set of replicated sub-blocks
as shown in Figure 4. Our approach therefore does not increase seek overhead,
but doubles, in the worst case, the read time. Note that the very �rst blocks
require special treatment: our approach entirely replicates the two �rst blocks
of a video within each group, which is represented in Figure 4 with the dark-
dashed blocks ( block 1 on disk 1, block 2 on disk 0 for group 1 and block 5
on disk 3, block 4 on disk 4 for group 2). Let us take the following example to
explain the reason of doing this. If disk 0 has already failed before a new stream
is admitted to consume the video presented in the �gure, the stream is delayed
for one service round. During the next service round, the two �rst blocks 1 and
2 are simultaneously retrieved from disk 1. Based on the performance evolution
of SCSI disks (see Figure 3), our approach will improve server performance in
terms of the number of streams that the server can simultaneously admit (see
section 4).

4 Performance Comparison

4.1 Admission Control Criterion

The admission control policy decides whether a new incoming stream can be
admitted or not. The maximum number of streams Q that can be simultane-
ously admitted from server can be calculated in advance and is called server
throughput. The server throughput depends on disk characteristics as well as on
the striping/reliability scheme applied. In this paper, the di�erence between the
schemes considered consists of the way original data is replicated. We consider
the admission control criterion of Eq. 1. We �rst calculate disk throughput and
then derive server throughput. Let Qd denote the throughput achieved for a
single disk. If we do not consider fault tolerance, the disk throughput is given in
Eq. 1, where b is the block size, rd is the data transfer rate of the disk, trot is
the worst case rotational latency, tseek is the worst case seek time, and � is the
service round duration 3.

3 We take a constant value of � , typically � = b

rp
, where b is the size of an original

block and rp is the playback rate of a video



Qd �
�

b

rd
+ trot + tseek

�
� �

Qd =
�

b
rd

+ trot + tseek
(1)

Introducing fault tolerance (mirroring-based), the disk throughput changes
and becomes dependent on which mirroring scheme is applied. Three schemes are
considered for discussion: our approach (Improved Some/Some), the One/Some
scheme, and the Microsoft Some/Some scheme. Let QOS

d , QSS
d , and QISS

d the
disk throughput for One/Some, Some/Some, and our Improved Some/Some,
respectively. Note that the disk throughput is the same during both, normal
operation and disk failure mode.

For the One/Some scheme, half of the disk I/O bandwidth should be reserved
in the worst case to reconstruct failed original blocks and thus QOS

d is calculated
following Eq. 2.

QOS
d =

Qd

2
=

�
�

b
rd
+trot+tseek

�

2
(2)

For the Some/Some scheme, in order to reconstruct a failed original block,
the retrieval of sub-blocks requires small read overhead (small sub-blocks to read
on each disk), but a complete latency overhead for each additional sub-block to
read from disk. The admission control criterion presented in Eq. 1 is therefore
modi�ed as Eq. 3 shows. The parameter bsub denotes the size of a sub-block.

QSS
d �

�
(
b

rd
+ trot + tseek) + (

bsub
rd

+ trot + tseek)

�
� �

QSS
d =

�
b+bsub
rd

+ 2 � (trot + tseek)
(3)

If we take our Improved Some/Some scheme and consider the case where
a disk fails inside one group, we get the following admission control criterion
(Eq. 4), where bover denotes the amount of data (overhead) that should be
simultaneously read with each original block. In the worst case bover = b.

QISS
d �

�
b+ bover

rd
+ trot + tseek

�
� �

QISS
d =

�
2�b
rd

+ trot + tseek
(4)

Once the disk throughput Qd is calculated, the server throughput Q can be
easily derived as Q = D �Qd for each of the schemes, where D denotes again the
total number of disks on the server.



4.2 Throughput Results

We present in the following the results of the server throughput QOS , QSS , and
QISS respectively for the schemes One/Some, Some/Some, and our Improved
Some/Some. In Figure 5, we keep constant the values of the seek time and the
rotational latency and vary data transfer rate rd of the disk. Figures 5(a) and 5(b)
show that Improved Some/Some outperforms the Microsoft Some/Some scheme
that, itself outperforms One/Some for all values of rd (20; 80 MByte=sec). Figure
5 also shows that the gap between our Improved Some/Some and the two other
schemes (One/Some and Some/Some) considerably increases with the increase of
the data transfer rate rd. Table 2 illustrates the bene�t of our approach, where

the ratios QISS

QOS and QISS

QSS are illustrated depending on rd.
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Fig. 5. Server throughput for One/Some, Some/Some, and Improved Some/Some with
tseek = 13:79 ms, trot = 10 ms, b = 0:5 Mbit, and rp = 1:5 Mbit=sec.

QISS

QOS

QISS

QSS

rd = 20 MByte=sec 1:79 1:69
rd = 40 MByte=sec 1:88 1:83
rd = 80 MByte=sec 1:93 1:91

Table 2. Throughput ratios.

We focus now on the impact of the evolution of the seek time tseek and the
rotational latency trot on the throughput for the three schemes considered. We
keep constant the data transfer rate that takes a relatively small value of rd
(40 Mbyte=sec). Figure 6 plots server throughput for the corresponding param-
eter values. The Figure shows that our Improved Some/Some scheme achieves



highest server throughput for all seek time/rotational latency combination values
adopted. Obviously, the decrease in tseek and trot increases throughput for all
schemes considered. We notice that the gap between our Improved Some/Some
and the Microsoft Some/Some slightly decreases when tseek and trot decrease as
Table 3 depicts, where disk transfer rate has also the value rd (40 Mbyte=sec).
Note that th value trot = 6 ms corresponds to a spindle speed of 10000 prm,
and the value trot = 4 ms corresponds to the speed of 15000 prm, which is a too
optimistic value. We observe that even for very low values of tseek and trot, our
Improved Some/Some scheme outperforms the Microsoft Some/Some in terms

of server throughput (Q
ISS

QSS = 1:59).
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(a) Throughput for tseek =
10 ms, trot = 8 ms.
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8 ms, trot = 6 ms.
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(c) Throughput for tseek =
4 ms, trot = 4 ms.

Fig. 6. Server throughput for di�erent access time values with rd = 40 MByte=sec,
b = 0:5 Mbit, and rp = 1:5 Mbit=sec.



Q
ISS

QSS

tseek = 13; 79 and trot = 10 1:83
tseek = 10 and trot = 8 1:78

tseek = 8 and trot = 6 1:73
tseek = 4 and trot = 4 1:59

Table 3. Throughput ratio between our Improved Some/Some and the Microsoft
Some/Some.

4.3 Reducing Read Overhead for our Approach

The worst case read overhead of our Improved Some/Some scheme is the time to
read redundant data of the size of a complete original block. We present in the
following a method that reduces this worst case amount of data read down-to
the half of the size of one original block. This method simply consists of storing
di�erent sub-blocks not only on one side of one original block, but to distribute
them on the left as well as on the right side of the original block. Figure 7 shows
an example, where each original block is stored in the middle of two replicated
sub-blocks. Let us assume that disk 2 fails and that block 9 must be regenerated.
While reading block 7, disk 0 continuous its read process and reads sub-block
9:1. On disk 1, the situation is slightly di�erent. In fact, before reading block
8, sub-block 9:2 is read. In this particular example, no useless data is read, in
contrast to the example in Figure 4.
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Fig. 7. Reducing read overhead for our approach.

Optimizing the placement of sub-blocks as presented in Figure 7 reduces the
worst case read overhead to b

2
for disk failure mode. Accordingly, the admission

control formula follows Eq. 5. Let us call this new method the Optimized
Some/Some scheme and its disk throughput QOSS

d .

QOSS
d =

�
3

2
�b

rd
+ trot + tseek

(5)



Figure 8 plots the server throughput results of the One/Some, Some/Some,
Improved Some/Some, and Optimized Some/Some schemes for di�erent values of
data transfer rate rd. We observe that Optimized Some/Some slightly improves
server throughput as compared to Improved Some/Some. The ratio decreases
as disk transfer rate increases. In fact we notice a 10% improvement in server
throughput for rd = 20 MByte=sec, 5% improvement for rd = 40 MByte=sec,
and only 2% improvement for rd = 80 MByte=sec.
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(a) Throughput for rd =
20 MByte=sec.
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Fig. 8. Server throughput for One/Some, Some/Some, Improved Some/Some, and Op-
timized Some/Some with tseek = 13:79 ms, trot = 10 ms, b = 0:5 Mbit, and
rp = 1:5 Mbit=sec..

5 Conclusion

We have proposed a novel replica placement strategy for video servers. In con-
trast to the classical replica placement schemes, where each single disk of the
server is dedicated to original video data and redundancy data, our approach
splices replicated data and original data and thus does not require any addi-
tional seek time and rotational latency when operating in the presence of disk
failures. The results show that our replica placement strategy outperforms, in
terms of the server throughput, classical interleaved declustering schemes like
the one proposed for the Microsoft Tiger video server. Further, we have seen
that our strategy, for pessimistic as well as for optimistic values of disk transfer
rates and disk rotational and seek times, always achieves highest throughput as
compared to the classical data replication schemes. Finally, we have enhanced
our approach to reduce read overhead and noticed a slight increase in the server
throughput.



References

1. A. Mourad, \Doubly-striped disk mirroring: Reliable storage for video servers,"
Multimedia, Tools and Applications, vol. 2, pp. 253{272, May 1996.

2. W. Bolosky et al., \The tiger video �leserver," in 6th Workshop on Network and
Operating System Support for Digital Audio and Video, (Zushi, Japan), Apr. 1996.

3. W. Bolosky, R. F. Fritzgerald, and J. R. Douceur, \Distributed schedule manage-
ment in the tiger video server," in Proc. Symp. on Operating System Principles,
pp. 212{223, Oct. 1997.

4. D. A. Patterson, G. Gibson, and R. H. Katz, \A Case for Redundant Arrays
of Inexpensive Disks (RAID)," in Proceedings of the 1988 ACM Conference on
Management of Data (SIGMOD), (Chicago, IL), pp. 109{116, June 1988.

5. F. A. Tobagi, J. Pang, R. Baird, and M. Gang, \Streaming raid(tm) { a disk array
management system for video �les," in Proceedings of the 1st ACM International
Conference on Multimedia, (Anaheim, CA), August 1993.

6. S. Berson, L. Golubchik, and R. R. Muntz, \Fault tolerant design of multimedia
servers," in Proceedings of SIGMOD'95, (San Jose, CA), pp. 364{375, May 1995.

7. S. Ghandeharizadeh and H. K. Seon, \Striping in multi-disk video servers," in
Proceedings in the SPIE International Symposium on Photonics Technologies and
Systems for Voice, Video, and Data Communications, 1995.

8. J. Gafsi and E. W. Biersack, \Data striping and reliablity aspects in distributed
video servers," In Cluster Computing: Networks, Software Tools, and Applications,
February 1999.

9. B. Ozden et al., \Fault-tolerant architectures for continuous media servers," in
SIGMOD International Conference on Management of Data 96, pp. 79{90, June
1996.

10. B. Ozden et al., \Disk striping in video server environments," in Proc. of the IEEE
Conf. on Multimedia Systems, (Hiroshima, Japan), pp. 580{589, jun 1996.

11. R. Tewari, D. M. Dias, W. Kish, and H. Vin, \Design and performance trade-
o�s in clustered video servers," in Proceedings IEEE International Conference on
Multimedia Computing and Systems (ICMCS'96), (Hiroshima), pp. 144{150, June
1996.

12. S. A. Barnett, G. J. Anido, and P. Beadle, \Predictive call admission control for
a disk array based video server," in Proceedings in Multimedia Computing and
Networking, (San Jose, California, USA), pp. 240, 251, February 1997.

13. H. I. Hsiao and D. J. DeWitt, \Chained declustering: A new availability strategy
for multiprocessor database machines.," in In Proceedings of the Int. Conference
of Data Engeneering (ICDE), 1990, pp. 456{465, 1990.

14. L. Golubchik, J. C. Lui, and R. R. Muntz, \Chained declustering: Load balancing
and robustness to skew and failures," in In Proceedings of the Second Interna-
tional Workshop on Research Issues in Data Engineering: Transaction and Query
Processing, Tempe, Arizona, (Tempe, Arizona), pp. 88{95, February 1992.

15. J. L. Hennessy and D. A. Patterson, Computer Arcitecture A Quantative Approach.
Morgan Kaufmann Publishers, Inc., 1990.

16. Seagate Disc Home, http://www.seagate.com/disc/disctop.shtml.
17. C. Ruemmler and J. Wilkes, \An introduction to disk drive modeling," IEEE

Computer, vol. 27, pp. 17{28, Mar. 1994.
18. B. L. Worthington, G. Ganger, Y. N. Patt, and J. Wilkes, \On-line extraction of

scis drive characteristics," in Proc. 1995 ACM SIGMETRICS, (Ottawa, Canada),
pp. 146{156, May 1995.


