
An Experimental Study of Diversity
with Off-The-Shelf AntiVirus Engines

Ilir Gashi1, Vladimir Stankovic1
1Centre for Software Reliability

City University London
London, UK

{I.Gashi, V.Stankovic}@ city.ac.uk

Corrado Leita2, Olivier Thonnard3,4

2Symantec, 3Royal Military Academy, 4EURECOM
2,4Sophia Antipolis, France, 3Brussels, Belgium

2Corrado_Leita@symantec.com,
3,4Olivier.Thonnard@rma.ac.be

Abstract—Fault tolerance in the form of diverse redundancy is
well known to improve the detection rates for both malicious and
non-malicious failures. What is of interest to designers of security
protection systems are the actual gains in detection rates that
they may give. In this paper we provide exploratory analysis of
the potential gains in detection capability from using diverse
AntiVirus products for the detection of self-propagating
malware. The analysis is based on 1599 malware samples
collected by the operation of a distributed honeypot deployment
over a period of 178 days. We sent these samples to the signature
engines of 32 different AntiVirus products taking advantage of
the VirusTotal service. The resulting dataset allowed us to
perform analysis of the effects of diversity on the detection
capability of these components as well as how their detection
capability evolves in time.

Keywords; AntiVirus detection engine analyis, malware
detection, cluster analysis

I. INTRODUCTION
All software, including off-the-shelf software, need to be

sufficiently reliable and secure in delivering the service that is
required of them. There are various ways in which this
reliability and security can be achieved in practice, such as the
use of various validation and verification techniques in the
software construction phases, statistical testing of the final
product before delivery, issuance of patches and service
releases for the product in operation, as well as the use of
software fault/intrusion tolerance techniques. The fault
tolerance techniques can range from simple “wrappers” of the
software components [1] to the use of diverse software
products in a fault-tolerant system [2]. This latter strategy of
implementing fault tolerance was historically considered
prohibitively expensive, due to the need for development of
multiple bespoke software versions. However, the wide
proliferation of off-the-shelf software for various applications
has made the use of software diversity an affordable option for
fault tolerance against either malicious or non-malicious faults.

In the field of intrusion tolerance there have already been
examples of implementing intrusion tolerant architectures
which employ diverse intrusion detection systems for detecting
malicious behaviour [3]. Similarly, a recent publication [4] has

also detailed an implementation of an AntiVirus (AV) platform
which makes use of diverse AntiVirus products for malware
detection. A similar architecture which uses diverse AntiVirus
email scanners has been detailed in [5]. Therefore, architectural
solutions for employing diverse detection engines (either IDS
or AntiVirus products) are already known. Studies which
provide an empirical evaluation of the effectiveness of
diversity for detection of malware in a rigorous way are, on the
other hand, much more scarce.

This paper aims at addressing this research gap by
proposing an analysis of the effects of diversity in the most
realistic conditions. This is achieved by taking into
consideration real-world data generated by a distributed
honeypot deployment, SGNET [7], [8]. The advantages of this
dataset over those used in the previous work [4] can be
summarized as follows:

i. It is unbiased. SGNET takes advantage of protocol
learning techniques to emulate code injection attacks in
a protocol-agnostic way. Differently from other
honeypot techniques, SGNET honeypots do not make
any assumption on the nature of the exploits to be
observed. This maximizes the probability of correctly
observing all the threats hitting the honeypot and
reduces the bias normally introduced by knowledge-
based approaches.

ii. It emulates realistic conditions. Whenever a sample is
collected by a SGNET honeypot, it is immediately
evaluated with the latest version of the AntiVirus
signatures. The information at our disposal is thus as
near as possible to the security perceived by a real
client deployed over the network.

iii. It provides an evolutionary perspective. As will be
described later, every collected sample is analyzed on a
daily basis for at least 30 days with the latest version of
the AntiVirus (AV) signatures. This offers perspectives
on the window of exposure to the threats, which has
been analyzed in this work.

iv. It is open. The dataset is freely accessible to any
research institution interested in reproducing our
results.

The construction of meaningful benchmarks for the
evaluation of the detection capability of different AntiVirus
products is an open debate in the research community. Modern
AntiVirus products consist of a complex architecture of
different types of detection components, and achieve better
detection capability by combining together the output of these
diverse detection techniques. Since some of these detection
techniques are also based on analysing the behavioural
characteristics of the inspected samples, it is very difficult to
set up a benchmark able to fully assess the detection capability
of these complex products. Institutions such as the Anti
Malware Testing Standards Organization 1 have been
specifically generated in an effort to address the issues
involved in this task. Moreover, previous research work [9]
underlined the challenges in correctly defining the notion of
“success” in the detection of a specific malware sample and
have raised concerns on the feasibility of generating
meaningful benchmarks for this class of intrusion detectors.

On this basis, the evaluation proposed in this paper is
defined upon a simplified view of the problem, which we
consider sufficient to the accomplishment of our goals. We do
the following:

• We take into consideration a single type of component
appearing in most AntiVirus products, namely the
signature-based detection engine.

• We perform the analysis on unambiguous malicious
samples, the samples that are known to be malicious
executable files according to the information provided
by the SGNET dataset.

• We consider as a successful detection any alarm
message provided by the component. We do not try to
diagnose the “correctness” of the generated alarm
message.

While the resulting measures may not be representative of
the detection capability achieved by the real-world operation of
the various AV products, they provide an interesting analysis
on the detection capability of the respective signature-based
sub-components under the above stated conditions.

We take advantage of 1599 malware samples collected by
the SGNET honeypot deployment over a period of 178 days in
the period February to August 2008. The sample set taken into
consideration is thus representative of currently spreading
threats. For each malware sample, we study the evolution of
the detection capability of the signature-based component of 32
different AntiVirus products and investigate the impact of
diversity on such a capability. Through daily analyses of the
same sample using the most up-to-date signature database
available for each AV product, we have been able to study the
evolution of the detection capability over time. We observed
that many AntiVirus detection engines give very high detection
rates for the analyzed samples, but no sample was correctly

1 www.amtso.org

identified by all the 32 detection engines. We also found many
cases of regression in the detection capability of the engines:
cases where an engine would go from detecting the malware on
a given date to not detecting the same malware at a later date.
The results suggest that the use of diverse detection engines
developed by different AntiVirus vendors may bring benefits in
detection capability.

For the sake of brevity, in the rest of the paper we will use
the short-hand notation AV to refer to the signature-based
component of an AntiVirus detection engine.

The rest of this paper is organised as follows: section II
details the experimental architecture used to collect the data;
section III details exploratory empirical analysis of the data
collected on the AntiVirus detection behaviour; section IV
contains some initial cluster analysis based on the collected
dataset; section V reviews two recent implementations that
employ diverse AntiVirus engines for detecting malware or
scanning potentially malicious emails and section VI contains
discussions, conclusions and provisions for further work.

II. EXPERIMENTAL SETUP AND ARCHITECTURE
The definition of a representative dataset for the evaluation

of the effectiveness of intrusion detection systems is a difficult,
if not impossible, task [9]. The malware scenario is evolving
continuously, and new threats, or variants of existing threats,
are generated on a daily basis.

This work does not aim at being a comprehensive
comparison of the detection capability of different products to
the variety of Internet threats. We focus on a medium-sized
sample set composed of a specific class of threats that are
known to be currently active thanks to the observation and
collection performed by a distributed honeypot deployment.

The analyzed dataset is composed of 1599 malware
samples collected by a real world honeypot deployment,
SGNET [7], [8]. SGNET is a distributed honeypot deployment
for the observation of server-side code injection attacks. Taking
advantage of protocol learning techniques, SGNET is able to
fully emulate the attack trace associated to code injection
attacks and download malware samples spreading with server-
side exploits. By deploying many sensors in different networks
of the Internet, SGNET collects in a central repository a
snapshot of the aggregated observations of all its sensors. By
taking advantage of this data as input to our analysis, we build
our analysis upon a limited, but realistic dataset with respect to
the modern trends for the specific class of malware (i.e., those
associated with code injection attacks).

SGNET information enrichment framework [10] enriches
the information collected by the deployment with additional
data sources. Two sources are relevant to this work: the
behavioural information provided by Anubis2 [11], [12] and the
detection capability information provided by VirusTotal [6].

Every malware sample collected by the deployment is
automatically submitted to Anubis to obtain information of its
behaviour when executed on a real Windows system. This

2 http://anubis.iseclab.org/

information is useful to filter out corrupted samples collected
by the deployment, which would not be executable on a real
system. Such samples proved to be the cause of ambiguities in
the detection capability [9]. It is, however, unclear whether
such corrupted samples should or should not be detected:
different engines often follow contradicting policies.

The foundations of our analysis are derived from the
interaction of SGNET with the VirusTotal service.
VirusTotal (VT) is a web service that allows the analysis of a
given malware sample by the signature-based engines of
different AntiVirus vendors3. All the engines are always kept
up-to-date with the latest version of the signatures. A
submission of a malware sample to VirusTotal at a given point
in time thus provides a snapshot on the ability of the different
signature-based engines to correctly identify a threat in such
samples. It is important to stress that the detection capability
evaluation is performed on a subset of the functionalities of the
detection solutions provided by the different vendors.

Every time in which a sample is collected by the SGNET
deployment it is automatically submitted for analysis to
VirusTotal, and the corresponding result is stored within the
SGNET dataset. To get information on the evolution of the
detection capability of the engines, each sample is resubmitted
on a daily basis for a period of at least 30 days. After that, the
submission is stopped as soon as the detection results of the last
7 submissions are unchanged. Such a policy allows continuing
the submission of the malware, which causes “unstable”
detection decisions to be made even 30 days after its collection.

The dataset generated by the SGNET interaction has some
important characteristics that need to be taken into account in
the following detection capability evaluation.

First, all the malware taken into consideration have been
pushed to the victim as a consequence of a successful hijack of
its control flow. We can thus safely consider that all the
analyzed samples are a result of a malicious and unsolicited
activity.

Secondly, all the considered samples are valid Windows
Portable Executable files. That is, all these samples run
successfully when executed in a Windows operating system.

Thirdly, the definition of difference among two malware
samples is based solely on their content. The frequent usage of
polymorphic techniques [13] in malware propagation is likely
to bias this number. Through polymorphism, a malware
modifies its content at every propagation attempt: two
instances of the same malware thus appear as different when
looking solely at their content. To have an approximate idea of
the impact of the phenomenon of the polymorphism on the
considered dataset, 1054 of the 1599 samples were injected
only once and are thus likely to be instances of polymorphic
malware. These 1054 samples could be grouped into 81
different families by looking at their structural characteristics.

Finally, interdependence exists between the submission of a
sample to VirusTotal and the observed detection capability.
The VirusTotal service actively contributes to the AntiVirus

3 In our study we evaluated the outputs of 32 AVs.

community by sharing with all the vendors all the submitted
samples resulting in low detection rate.

III. EXPLORATORY ANALYSIS OF AV DIVERSITY
We have taken advantage of the previously introduced

dataset to perform a detection capability analysis of 32
different AVs when subjected with the 1599 malware samples
collected by the SGNET deployment. Exploiting the
submission policy implemented in the SGNET dataset, we
have considered for each sample the submissions performed on
the 30 days succeeding its download. The input to our analysis
can thus be considered as a series of triplets, each of which
associates a certain malware sample, an AV vendor and the
identifier of the submission day with respect to the download
date {Malwarei, AVj, Dayk}. For each of these triplets we have
defined a binary score: 0 in case of successful detection, 1 in
case of failure. Table I shows the aggregated counts of the 0s
and 1s for the whole period. As previously explained, we have
considered as success the generation of an alert regardless of
the nature of the alert itself.

TABLE I. THE COUNTS OF SUCCESSFUL DETECTIONS AND FAILURES
FOR TRIPLETS {MALWAREI, AVJ, DAYK}

Value Count
0 – no failure 1,093,977
1 – security / correctness failure 143,031

For a number of technical reasons in the interaction of the
SGNET dataset and VirusTotal a given malware and an AV are
not always associated to 30 triplets. In the observation period,
some AVs have not been queried on a given day, and some
analysis reports have not been stored correctly by VirusTotal.

A. Single AV Product Results
Figure 1 shows the variation of the number of malware that

were sent to VirusTotal during the collection period.

Figure 1. Count of malware sent to the VT site per day

The variation in the number of malware sent can be
explained by the relatively small number of malware observed
for the initial period, and then by the policy used to send
malware (explained in section 2).

Table II lists the top 10 performing AVs ranked by their
failure (non-detection) rates4.

TABLE II. TOP 10 AVS BY THEIR FAILURE (NON-DETECTION) RATES

For all instances of malware For all distinct malware
AV Name Failure rate AV Name Failure rate

AV-7 2.7E-04 AV-7 6.3E-04
AV-16 4.5E-04 AV-17 1.3E-03
AV-17 5.9E-04 AV-6 2.5E-03
AV-32 1.0E-03 AV-26 5.0E-03
AV-26 1.5E-03 AV-21 6.3E-03
AV-2 1.5E-03 AV-15 8.8E-03
AV-6 1.8E-03 AV-22 8.8E-03

AV-30 2.5E-03 AV-16 1.0E-02
AV-22 3.2E-03 AV-19 1.0E-02
AV-21 3.2E-03 AV-23 1.0E-02

The two left-most columns list the top 10 AVs and their
failure rates for all the instances of the malware sent to them
during the collection period: we derive the failure rate by
calculating the ratio of the count of failures for all triplets
{Malwarei, AVj, Dayk} for a given detection engine AVj
divided by the count of all triplets (failures and successful
detections) for the same detection engine AVj. The right-most
two columns show the failure rates per distinct malware: we
derive the failure rate by calculating the ratio of the count of
distinct malware which were not detected at least once by a
given AVj divided by the count of distinct malware examined
by the AVj (even if the AVj had failed to detect a given
malware only once we would count that as a failure). From the
results in Table II we can see that there is substantial variability
in the detection capability of the top 10 AVs.

We also found a large number of AVs that somehow
fluctuated in their detection capability. In many cases, the AVs
regressed in their detection decisions. That is, they detected the
malware at first, and then failed to detect the malware at a later
date, probably due to some updates in the respective AV’s rule
definitions. It is interesting to note that a few of the AVs in the
Top 10 shown in Table II (five in total from the Top 10 of the
right-hand side; and five in total from the left-hand side (with
three in both lists)) are among the AVs that regressed. Table III
shows the top 10 worst performing AVs in terms of the number
of these regression failures. The second column shows the
count of distinct malware which they detected at first, but
failed to detect in a subsequent submission to the VT site
during our collection period. The third column shows the count
of the triplets {Malwarei, AVj, Dayk} for which a given AVj
regressed.

Results presented in Table III underline an interesting
behavior: we have observed patterns characterizing several
AVs on several malware where the AVs switch from detecting
to not detecting a given malware multiple times in our
collection period. This would indicate that the updated rule set
of a given AV breaks its detection capability making the AV
fail to detect a malware that was previously detected correctly.
Such a phenomenon can be due to various reasons. For

4 The AV names have been anonymised to prevent concerns deriving
from the comparison of commercial products.

instance, the vendor might have deleted the corresponding
detection signature as a consequence of the identification of
false positives associated to it.

TABLE III. THE WORST 10 AVS BY THE COUNT OF DISTINCT MALWARE,
AND THE COUNT OF {MALWAREI, AVJ, DAYK} TRIPLETS

ON WHICH THEY REGRESS

AV Name Number of Malware
the AV regressed on

Number of instances
the AV regressed on

AV-20 586 1691
AV-8 374 538
AV-3 71 78

AV-11 58 59
AV-1 37 235

AV-32 36 38
AV-2 15 15

AV-16 13 13
AV-9 8 8

AV-14 4 4

Figure 2 illustrates an example of a repeated regression of
two AVs (one is commercial, the other is open-source) on a
single malware.

Figure 2. The detection capability of two AVs on one malware
during the collection period

We can see that even though the two AVs detect the
malware on most days, they do not detect it every day. We can
also observe that both of the AVs fail to detect the same
malware on the same day only once, on the 7th day: in other
days when one AV fails the other does not. This would indicate
gains from employing diverse AV engines.

Figure 3 shows the 1599 malware observed in our
collections period, and counts of how many AVs failed to
detect a given malware at least once.

We can see that the most “difficult” malware was not
detected by 21 AVs in our study. There were no malware
which caused all the different AVs to fail and only one
malware which was detected by all the AVs.

Figure 3. Malware difficulty

Figure 4 shows a contour plot of the data collected in our
study. The x-axis lists all 32 AVs ordered by their lowest to
highest failure rates (left to right). The y-axis lists all 1599
malware ordered by their detection difficulty – the number of
AVs that have failed to detect it. The malware are sorted from
the easiest to the most difficult one, on average for all AVs
(bottom to top). Each cell in the contour plot shows a failure
rate of a given AV on a given malware throughout the
collection period. The failure rate values are represented with
the specific colouring schema (see the color bar on the right
hand side of the figure). The values are in the range 0
(represented with a shade of gray) to 1 (represented in white
color). The contour plot, however, includes also the values of -
1, which are drawn in black color and represent the cases
where “no result” exists, i.e., the cases where the malware was
not sent to a given AV at all during the collection period. A
failure rate value of, for example, 0.2 in a given cell is
represented with a shade of gray color and can be interpreted as
follows: “AV i failed to detect the malware j on 20% of the
days during our collection period on which the malware was
submitted to the AV”.

Figure 4. A contour plot of the AV (x-axis) failure rates (z-axis,
represented by the intensity of the colour in the plot) over the malware

(y-axis)

The bottom left side of the plot shows the best performing
AVs on the “easy” malware (on average) whereas the top right
corner shows the worst performing AVs on the “difficult”
malware (on average). We can also see many examples of
“white” horizontal lines (difficult demands) for one AV, which
are “shaded gray” lines for many of the other AVs. This would
indicate potential benefits of employing diverse AVs.

B. Results with 1oo2 Pairs
We saw in the previous sub-section the potential benefits in

malware detection that may be obtained from employing
diversity. In this sub-section we will present in more detail
results that give initial quantifications of these gains. We will
base our analysis on pairs of AVs constructed from the 32 AVs
used in our study.

Table IV shows the count of 1oo2 (“1-out-of-2”) pairs5 and
single versions within a given band of failure rate. We can see
that over 18% of the 1oo2 pairs achieve perfect detection. A
total of 163 1oo2 pairs out of 496 (32.9%) have a better
detection rate than the best performing single AV (i.e., 163
pairs have a failure rate lower than 2.7E-04).

TABLE IV. COUNTS OF SINGLE AVS AND 1OO2 PAIRS
PER FAILURE RATE BAND

Failure rate (f.r.)
Count (and %
of the total) of

1oo2 pairs

Count (and %
of the total) of

single AVs
failure rate = 0 91 (18.35%) 0 (0%)

1.0E-05 ≤ f. r. <1.0E-04 43 (8.67%) 0 (0%)
1.0E-04 ≤ f. r. <1.0E-03 111 (22.38%) 3 (9.37%)
1.0E-03 ≤ f. r. <1.0E-02 200 (40.32%) 13 (40.63%)
1.0E-02 ≤ f. r. <1.0E-01 37 (7.46%) 10 (31.25%)

1.0E-01 ≤ f. r. <1.0 14 (2.82 %) 6 (18.75%)
Total pairs 496 32

A user of an AV may also be interested in the gains that a
specific 1oo2 configuration of AV engines will have over the
individual AVs. The user may be running an AV engine, say
AVi, in their system, and be interested in the potential gains in
detection capability (in terms of lower failure / non-detection
rate) from running alongside it another AntiVirus engine, say
AVj.

Figure 5 presents this evidence for the 496 pairs (32C2
combinations) in our study. The x-axis lists the 496 1oo2 pairs.
The y-axis lists the potential gains in detection capability (i.e.,
lower failure rate) from switching from a single AV to a 1oo2
pair (given in a logarithmic scale 0 to 1). The dots show the
gains of switching from the AV with the worse failure rate to
the corresponding 1oo2 pair: this value was calculated by
subtracting the failure rate value of the 1oo2 pair from the AV
with worse (i.e., higher) failure rate; whereas the solid line
represents the gains of switching from the AV with the better
failure rate to the 1oo2 pair (hence the gains in this latter case
are always lower). We can see that for a lot of the pairs the
maximum gains can be quite high (failure rates of the 1oo2
pairs decrease almost 100%). The solid line values fall to zero
in the bottom right-hand side of the graph. This indicates that
the pair is made up of an AV, say AV1, which only fails for a
subset of the demands (i.e., triplets {Malwarei, AVj, Dayk})
that the other AV, say AV2, fails on, and no other. Hence AV1
will see no improvement when paired with AV2.

5 A configuration where the system will detect the malware as long as one out
of the two AVs in the diverse setup detects the malware.

Figure 5. Gains in detection capability (lower failure rates) of a pair of
AVs over the individual AVs.

IV. CLUSTER ANALYSIS OF AV DETECTION CAPABILITY
As the results in the previous section suggest, certain

combinations of AVs provide better detection capabilities, and
hence improved security. So this section presents a cluster
analysis performed on the failure rates of all AVs and AV
pairs, as calculated from our malware dataset. The objective is
to visualize how similarly some AVs, as well as AV pairs,
performed on this dataset. More importantly, we want to
discover the presence (or absence) of relationships between AV
clusters and the detection rate resulting from their combination.

For each AV, we have calculated the daily normalized
failure rate by computing the ratio of the number of non-
detections (failures) against the total number of samples
submitted on each day. This daily failure rate is represented by
a vector of 178 elements, i.e., one element per day, which can
then be used as feature vector by a clustering algorithm. When
dealing with such multi-dimensional data, it is often useful to
see them charted on a two-dimensional map in order to
understand the relationships between those data items.
Multidimensional scaling (MDS) is a set of methods that
address this type of problem. MDS is based on dimensionality
reduction techniques, which aim at converting a multi-
dimensional dataset into a two or three-dimensional
representation that can be displayed e.g., in a scatter plot. As a
result, MDS allow an analyst to visualize how near
observations are to each other for many kinds of distance or
dissimilarity measures, which in turn can deliver insights into
the underlying structure of the high-dimensional dataset.

Because of the non-linear characteristic of failure rate
vectors, we applied a recent MDS technique called t-SNE to
visualize our dataset. t-SNE [14] is a variation of Stochastic
Neighbour Embedding (SNE) and it produces significantly
better visualizations than other MDS techniques by reducing
the tendency to crowd points together in the centre of the map.
Moreover, this technique has proven to perform better in
retaining both the local and the global structure of real, high-
dimensional data in a single map, in comparison to other non
linear dimensionality reduction techniques such as Sammon
mapping, Isomaps or Laplacian Eigenmaps.

Figure 6. Visualizing failure rates (by date) for single AVs
using Multidimensional Scaling

Figure 6 shows the resulting two-dimensional plot obtained
by mapping the failure rates of all 32 AVs over the whole
collection period. We can identify three clusters of AVs that
exhibit similar detection capabilities:

 a group of 6 AVs with low detection capabilities (in
the upper right corner) whose failure rate lies (on
average) between 22.8% and 98.1%;

 a group of 14 AVs with high detection capabilities (in
the lower left part) with a failure rate under 0.6%; and

 a group of 10 AVs (+ 2 outliers) which had an
intermediate detection capability (a failure rate
between 1.0% and 9.3%). The colouring of each data
point indicates the corresponding mean failure rate
(over the whole period).

In section III we saw the potential benefits in malware
detection that may be obtained from employing diversity,
based on the analysis of AV pairs deployed in a 1oo2
configuration. We can again apply t-SNE to create a low-
dimensional representation of the failure rate vectors
corresponding to all 496 possible AV pairs, which leads to a
global visualization of the results given previously in the
second column of Table IV. Each data point on the plot has
been mapped from the normalized failure rate vector (178
elements, i.e., one per day) of a given AV pair, and the
colouring refers to the 5 failure rate intervals as defined in
Table IV (with 0 corresponding to a zero failure rate and 5
corresponding to failure rate band 1.0E-01 to 1.0).

In Figure 7, in the left part of the map (blue circle), we can
clearly see one large cluster of 91 AV pairs whose failure rate
was equal to zero (i.e., perfect detection). In the top right
corner (red circle), we see a smaller cluster of 14 AV pairs
whose average failure rate lies between 11% and 68% (i.e., low
performing AV pairs).

A further exploration of this two-dimensional
representation of AV pairs delivers some interesting results.
Let us consider the following AV clusters as identified
previously from Figure 6:

 The cluster of 6 AVs with low detection capabilities
C1 = {AV-12, AV-24, AV-13, AV-29, AV-3, AV-27}

 The cluster of 14 AVs with high detection capabilities
C2 = {AV-7, AV-16, AV-26, AV-17, AV-32, AV-2,
AV-6, AV-21, AV-22, AV-30, AV-31, AV-23, AV-15,
AV-19};

Figure 7. Visualizing failure rates of AV pairs
using Multidimensional Scaling

Taking advantage of this clustering technique we can infer
interesting facts on the relationship between the AV clusters
introduced in Figure 6 and the detection rate deriving from
their combination:

 Combination of [Low+High] performing AVs: Out of
84 possible pairs, there are 15 cases (18%) that have a
significant improvement in detection rate, of which 11
cases show even a perfect detection rate (for example:
the pair [AV-13, AV-17]). None of those 84
combinations were found in the two highest failure rate
bands (i.e., intervals nr 4 and 5), which means that
combining those low and high performing AVs has
always delivered very high gains in detection
capability during this experiment.

 Combination of [Low+Low] performing AVs: There
are 15 possible combinations, among which 14 are
situated in the worst detection capability group (i.e.,
the band with the highest failure rate), which means we
obtain a marginal gain combining the products from
the cluster of “low-performing” AVs. Only one AV
pair shows some minor improvement ([AV-3, AV-27])
with a failure rate of 9%, but it is still performing quite
poorly.

 Combination of [High+High] performing AVs: Among
the 91 possible combinations, 63 pairs (69%) have a
significant improvement of the failure rate with respect
to the single version, of which 46 pairs belong to the
cluster of AVs with perfect detection rate (FR=0).
Only 10 AV pairs of this type have somewhat a
marginal performance gain, hence situated a bit more
in the middle of the map (in the failure rate band nr 3).

Obviously, the diversity obtained by combining two high
performing AVs delivers almost always a higher gain in
detection capability, but this can also have a higher impact on

the total system cost, since a majority of the AVs with high
detection rates are commercial ones (only 2 out of 14 AVs
belonging to cluster C2 are free AVs). From the results given
above, it seems that the combination of a pair of AVs, which
individually have contrasting detection capabilities, is a better
trade-off between an improved detection capability of the
system and its total cost of ownership.

Interestingly, one pair of free AVs was even found among
the group of AV pairs with perfect detection rate, and four
other pairs of free AVs were found in the first failure rate band
(i.e., between 1.0E-5 and 1.0E-4), which indicates that high
detection rates could be achieved even with pairs of free AV
products.

V. RELATED WORK ON ARCHITECTURES THAT UTILISE
DIVERSE ANTIVIRUS PRODUCTS

We have so far presented the potential gains in detection
capability that can be achieved by using diverse AVs. We have
addressed a complex problem, that of generating a meaningful
evaluation of AV detection techniques, by self-imposing a set
of limitations in the notion of detection capability of the AVs.
Within these bounds, we have attempted to maximize the
realism of the experimentation taking advantage of the SGNET
deployment.

While these efforts are, to the best of our knowledge, a
novel contribution introduced by this work, the concept of
combining multiple detectors is not new and was proposed in
recent publications. Oberheide et al. in [4] have proposed an
architecture called Cloud-AV, which utilises multiple diverse
AV products to improve the detection performance. The
Cloud-AV architecture is based on a client-server paradigm, in
which each client submits suspicious files to a central network
service in charge of combining the results obtained by the
operation of multiple AntiVirus products. Consistently with
this work, the authors show in [4] how the employment of
diversity can lead to considerable advantages in performance.
The experimentation carried on in [4] is solely instrumental to
the validation of the idea, and can be considered
complimentary to the more extensive one carried out in this
work.

Finally, another implementation [5] is a commercial
solution for e-mail scanning which utilises diverse AntiVirus
engines.

VI. DISCUSSION AND CONCLUSIONS
In this paper we presented analysis of the potential gains in

reliability (detection rates) that can be obtained from using
more than one diverse AntiVirus signature-based detection
engine. We tested 32 engines hosted by the VirusTotal site [6]
with 1599 malware samples collected from a distributed
honeypot platform. The malware were observed in the
honeypots in a six month period between February and August
2008.

The analysis proposed in this work is an assessment of the
practical impacts of the application of diversity in a real world
scenario based on realistic data generated by a distributed
honeypot deployment. As shown in [9], the comprehensive

evaluation of detection capability of AntiVirus engines is an
extremely challenging, if not impossible, problem. This work
does not aim at providing a solution to this challenge, but
builds upon it to clearly define the limits of validity of its
measurements.

The detection capability analysis of the signature-based
components showed a considerable variability in detection of
the malware samples considered in the dataset. Also, despite
the generally high detection rate of the detection engines, none
of them achieved 100% detection rate. The detection failures
were both due to the lack of knowledge of a given malware at
the time in which the samples were first detected, but also due
to regressions in the ability to detect previously known samples
as a consequence, possibly, of the deletion of some signatures.

The differences in performance of the AVs justified the use
of diversity for improving the detection capability. From our
experiments with 1-out-of-2 (1oo2) pairs of engines, the
improvements in detection capability resulting from the usage
of diversity are significant. Almost a third of the resulting pairs
achieved a better detection rate compared with the best
individual engine. Interestingly, we saw how one pair
constructed from free detection engines had a perfect detection
rate for the malware collected in our study and four other pairs
of free detection engines had higher detection capability than
the best individual engine.

There are several provisions for further work:

i) As we stated in the introduction, there are many
difficulties with constructing meaningful benchmarks
for the evaluation of the detection capability of
different AntiVirus products (see [9] for a more
elaborate discussion). Modern AntiVirus products
comprise a complex architecture of different types of
detection components, and achieve higher detection
capability by combining together the output of these
diverse detection techniques. Since some of these
detection techniques are also based on analysing the
behavioural characteristics of the inspected samples, it
is very difficult to setup a benchmark able to fully
assess the detection capability of these complex
components. In our study we have concentrated on one
specific part of these products, namely their signature-
based detection engine. Further studies are needed to
test the detection capabilities of these products in full.

ii) Studying the detection capability with different
categories of malicious files. In our study we have
concentrated on malicious executable files only.
Further studies are needed to check the detection
capability for other types of files e.g., document files,
media files etc.

iii) Analysis of the benefits of diversity when more than
two AV products are used, such as 2oo3 (“two-out-of-
three”) diverse configuration, or configurations with a
higher number of diverse AV products.

ACKNOWLEDGMENT
This work has been supported by the European Union

Framework Programme 6 via the "Resilience for Survivability
in Information Society Technologies" (ReSIST) Network of
Excellence (contract IST-4-026764-NOE). This work has also
been partially supported by the European Commission through
project FP7-ICT-216026-WOMBAT funded by the 7th
framework program. The opinions expressed in this paper are
those of the authors and do not necessarily reflect the views of
the European Commission.

We would like to thank Bev Littlewood for reviewing an
earlier draft of this paper.

REFERENCES
[1] van der Meulen, M.J.P., et al. Protective Wrapping of Off-the-Shelf

Components. in the 4th International Conference on COTS-Based
Software Systems (ICCBSS '05). 2005. Bilbao, Spain: Springer.

[2] Strigini, L., Fault Tolerance Against Design Faults, in Dependable
Computing Systems: Paradigms, Performance Issues, and Applications,
H. Diab and A. Zomaya, Editors. 2005, J. Wiley & Sons. p. 213-241.

[3] Reynolds, J., et al. The Design and Implementation of an Intrusion
Tolerant System. in Dependable Systems and Networks (DSN-02). 2002.
Washington, D.C., USA: IEEE Computer Society Press.

[4] Oberheide, J., E. Cooke, and F. Jahanian. CloudAV: N-Version Antivirus
in the Network Cloud. in Proceedings of the 17th USENIX Security
Symposium. 2008.

[5] GFi. GFiMailDefence Suite. 2008 last accessed 2008; Available from:
http://www.gfi.com/maildefense/.

[6] [6] VirusTotal. VirusTotal - A Service for Analysing Suspicious Files.
2008 last accessed 2008; Available from:
http://www.virustotal.com/sobre.html.

[7] Leita, C., SGNET: Automated Protocol Learning for the Observation of
Malicious Threats, in Institute EURECOM. 2008, University of Nice:
Nice, France.

[8] Leita, C. and M. Dacier. SGNET: A Worldwide Deployable Framework
to Support the Analysis of Malware Threat Models. in Seventh European
Dependable Computing Conference (EDCC 2008). 2008. Kaunas,
Lithuania.

[9] Leita, C., et al. Large Scale Malware Collection: Lessons Learned. in
Workshop on Sharing Field Data and Experiment Measurements on
Resilience of Distributed Computing Systems, 27th International
Symposium on Reliable Distributed Systems (SRDS 2008). 2008. Napoli,
Italy.

[10] Leita, C. and M. Dacier. SGNET: Implementation Insights. in IEEE/IFIP
Network Operations and Management Symposium (NOMS 2008). 2008.
Salvador da Bahia, Brazil.

[11] Bayer, U., C. Kruegel, and E. Kirda, TTAnalyze: A Tool for Analyzing
Malware, in Information Systems Institute. 2005, Technical University
of Vienna: Vienna, Austria. p. 86.

[12] Bayer, U., et al., Dynamic Analysis of Malicious Code. Journal in
Computer Virology, 2006. 2(1): p. 67–77.

[13] F-Secure. Malware Information Pages: Allaple.A. 2007 last accessed
04 May 2007; Available from: www.f-secure.com/v-
descs/allaplea.shtml.

[14] van der Maaten, L.J.P. and G.E. Hinton, Visualizing Data Using t-SNE.
Journal of Machine Learning Research, 2008. 9: p. 2579-2605.

