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Abstract—Fault tolerance in the form of diverse redundancy is 
well known to improve the detection rates for both malicious and 
non-malicious failures. What is of interest to designers of security 
protection systems are the actual gains in detection rates that 
they may give. In this paper we provide exploratory analysis of 
the potential gains in detection capability from using diverse 
AntiVirus products for the detection of self-propagating 
malware. The analysis is based on 1599 malware samples 
collected by the operation of a distributed honeypot deployment 
over a period of 178 days. We sent these samples to the signature 
engines of 32 different AntiVirus products taking advantage of 
the VirusTotal service. The resulting dataset allowed us to 
perform analysis of the effects of diversity on the detection 
capability of these components as well as how their detection 
capability evolves in time. 

Keywords; AntiVirus detection engine analyis, malware 
detection, cluster analysis 

I.  INTRODUCTION 
All software, including off-the-shelf software, need to be 

sufficiently reliable and secure in delivering the service that is 
required of them. There are various ways in which this 
reliability and security can be achieved in practice, such as the 
use of various validation and verification techniques in the 
software construction phases, statistical testing of the final 
product before delivery, issuance of patches and service 
releases for the product in operation, as well as the use of 
software  fault/intrusion tolerance techniques. The fault 
tolerance techniques can range from simple “wrappers” of the 
software components [1] to the use of diverse software 
products in a fault-tolerant system [2]. This latter strategy of 
implementing fault tolerance was historically considered 
prohibitively expensive, due to the need for development of 
multiple bespoke software versions. However, the wide 
proliferation of off-the-shelf software for various applications 
has made the use of software diversity an affordable option for 
fault tolerance against either malicious or non-malicious faults. 

In the field of intrusion tolerance there have already been 
examples of implementing intrusion tolerant architectures 
which employ diverse intrusion detection systems for detecting 
malicious behaviour [3]. Similarly, a recent publication [4] has 

also detailed an implementation of an AntiVirus (AV) platform 
which makes use of diverse AntiVirus products for malware 
detection. A similar architecture which uses diverse AntiVirus 
email scanners has been detailed in [5]. Therefore, architectural 
solutions for employing diverse detection engines (either IDS 
or AntiVirus products) are already known. Studies which 
provide an empirical evaluation of the effectiveness of 
diversity for detection of malware in a rigorous way are, on the 
other hand, much more scarce. 

This paper aims at addressing this research gap by 
proposing an analysis of the effects of diversity in the most 
realistic conditions. This is achieved by taking into 
consideration real-world data generated by a distributed 
honeypot deployment, SGNET [7], [8]. The advantages of this 
dataset over those used in the previous work [4] can be 
summarized as follows: 

i. It is unbiased. SGNET takes advantage of protocol 
learning techniques to emulate code injection attacks in 
a protocol-agnostic way. Differently from other 
honeypot techniques, SGNET honeypots do not make 
any assumption on the nature of the exploits to be 
observed. This maximizes the probability of correctly 
observing all the threats hitting the honeypot and 
reduces the bias normally introduced by knowledge-
based approaches. 

ii. It emulates realistic conditions. Whenever a sample is 
collected by a SGNET honeypot, it is immediately 
evaluated with the latest version of the AntiVirus 
signatures. The information at our disposal is thus as 
near as possible to the security perceived by a real 
client deployed over the network. 

iii. It provides an evolutionary perspective. As will be 
described later, every collected sample is analyzed on a 
daily basis for at least 30 days with the latest version of 
the AntiVirus (AV) signatures. This offers perspectives 
on the window of exposure to the threats, which has 
been analyzed in this work. 



iv. It is open. The dataset is freely accessible to any 
research institution interested in reproducing our 
results.  

The construction of meaningful benchmarks for the 
evaluation of the detection capability of different AntiVirus 
products is an open debate in the research community. Modern 
AntiVirus products consist of a complex architecture of 
different types of detection components, and achieve better 
detection capability by combining together the output of these 
diverse detection techniques. Since some of these detection 
techniques are also based on analysing the behavioural 
characteristics of the inspected samples, it is very difficult to 
set up a benchmark able to fully assess the detection capability 
of these complex products. Institutions such as the Anti 
Malware Testing Standards Organization 1  have been 
specifically generated in an effort to address the issues 
involved in this task. Moreover, previous research work [9] 
underlined the challenges in correctly defining the notion of 
“success” in the detection of a specific malware sample and 
have raised concerns on the feasibility of generating 
meaningful benchmarks for this class of intrusion detectors.  

On this basis, the evaluation proposed in this paper is 
defined upon a simplified view of the problem, which we 
consider sufficient to the accomplishment of our goals. We do 
the following: 

• We take into consideration a single type of component 
appearing in most AntiVirus products, namely the 
signature-based detection engine. 

• We perform the analysis on unambiguous malicious 
samples, the samples that are known to be malicious 
executable files according to the information provided 
by the SGNET dataset. 

• We consider as a successful detection any alarm 
message provided by the component. We do not try to 
diagnose the “correctness” of the generated alarm 
message. 

While the resulting measures may not be representative of 
the detection capability achieved by the real-world operation of 
the various AV products, they provide an interesting analysis 
on the detection capability of the respective signature-based 
sub-components under the above stated conditions. 

We take advantage of 1599 malware samples collected by 
the SGNET honeypot deployment over a period of 178 days in 
the period February to August 2008. The sample set taken into 
consideration is thus representative of currently spreading 
threats. For each malware sample, we study the evolution of 
the detection capability of the signature-based component of 32 
different AntiVirus products and investigate the impact of 
diversity on such a capability. Through daily analyses of the 
same sample using the most up-to-date signature database 
available for each AV product, we have been able to study the 
evolution of the detection capability over time. We observed 
that many AntiVirus detection engines give very high detection 
rates for the analyzed samples, but no sample was correctly 
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identified by all the 32 detection engines. We also found many 
cases of regression in the detection capability of the engines: 
cases where an engine would go from detecting the malware on 
a given date to not detecting the same malware at a later date. 
The results suggest that the use of diverse detection engines 
developed by different AntiVirus vendors may bring benefits in 
detection capability. 

For the sake of brevity, in the rest of the paper we will use 
the short-hand notation AV to refer to the signature-based 
component of an AntiVirus detection engine. 

The rest of this paper is organised as follows: section II 
details the experimental architecture used to collect the data; 
section III details exploratory empirical analysis of the data 
collected on the AntiVirus detection behaviour; section IV 
contains some initial cluster analysis based on the collected 
dataset; section V reviews two recent implementations that 
employ diverse AntiVirus engines for detecting malware or 
scanning potentially malicious emails and section VI contains 
discussions, conclusions and provisions for further work. 

II. EXPERIMENTAL SETUP AND ARCHITECTURE 
The definition of a representative dataset for the evaluation 

of the effectiveness of intrusion detection systems is a difficult, 
if not impossible, task [9]. The malware scenario is evolving 
continuously, and new threats, or variants of existing threats, 
are generated on a daily basis. 

This work does not aim at being a comprehensive 
comparison of the detection capability of different products to 
the variety of Internet threats. We focus on a medium-sized 
sample set composed of a specific class of threats that are 
known to be currently active thanks to the observation and 
collection performed by a distributed honeypot deployment. 

The analyzed dataset is composed of 1599 malware 
samples collected by a real world honeypot deployment, 
SGNET [7], [8]. SGNET is a distributed honeypot deployment 
for the observation of server-side code injection attacks. Taking 
advantage of protocol learning techniques, SGNET is able to 
fully emulate the attack trace associated to code injection 
attacks and download malware samples spreading with server-
side exploits. By deploying many sensors in different networks 
of the Internet, SGNET collects in a central repository a 
snapshot of the aggregated observations of all its sensors. By 
taking advantage of this data as input to our analysis, we build 
our analysis upon a limited, but realistic dataset with respect to 
the modern trends for the specific class of malware (i.e., those 
associated with code injection attacks). 

SGNET information enrichment framework [10] enriches 
the information collected by the deployment with additional 
data sources. Two sources are relevant to this work: the 
behavioural information provided by Anubis2 [11], [12] and the 
detection capability information provided by VirusTotal [6]. 

Every malware sample collected by the deployment is 
automatically submitted to Anubis to obtain information of its 
behaviour when executed on a real Windows system. This 

                                                             
2 http://anubis.iseclab.org/ 



information is useful to filter out corrupted samples collected 
by the deployment, which would not be executable on a real 
system. Such samples proved to be the cause of ambiguities in 
the detection capability [9]. It is, however, unclear whether 
such corrupted samples should or should not be detected: 
different engines often follow contradicting policies. 

The foundations of our analysis are derived from the 
interaction of SGNET with the VirusTotal service. 
VirusTotal (VT) is a web service that allows the analysis of a 
given malware sample by the signature-based engines of 
different AntiVirus vendors3. All the engines are always kept 
up-to-date with the latest version of the signatures. A 
submission of a malware sample to VirusTotal at a given point 
in time thus provides a snapshot on the ability of the different 
signature-based engines to correctly identify a threat in such 
samples. It is important to stress that the detection capability 
evaluation is performed on a subset of the functionalities of the 
detection solutions provided by the different vendors. 

Every time in which a sample is collected by the SGNET 
deployment it is automatically submitted for analysis to 
VirusTotal, and the corresponding result is stored within the 
SGNET dataset. To get information on the evolution of the 
detection capability of the engines, each sample is resubmitted 
on a daily basis for a period of at least 30 days. After that, the 
submission is stopped as soon as the detection results of the last 
7 submissions are unchanged. Such a policy allows continuing 
the submission of the malware, which causes “unstable” 
detection decisions to be made even 30 days after its collection. 

The dataset generated by the SGNET interaction has some 
important characteristics that need to be taken into account in 
the following detection capability evaluation.  

First, all the malware taken into consideration have been 
pushed to the victim as a consequence of a successful hijack of 
its control flow. We can thus safely consider that all the 
analyzed samples are a result of a malicious and unsolicited 
activity. 

Secondly, all the considered samples are valid Windows 
Portable Executable files. That is, all these samples run 
successfully when executed in a Windows operating system. 

Thirdly, the definition of difference among two malware 
samples is based solely on their content. The frequent usage of 
polymorphic techniques [13] in malware propagation is likely 
to bias this number. Through polymorphism, a malware 
modifies its content at every propagation attempt: two 
instances of the same malware thus appear as different when 
looking solely at their content. To have an approximate idea of 
the impact of the phenomenon of the polymorphism on the 
considered dataset, 1054 of the 1599 samples were injected 
only once and are thus likely to be instances of polymorphic 
malware. These 1054 samples could be grouped into 81 
different families by looking at their structural characteristics. 

Finally, interdependence exists between the submission of a 
sample to VirusTotal and the observed detection capability. 
The VirusTotal service actively contributes to the AntiVirus 
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community by sharing with all the vendors all the submitted 
samples resulting in low detection rate. 

III. EXPLORATORY ANALYSIS OF AV DIVERSITY 
We have taken advantage of the previously introduced 

dataset to perform a detection capability analysis of 32 
different AVs when subjected with the 1599 malware samples 
collected by the SGNET deployment. Exploiting the 
submission policy implemented in the SGNET dataset, we 
have considered for each sample the submissions performed on 
the 30 days succeeding its download. The input to our analysis 
can thus be considered as a series of triplets, each of which 
associates a certain malware sample, an AV vendor and the 
identifier of the submission day with respect to the download 
date {Malwarei, AVj, Dayk}. For each of these triplets we have 
defined a binary score: 0 in case of successful detection, 1 in 
case of failure. Table I shows the aggregated counts of the 0s 
and 1s for the whole period. As previously explained, we have 
considered as success the generation of an alert regardless of 
the nature of the alert itself. 

TABLE I.  THE COUNTS OF SUCCESSFUL DETECTIONS AND FAILURES 
FOR TRIPLETS {MALWAREI, AVJ, DAYK} 

Value Count 
0 – no failure 1,093,977 
1 – security / correctness failure 143,031 

 

For a number of technical reasons in the interaction of the 
SGNET dataset and VirusTotal a given malware and an AV are 
not always associated to 30 triplets. In the observation period, 
some AVs have not been queried on a given day, and some 
analysis reports have not been stored correctly by VirusTotal. 

A. Single AV Product Results  
Figure 1 shows the variation of the number of malware that 

were sent to VirusTotal during the collection period. 

 

Figure 1.  Count of malware sent to the VT site per day 

The variation in the number of malware sent can be 
explained by the relatively small number of malware observed 
for the initial period, and then by the policy used to send 
malware (explained in section 2). 



Table II lists the top 10 performing AVs ranked by their 
failure (non-detection) rates4.  

TABLE II.  TOP 10 AVS BY THEIR FAILURE (NON-DETECTION) RATES 

For all instances of malware For all distinct malware 
AV Name Failure rate AV Name Failure rate 

AV-7 2.7E-04 AV-7 6.3E-04 
AV-16 4.5E-04 AV-17 1.3E-03 
AV-17 5.9E-04 AV-6 2.5E-03 
AV-32 1.0E-03 AV-26 5.0E-03 
AV-26 1.5E-03 AV-21 6.3E-03 
AV-2 1.5E-03 AV-15 8.8E-03 
AV-6 1.8E-03 AV-22 8.8E-03 

AV-30 2.5E-03 AV-16 1.0E-02 
AV-22 3.2E-03 AV-19 1.0E-02 
AV-21 3.2E-03 AV-23 1.0E-02 

 

The two left-most columns list the top 10 AVs and their 
failure rates for all the instances of the malware sent to them 
during the collection period: we derive the failure rate by 
calculating the ratio of the count of failures for all triplets 
{Malwarei, AVj, Dayk} for a given detection engine AVj 
divided by the count of all triplets (failures and successful 
detections) for the same detection engine AVj. The right-most 
two columns show the failure rates per distinct malware: we 
derive the failure rate by calculating the ratio of the count of 
distinct malware which were not detected at least once by a 
given AVj divided by the count of distinct malware examined 
by the AVj (even if the AVj had failed to detect a given 
malware only once we would count that as a failure). From the 
results in Table II we can see that there is substantial variability 
in the detection capability of the top 10 AVs. 

We also found a large number of AVs that somehow 
fluctuated in their detection capability. In many cases, the AVs 
regressed in their detection decisions. That is, they detected the 
malware at first, and then failed to detect the malware at a later 
date, probably due to some updates in the respective AV’s rule 
definitions. It is interesting to note that a few of the AVs in the 
Top 10 shown in Table II (five in total from the Top 10 of the 
right-hand side; and five in total from the left-hand side (with 
three in both lists)) are among the AVs that regressed. Table III 
shows the top 10 worst performing AVs in terms of the number 
of these regression failures. The second column shows the 
count of distinct malware which they detected at first, but 
failed to detect in a subsequent submission to the VT site 
during our collection period. The third column shows the count 
of the triplets {Malwarei, AVj, Dayk} for which a given AVj 
regressed. 

Results presented in Table III underline an interesting 
behavior: we have observed patterns characterizing several 
AVs on several malware where the AVs switch from detecting 
to not detecting a given malware multiple times in our 
collection period. This would indicate that the updated rule set 
of a given AV breaks its detection capability making the AV 
fail to detect a malware that was previously detected correctly. 
Such a phenomenon can be due to various reasons. For 
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instance, the vendor might have deleted the corresponding 
detection signature as a consequence of the identification of 
false positives associated to it. 

TABLE III.  THE WORST 10 AVS BY THE COUNT OF DISTINCT MALWARE, 
AND THE COUNT OF {MALWAREI, AVJ, DAYK} TRIPLETS  

ON WHICH THEY REGRESS  

AV Name Number of Malware 
the AV regressed on 

Number of instances 
the AV regressed on 

AV-20 586 1691 
AV-8 374 538 
AV-3 71 78 

AV-11 58 59 
AV-1 37 235 

AV-32 36 38 
AV-2 15 15 

AV-16 13 13 
AV-9 8 8 

AV-14 4 4 
 

Figure 2 illustrates an example of a repeated regression of 
two AVs (one is commercial, the other is open-source) on a 
single malware.   

 

Figure 2.  The detection capability of two AVs on one malware  
during the collection period 

We can see that even though the two AVs detect the 
malware on most days, they do not detect it every day. We can 
also observe that both of the AVs fail to detect the same 
malware on the same day only once, on the 7th day: in other 
days when one AV fails the other does not. This would indicate 
gains from employing diverse AV engines. 

Figure 3 shows the 1599 malware observed in our 
collections period, and counts of how many AVs failed to 
detect a given malware at least once.  

We can see that the most “difficult” malware was not 
detected by 21 AVs in our study. There were no malware 
which caused all the different AVs to fail and only one 
malware which was detected by all the AVs. 

 



 

Figure 3.  Malware difficulty 

Figure 4 shows a contour plot of the data collected in our 
study. The x-axis lists all 32 AVs ordered by their lowest to 
highest failure rates (left to right). The y-axis lists all 1599 
malware ordered by their detection difficulty – the number of 
AVs that have failed to detect it. The malware are sorted from 
the easiest to the most difficult one, on average for all AVs 
(bottom to top). Each cell in the contour plot shows a failure 
rate of a given AV on a given malware throughout the 
collection period. The failure rate values are represented with 
the specific colouring schema (see the color bar on the right 
hand side of the figure). The values are in the range 0 
(represented with a shade of gray) to 1 (represented in white 
color). The contour plot, however, includes also the values of -
1, which are drawn in black color and represent the cases 
where “no result” exists, i.e., the cases where the malware was 
not sent to a given AV at all during the collection period. A 
failure rate value of, for example, 0.2 in a given cell is 
represented with a shade of gray color and can be interpreted as 
follows: “AV i failed to detect the malware j on 20% of the 
days during our collection period on which the malware was 
submitted to the AV”. 

 

Figure 4.  A contour plot of the AV (x-axis) failure rates (z-axis, 
represented by the intensity of the colour in the plot) over the malware 

(y-axis) 

The bottom left side of the plot shows the best performing 
AVs on the “easy” malware (on average) whereas the top right 
corner shows the worst performing AVs on the “difficult” 
malware (on average). We can also see many examples of 
“white” horizontal lines (difficult demands) for one AV, which 
are “shaded gray” lines for many of the other AVs. This would 
indicate potential benefits of employing diverse AVs. 

B. Results with 1oo2 Pairs  
We saw in the previous sub-section the potential benefits in 

malware detection that may be obtained from employing 
diversity. In this sub-section we will present in more detail 
results that give initial quantifications of these gains. We will 
base our analysis on pairs of AVs constructed from the 32 AVs 
used in our study.  

Table IV shows the count of 1oo2 (“1-out-of-2”) pairs5 and 
single versions within a given band of failure rate. We can see 
that over 18% of the 1oo2 pairs achieve perfect detection. A 
total of 163 1oo2 pairs out of 496 (32.9%) have a better 
detection rate than the best performing single AV (i.e., 163 
pairs have a failure rate lower than 2.7E-04). 

TABLE IV.  COUNTS OF SINGLE AVS AND 1OO2 PAIRS  
PER FAILURE RATE BAND 

Failure rate (f.r.) 
Count (and % 
of the total) of 

1oo2 pairs 

Count (and % 
of the total) of 

single AVs 
failure rate = 0 91 (18.35%) 0 (0%) 

1.0E-05 ≤ f. r. <1.0E-04 43 (8.67%) 0 (0%) 
1.0E-04 ≤ f. r. <1.0E-03 111 (22.38%) 3 (9.37%) 
1.0E-03 ≤ f. r. <1.0E-02 200 (40.32%) 13 (40.63%) 
1.0E-02 ≤ f. r. <1.0E-01 37 (7.46%) 10 (31.25%) 

1.0E-01 ≤ f. r. <1.0 14 (2.82 %) 6 (18.75%) 
Total pairs 496 32 

 

A user of an AV may also be interested in the gains that a 
specific 1oo2 configuration of AV engines will have over the 
individual AVs. The user may be running an AV engine, say 
AVi, in their system, and be interested in the potential gains in 
detection capability (in terms of lower failure / non-detection 
rate) from running alongside it another AntiVirus engine, say 
AVj.  

Figure 5 presents this evidence for the 496 pairs (32C2 
combinations) in our study. The x-axis lists the 496 1oo2 pairs. 
The y-axis lists the potential gains in detection capability (i.e., 
lower failure rate) from switching from a single AV to a 1oo2 
pair (given in a logarithmic scale 0 to 1). The dots show the 
gains of switching from the AV with the worse failure rate to 
the corresponding 1oo2 pair: this value was calculated by 
subtracting the failure rate value of the 1oo2 pair from the AV 
with worse (i.e., higher) failure rate; whereas the solid line 
represents the gains of switching from the AV with the better 
failure rate to the 1oo2 pair (hence the gains in this latter case 
are always lower). We can see that for a lot of the pairs the 
maximum gains can be quite high (failure rates of the 1oo2 
pairs decrease almost 100%). The solid line values fall to zero 
in the bottom right-hand side of the graph. This indicates that 
the pair is made up of an AV, say AV1, which only fails for a 
subset of the demands (i.e., triplets {Malwarei, AVj, Dayk}) 
that the other AV, say AV2, fails on, and no other. Hence AV1 
will see no improvement when paired with AV2. 
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Figure 5.  Gains in detection capability (lower failure rates) of a pair of 
AVs over the individual AVs. 

IV. CLUSTER ANALYSIS OF AV DETECTION CAPABILITY 
As the results in the previous section suggest, certain 

combinations of AVs provide better detection capabilities, and 
hence improved security. So this section presents a cluster 
analysis performed on the failure rates of all AVs and AV 
pairs, as calculated from our malware dataset. The objective is 
to visualize how similarly some AVs, as well as AV pairs, 
performed on this dataset. More importantly, we want to 
discover the presence (or absence) of relationships between AV 
clusters and the detection rate resulting from their combination. 

For each AV, we have calculated the daily normalized 
failure rate by computing the ratio of the number of non-
detections (failures) against the total number of samples 
submitted on each day.  This daily failure rate is represented by 
a vector of 178 elements, i.e., one element per day, which can 
then be used as feature vector by a clustering algorithm. When 
dealing with such multi-dimensional data, it is often useful to 
see them charted on a two-dimensional map in order to 
understand the relationships between those data items. 
Multidimensional scaling (MDS) is a set of methods that 
address this type of problem. MDS is based on dimensionality 
reduction techniques, which aim at converting a multi-
dimensional dataset into a two or three-dimensional 
representation that can be displayed e.g., in a scatter plot. As a 
result, MDS allow an analyst to visualize how near 
observations are to each other for many kinds of distance or 
dissimilarity measures, which in turn can deliver insights into 
the underlying structure of the high-dimensional dataset. 

Because of the non-linear characteristic of failure rate 
vectors, we applied a recent MDS technique called t-SNE to 
visualize our dataset.  t-SNE [14] is a variation of Stochastic 
Neighbour Embedding (SNE) and it produces significantly 
better visualizations than other MDS techniques by reducing 
the tendency to crowd points together in the centre of the map. 
Moreover, this technique has proven to perform better in 
retaining both the local and the global structure of real, high-
dimensional data in a single map, in comparison to other non 
linear dimensionality reduction techniques such as Sammon 
mapping, Isomaps or Laplacian Eigenmaps. 

 

Figure 6.  Visualizing failure rates (by date) for single AVs  
using Multidimensional Scaling 

Figure 6 shows the resulting two-dimensional plot obtained 
by mapping the failure rates of all 32 AVs over the whole 
collection period. We can identify three clusters of AVs that 
exhibit similar detection capabilities: 

 a group of 6 AVs with low detection capabilities (in 
the upper right corner) whose failure rate lies (on 
average) between 22.8% and 98.1%;  

 a group of 14 AVs with high detection capabilities (in 
the lower left part) with a failure rate under 0.6%; and  

 a group of 10 AVs (+ 2 outliers) which had an 
intermediate detection capability (a failure rate 
between 1.0% and 9.3%). The colouring of each data 
point indicates the corresponding mean failure rate 
(over the whole period). 

In section III we saw the potential benefits in malware 
detection that may be obtained from employing diversity, 
based on the analysis of AV pairs deployed in a 1oo2 
configuration. We can again apply t-SNE to create a low-
dimensional representation of the failure rate vectors 
corresponding to all 496 possible AV pairs, which leads to a 
global visualization of the results given previously in the 
second column of Table IV. Each data point on the  plot has 
been mapped from  the normalized failure rate vector (178 
elements, i.e., one per day) of a given AV pair, and the 
colouring refers to the 5 failure rate intervals as defined in 
Table IV (with 0 corresponding to a zero failure rate and 5 
corresponding to failure rate band 1.0E-01 to 1.0). 

In Figure 7, in the left part of the map (blue circle), we can 
clearly see one large cluster of 91 AV pairs whose failure rate 
was equal to zero (i.e., perfect detection). In the top right 
corner (red circle), we see a smaller cluster of 14 AV pairs 
whose average failure rate lies between 11% and 68% (i.e., low 
performing AV pairs). 

A further exploration of this two-dimensional 
representation of AV pairs delivers some interesting results. 
Let us consider the following AV clusters as identified 
previously from Figure 6: 

 The cluster of 6 AVs with low detection capabilities 
C1 = {AV-12, AV-24, AV-13, AV-29, AV-3, AV-27} 



 The cluster of 14 AVs with high detection capabilities 
C2 = {AV-7, AV-16, AV-26, AV-17, AV-32, AV-2, 
AV-6, AV-21, AV-22, AV-30, AV-31, AV-23, AV-15, 
AV-19};  

 

Figure 7.  Visualizing failure rates of AV pairs  
using Multidimensional Scaling 

Taking advantage of this clustering technique we can infer 
interesting facts on the relationship between the AV clusters 
introduced in Figure 6 and the detection rate deriving from 
their combination: 

 Combination of [Low+High] performing AVs: Out of 
84 possible pairs, there are 15 cases (18%) that have a 
significant improvement in detection rate, of which 11 
cases show even a perfect detection rate (for example: 
the pair [AV-13, AV-17]). None of those 84 
combinations were found in the two highest failure rate 
bands (i.e., intervals nr 4 and 5), which means that 
combining those low and high performing AVs has 
always delivered very high gains in detection 
capability during this experiment. 

  Combination of [Low+Low] performing AVs: There 
are 15 possible combinations, among which 14 are 
situated in the worst detection capability group (i.e., 
the band with the highest failure rate), which means we 
obtain a marginal gain combining the products from 
the cluster of “low-performing” AVs. Only one AV 
pair shows some minor improvement ([AV-3, AV-27]) 
with a failure rate of 9%, but it is still performing quite 
poorly. 

 Combination of [High+High] performing AVs: Among 
the 91 possible combinations, 63 pairs (69%) have a 
significant improvement of the failure rate with respect 
to the single version, of which 46 pairs belong to the 
cluster of AVs with perfect detection rate (FR=0). 
Only 10 AV pairs of this type have somewhat a 
marginal performance gain, hence situated a bit more 
in the middle of the map (in the failure rate band nr 3). 

Obviously, the diversity obtained by combining two high 
performing AVs delivers almost always a higher gain in 
detection capability, but this can also have a higher impact on 

the total system cost, since a majority of the AVs with high 
detection rates are commercial ones (only 2 out of 14 AVs 
belonging to cluster C2 are free AVs). From the results given 
above, it seems that the combination of a pair of AVs, which 
individually have contrasting detection capabilities, is a better 
trade-off between an improved detection capability of the 
system and its total cost of ownership. 

Interestingly, one pair of free AVs was even found among 
the group of AV pairs with perfect detection rate, and four 
other pairs of free AVs were found in the first failure rate band 
(i.e., between 1.0E-5 and 1.0E-4), which indicates that high 
detection rates could be achieved even with pairs of free AV 
products. 

V. RELATED WORK ON ARCHITECTURES THAT UTILISE 
DIVERSE ANTIVIRUS PRODUCTS 

We have so far presented the potential gains in detection 
capability that can be achieved by using diverse AVs. We have 
addressed a complex problem, that of generating a meaningful 
evaluation of AV detection techniques, by self-imposing a set 
of limitations in the notion of detection capability of the AVs. 
Within these bounds, we have attempted to maximize the 
realism of the experimentation taking advantage of the SGNET 
deployment.  

While these efforts are, to the best of our knowledge, a 
novel contribution introduced by this work, the concept of 
combining multiple detectors is not new and was proposed in 
recent publications. Oberheide et al. in [4] have proposed an 
architecture called Cloud-AV, which utilises multiple diverse 
AV products to improve the detection performance. The 
Cloud-AV architecture is based on a client-server paradigm, in 
which each client submits suspicious files to a central network 
service in charge of combining the results obtained by the 
operation of multiple AntiVirus products. Consistently with 
this work, the authors show in [4] how the employment of 
diversity can lead to considerable advantages in performance. 
The experimentation carried on in [4] is solely instrumental to 
the validation of the idea, and can be considered 
complimentary to the more extensive one carried out in this 
work. 

Finally, another implementation [5] is a commercial 
solution for e-mail scanning which utilises diverse AntiVirus 
engines. 

VI. DISCUSSION AND CONCLUSIONS 
In this paper we presented analysis of the potential gains in 

reliability (detection rates) that can be obtained from using 
more than one diverse AntiVirus signature-based detection 
engine. We tested 32 engines hosted by the VirusTotal site [6] 
with 1599 malware samples collected from a distributed 
honeypot platform. The malware were observed in the 
honeypots in a six month period between February and August 
2008.  

The analysis proposed in this work is an assessment of the 
practical impacts of the application of diversity in a real world 
scenario based on realistic data generated by a distributed 
honeypot deployment. As shown in [9], the comprehensive 



evaluation of detection capability of AntiVirus engines is an 
extremely challenging, if not impossible, problem. This work 
does not aim at providing a solution to this challenge, but 
builds upon it to clearly define the limits of validity of its 
measurements. 

The detection capability analysis of the signature-based 
components showed a considerable variability in detection of 
the malware samples considered in the dataset. Also, despite 
the generally high detection rate of the detection engines, none 
of them achieved 100% detection rate. The detection failures 
were both due to the lack of knowledge of a given malware at 
the time in which the samples were first detected, but also due 
to regressions in the ability to detect previously known samples 
as a consequence, possibly, of the deletion of some signatures. 

The differences in performance of the AVs justified the use 
of diversity for improving the detection capability. From our 
experiments with 1-out-of-2 (1oo2) pairs of engines, the 
improvements in detection capability resulting from the usage 
of diversity are significant. Almost a third of the resulting pairs 
achieved a better detection rate compared with the best 
individual engine. Interestingly, we saw how one pair 
constructed from free detection engines had a perfect detection 
rate for the malware collected in our study and four other pairs 
of free detection engines had higher detection capability than 
the best individual engine. 

There are several provisions for further work: 

i) As we stated in the introduction, there are many 
difficulties with constructing meaningful benchmarks 
for the evaluation of the detection capability of 
different AntiVirus products (see [9] for a more 
elaborate discussion). Modern AntiVirus products 
comprise a complex architecture of different types of 
detection components, and achieve higher detection 
capability by combining together the output of these 
diverse detection techniques. Since some of these 
detection techniques are also based on analysing the 
behavioural characteristics of the inspected samples, it 
is very difficult to setup a benchmark able to fully 
assess the detection capability of these complex 
components. In our study we have concentrated on one 
specific part of these products, namely their signature-
based detection engine. Further studies are needed to 
test the detection capabilities of these products in full. 

ii) Studying the detection capability with different 
categories of malicious files. In our study we have 
concentrated on malicious executable files only. 
Further studies are needed to check the detection 
capability for other types of files e.g., document files, 
media files etc. 

iii) Analysis of the benefits of diversity when more than 
two AV products are used, such as 2oo3 (“two-out-of-
three”) diverse configuration, or configurations with a 
higher number of diverse AV products. 
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