
Revisiting the Performance of Short TCP

Transfers

Aymen Hafsaoui1,�, Denis Collange2, and Guillaume Urvoy-Keller1

1 Eurecom, Sophia-Antipolis, France
{aymen.hafsaoui, guillaume.urvoy}@eurecom.fr

2 Orange Labs, Sophia-Antipolis, France
denis.collange@orange-ftgroup.com

Abstract. Performance of short TCP transfers, e.g., Web browsing, has
a direct impact on the way users perceive the health of their Internet
access. It is a common belief that TCP performs better with large than
with short transfers, as the latters are more likely to time-out and their
duration is dominated by the RTT.

In this paper, we revisit the performance of short TCP transfers. We
highlight the interplay between TCP and the application on top. We show
that while losses can have a detrimental impact on short TCP transfers,
the application significantly affects the transfer time of almost all short
- and even long - flows in a variety of way. Indeed, the application can
induce extremely large tear-down times and it can also slow the rate of
actual TCP transfers or affect the ability of TCP to recover using Fast
Retransmit/Fast Recovery. We illustrate our findings using several traces
from realistic networks including DSL, wireless hotspot and a research
lab traffic.

Keywords: TCP, passive measurements, short transfers, application
impact.

1 Introduction

TCP is the dominant transport protocol currently implemented in the Internet
and responsible of the majority of packets and flows sent. Recent measurement
studies show that TCP accounts for 60% to 90% of today’s Internet traffic [1].
It is used by a large range of applications, including web, email, peer-to-peer file
sharing and the newly emerging trend of YouTube-like media streaming.

A large majority of TCP flows are short lived, also known as “mice”. Mice
can contribute up to 97% of total number of flows and 6% of global traffic
[2].This phenomenon was attributed to the domination of Internet flows by web
data transfers, which are characterized by short connections. More generally, the
interactive traffic of the end users often corresponds to short TCP transfers and
a change in their performance directly affects the way the user perceives her
Internet access.
� Corresponding author.

L. Fratta et al. (Eds.): NETWORKING 2009, LNCS 5550, pp. 260–273, 2009.
c© IFIP International Federation for Information Processing 2009

Revisiting the Performance of Short TCP Transfers 261

A closer look at TCP loss recovery mechanisms brings to light some phenom-
ena which can badly impact short connections. TCP detects and recovers from
losses using two basic types of mechanisms: retransmissions timeouts (RTO) and
fast retransmit/recovery (FR/R). Normally, a sender must receive at least three
duplicate acknowledgments (ACKs) before it triggers a fast retransmit [3]. Short
flows in the slow start phase often do not have a congestion window large enough
to generate three duplicate ACKs, making timeouts the only loss recovery mech-
anism available to a TCP sender.

Given the above statements, a commonly used definition for a short TCP
transfer is a transfer that can not rely on FR/R to recover from a loss. We
will use this definition as a starting point and show that the emergence of new
mechanisms to speed up short transfers, like Limited Transmit [3] and larger
initial congestion window [4] prevents the derivation of a universal threshold in
number of packets.

The main contribution of this paper lies in the study of the interplay between
TCP and the application on top of it. Indeed, the application can slow down a TCP
transfer by: (i) being stalled waiting for data to be crafted by back-end servers
or from the end user, (ii) shaping the traffic to a specific rate, or (ii) delaying the
closing of the transfer. In addition, the application can worsen the impact of losses
by preventing TCP from sending large enough bursts of packets. We adopt an
application agnostic approach, i.e., we do not make any assumption on the way the
application is working, to develop a set of techniques that delineate the impact of
the application from other causes that explain a given transfer duration, including
the data transfer itself and the recovery time if any.

We rely on a passive study of more than 35,000 TCP connections to assess the
impact of the application and the recovery mechanisms of TCP. Those connec-
tions originate from a variety of environments: one trace from an ADSL platform
of a European ISP collected in 2005, one wireless trace from a public hotspot
captured in Portland in 2007 (publicly available on Crawdad [5]) and one trace
from a research lab (Eurecom) collected in 2008.

Overall, we find that while losses can significantly impact the performance
of short TCP transfers, only a small fraction of the short flows actually experi-
ence losses. In contrast, the application tends to affect the vast majority of the
transfers, resulting in a significant drop of performance as compared to a TCP
transfers where all the bytes to be sent are present in the application buffer at
the onset of the transfer.

The reminder of the paper is organized as follows: related work is reviewed in
Section 2. We present the main characteristics of the traces we used in Section 3.
Section 4 reports on how to identify short TCP connections. In Section 5, we
focus on the many different ways an application can impact a TCP transfer.
Finally, Section 6 concludes the paper.

2 Related Work

The study of short TCP connections, a.k.a mice, has been the focus of several
studies over the past two decades. The exact definition of a short transfer varies

262 A. Hafsaoui, D. Collange, and G. Urvoy-Keller

from one publication to the other. Some works rely on a fixed threshold: 10
KB [6],[7], which corresponds to 7 segments with a typical maximum segment
size (MSS) of 1460 bytes, 13.5 KB in [8], i.e., 9 segments, or 32 KB [9], which
is chosen equal to the median size of HTTP responses with status code 200
(indicates that the client request was successfully received). In [2] authors define
short connection as data transfer comprising a number of packets less than or
equal to 20 packets, assuming that the maximum congestion size is 8 KB and
delayed acknowledgment is turned off. Unlike previous studies, the authors in
[10],[11] define short transfers as connections that never leave the slow start
phase of TCP.

Modeling short TCP transfers latency has received considerable attention.
Several approaches have been proposed that take into account RTT estimation
and losses impact. In [7] Cardwell et al. compare analytic models to understand
how well several TCP performance models fit TCP behavior under realistic loss
rate in the Internet. They propose a first model when the loss rate is zero. When
the loss rate is strictly positive, they adapt the model based on the well-known
TCP throughput formula of [12] to the case of short flows. In [8], a recursive
analytical model is proposed to predict the TCP performance of short lived flow
in the presence of losses. Completion time is computed using the connection
establishment time and the duration of previous data transfers.

More recently, the authors in [9] investigated the use of short transfers la-
tency prediction techniques based on the TCP throughput formula proposed
in [7] and historical observations, being done at the server end. They demon-
strated using real traces that prediction based on previous transfers system-
atically outperforms the analytical approach. Hence, they propose an hybrid
approach: an equation based estimation for the first-contact transfer and a
smoothed mean of the client previous bandwidths for subsequent transfers.

Few works have focused on the interplay between the transport and the appli-
cation layers. In [13], the authors analyze passively captured TCP connections
of more than 128 packets. They propose a technique to break each connection
into time intervals where the application explains the transfer rate or not, based
on the silences and also the rate of PUSH flags observed. In contrast, we focus
on small transfers and provide a deeper analysis of the impact of the application
on the transfer time (Section 5.2) and also on the impact of the application on
the recovery mechanisms of TCP (Section 5.1).

3 Data Sets

Table 1 summarizes the main characteristics of the packet level traces used
in this paper. These traces were collected from several different environments:
the network of a DSL ISP, a wireless hotspot in Portland and a research lab
(Eurecom). Those traces are interesting because of their diversity in terms of
access technology and also in terms of applications. For instance, p2p transfers
are banned from the Eurecom network while it represents a large fraction of the
bytes for the DSL trace. A wireless hotspot should differ from a DSL network

Revisiting the Performance of Short TCP Transfers 263

Table 1. Trace description

Capture Duration No. of Well-behaved Size Size
day connection connection connection in MB in packets

ADSL 2005-05-31 1 min and 29 s 37790 5873 357.51 743683

Portland 2007-09-14 2 h and 20 min 5051 3798 174.13 352569
Hotspot

Research 2008-10-20 1 h and 1 min 32153 26837 1567.42 2867321
Lab

in that users tend to focus more on interactive application in such environment
and tend to refrain themselves from generating large transfers, e.g. application
updates or p2p transfers.

3.1 Well-Behaved connections

While analyzing the performance of TCP transfers, we focused on the connec-
tions that correspond to valid and complete transfers. Specifically, well-behaved
TCP connections must fulfill the following conditions: (i) A complete three-way
handshake; (ii) At least one TCP data segment in each direction; (iii) The con-
nection must finish either with a FIN or RESET flag.

When applying the above heuristics, we are left with a total of over 35,000
TCP connections when summing over the three traces (detailed values are given
in Table 1). The DSL trace is the one offering the smallest fraction of well-
behaved connections, 5873 over 37,790, because of a large number of unidirec-
tional transfers (SYN without a reply). P2p applications tend to generate such
abnormal connections (contacting a non available p2p server to download a con-
tent), as well as malicious activities.

Figure 1 depicts the cumulative distribution of well-behaved connection size
using bytes and data packets of the 3 traces. We observe that the Eurecom

102 104 106 108
0

0.2

0.4

0.6

0.8

1

Connection Size

C
D

F ADSL
Portland
Eurecom

(a) Size in Bytes

100 101 102 103 104 105
0

0.2

0.4

0.6

0.8

1

Connection size

C
D

F ADSL
Portland
Eurecom

(b) Size in Packets

Fig. 1. Trace characteristics

264 A. Hafsaoui, D. Collange, and G. Urvoy-Keller

and Portland traces offer a similar connection profile that significantly differs
from the DSL trace. For instance, 65% of the DSL connections are less than
1 Kbytes and 25% are between 1 Kbytes and 1 Mbytes, unlike Portland and
Eurecom traffic which offers larger values at similar connection percentiles. A
reason behind this obervation is the small duration of the DSL trace. However,
our focus is on short transfers, and from this perspective, the DSL trace offers
valuable information.

When focusing on the performance of TCP transfers, the number of data
packets to be transferred is a key element to consider. We can already observe
from Figure 1 that irrespectively of the trace, a significant portion of connections
(between 53% and 65%) have less than 7 data packets.

4 Short Transfers

4.1 Definition

In this section we introduce a first definition of a short TCP connection, which
is commonly used in the literature.

A short TCP connection is a connection unable to perform fast retransmit/
recovery (FR/R), after a packet loss detection.

While simple, the above definition does not lead to a unique threshold value
in terms of number of data packets for a short TCP transfer. Indeed, various
TCP implementations and connection characteristics can affect this definition:
the initial congestion window, the use of delayed ACK, the number of duplicate
acks that triggers a FR/R. For instance, Windows Vista implements Limited
Transmit, which means that only 2 duplicate ACKs are enough to trigger a fast
retransmit. We estimated for the 3 traces, the number of segments observed in
a duration equal to one RTT after the sending of the first data packet, and this
for each direction - see Table 2. The obtained value provides a lower bound on
the initial congestion window that the transport uses as the application may
not provide TCP with enough data to send at the beginning of the transfer.
This is especially true for the initiator side in the case of Web transfer where
the GET might fit in a single data packet. Overall, we observe that values of 1
and 2 MSS (and possibly higher values) seem to be common initial congestion
windows. Initial congestion windows larger than 2 MSS (we observed values
up to 12 MSS) might be due to specific optimizations of operating systems
that cache TCP level variables of previous transfers for a few minutes — see
http://www.csm.ornl.gov/~dunigan/netperf/auto.html.

Given the estimated initial congestion window of Table 2, we report in
Table 3 the main scenarios we focus on to find the threshold in terms of number
of data packets that triggers a FR/R. A short connection is thus, for each sce-
nario, one with a number of packets strictly smaller than the threshold. Those
scenarios cover, to the best of our knowledge, all the most commonly encountered
cases.

http://www.csm.ornl.gov/~dunigan/netperf/auto.html

Revisiting the Performance of Short TCP Transfers 265

Table 2. Estimated initial congestion window

Trace Initiator Remote party

1 pkt 2 pkts > 2 pkts 1 pkt 2 pkts > 2 pkts

DSL 99% 1% 0% 80% 18% 2%

Portland 82% 17% 1% 64% 24% 2%

Eurecom 90% 10% 0% 65% 24% 1%

Table 3. Minimum connection size to perform fast retransmit/recovery

Scenario 1 Scenario 2 Scenario 3 Scenario 4

initial cwnd 1 1 2 2

Delayed ACK no yes yes yes

Duplicate ACK 3 3 3 2

Minimum connection 7 9 8 7
size (data packets)

Based on the results presented in Table 3, we observe that:

– Different scenarios lead to different thresholds, from 7 to 9 data packets;
– A connection size with less than 7 data packets can not recover from packet

loss using FR/R, whatever the exact scenario is;
– When considering a given scenario and a connection whose size is one packet

over the threshold, we observe that this connection is able to perform a FR/R
for only a single packet in its last round. The loss of any other packet will
lead to timeout. A connection is thus not always able to perform FR/R if it
is over the threshold.

Based on the result obtained from this section, we adopt a first definition of
a short TCP transfer as a connection of size less than 7 data packets. This
definition, while simple, relies on the implicit hypothesis that the application
on top of TCP does not impact the way TCP sends packets. As we will see
in Section 5, this assumption can be too strong in practice, as even long TCP
transfers can be divided into short bursts (due to the application on top) that
prevent TCP from relying on FR/R in case of losses.

4.2 Transfer Time Break-Down

To understand the factors that affect the performance of TCP transfers, we rely
on the following decomposition of each transfer into 3 different phases:

Set-up time. This is the time between the first control packet and the first
data packet. Since we consider only transfers which have performed a complete
three-way handshake, the first packet is a SYN packet while the last one is a
pure ACK in general. The connection set-up time is highly correlated to the
RTT of the connection. For the three traces we consider, we have a correlation

266 A. Hafsaoui, D. Collange, and G. Urvoy-Keller

coefficient of 70% for the DSL trace, 60% for the Portland trace, and 39% for
the Eurecom trace.

Data transfer time. This is the time between the first and the last data packet
observed in the connection. Note that it includes loss recovery durations, if any.

Tear-down time. This is the time between the last data packet and the last
control packet of the connection. We impose, as explained in Section 3.1, that at
least one FIN or one RESET be observed, but there can be multiple combinations
of those flags at the end of the transfer. Unlike set-up, tear down is not only a
function of the RTT of the connection, but also a function of the application
on top of TCP. For instance, the default setting of an Apache Web server is
to allow persistent connection but with a keep alive timer of 15 seconds, which
means that if the user does not post a new GET request after 15 seconds, the
connection is closed. A consequence of the relation between the tear-down time
and the application is a weak correlation between tear-down times and RTT
in our traces: 40% for the DSL trace (which is still quite high), 0.7% for the
Portland trace, and -2% for the Eurecom trace.

Using the above decomposition, we analyze, in the remaining of this article,
the impact of losses (Section 4.3) and also of the application (Section 5) on the
data transfer time.

4.3 Recovery Time

As explained above, the data transfer time possibly includes loss events. We
estimate the time spent by TCP in recovering from losses using the recovery
time. Specifically, for a given transfer, each time the sequence number in the
stream of data packet decreases, we record the duration between this event
and the observation of the first data packet whose sequence number is larger
than the largest observed sequence number seen so far. For instance, assuming
that we associate a unique sequence number to each packet, if we observe the
sequence 1,2,3,4,7,6,5,6,8, we will record the duration between packet 7 and
packet 8. This duration is added to the recovery time of the transfer. To filter out
reorderings that occur at the network layer, we discard each recovery time smaller
than one RTT. Rewaskar et al. [14] developed algorithms to assess whether an
observed loss event can be attributed to a time-out or a FR/R. We were not
able to use this technique as it requires to perform a passive OS finger printing
of the sender of the data. However, in our traces, most losses occurred in the
data stream issued by the remote party and not the local clients. While p0f
(http://lcamtuf.coredump.cx/p0f.shtml), which is recommended in [14], is
effective when used on SYN packets, it fails when working on SYN/ACK packets,
which limits the applicability of the techniques proposed in [14].

Figure 2 presents the break-down of the small and large TCP transfers for
the three traces. We first observe from Figure 2 that while set-up durations
are consistently small for all traces and transfer sizes, tear-down take very high
values, between 2.5 and 27.5 seconds on average. The tear-down phase in itself
often represents the majority of the connection time. Note however, that the

http://lcamtuf.coredump.cx/p0f.shtml

Revisiting the Performance of Short TCP Transfers 267

Short transfers Large transfers
0

10

20

30

40

Eurecom

T
im

e
s
 (

s
e

c
o

n
d

s
) Set−up

Data

Recovery

Cond. recovery

Tear−down

(a) Eurecom

Short transfers Large transfers
0

10

20

30

Portland

T
i
m

e
 (

s
e
c
o
n
d
s
)

Set−up

Data

Recovery

Cond. recovery

Tear−down

(b) Portland

Short transfers Large transfers
0

5

10

15

20

25

30

ADSL

T
i
m

e
 (

s
e
c
o
n
d
s
)

Set−up

Data

Recovery

Cond. recovery

Tear−down

(c) ADSL

Fig. 2. Transfer time break-down

tear-down time should have no impact on the performance perceived from the
application on top as the data transfer is completed.

As for losses, we present two distinct values for the recovery time: the average
conditional recovery time and the average recovery time. The latter is computed
over all transfers of the category while the former is computed only for the trans-
fers that experience at least one recovery event. Since only a small fraction of the
transfers experience losses (9.4% for DSL trace, 13.2% for Portland and 6.8% for
Eurecom), the average conditional recovery time is often much larger than the
average transfer time. This impact is clearly more pronounced for small than for
large flows, over the three traces, most probably because of the predominance
of time-outs for short transfers.

5 Application Impact

In this section, we are interested in assessing the impact of the application on
the transfer time of a TCP connection. There are many ways by which the ap-
plication can influence the pace at which data flows in a network. First, the user

268 A. Hafsaoui, D. Collange, and G. Urvoy-Keller

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Connection size (data packets)

N
b

pu
sh

 f
la

gs
/ N

b
da

ta
 p

ac
ke

ts

ADSL
Portland
Eurecom

Fig. 3. Conditional ratio of push flags

might be involved in the transfer, as the case in a persistent HTTP connection,
where the download of a new page is triggered by an HTTP Get message is-
sued by the client browser. Second, the application might cap the rate at which
information is sent to the TCP layer. This is typically what p2p applications
do to limit the congestion on the uplink of the user. A third possibility is when
the generation of data is done online. For instance, when querying Google for a
specific keyword, several tens of machines are involved in this operation.

From the above discussion, we observe that the application may affect the
transfer of data in many different ways. A first simple assessment that can be
made to infer the impact of the application on a TCP transfer is to compute the
fraction of packets with PUSH flags. The PUSH flag is a way for the application
to specify that it has no more bytes to send at the moment and the current
segment can be sent. We plot in Figure 3 the ratio of PUSH flags as a function
of the transfer size for the three traces. We observe that the impact of application
as captured by the PUSH flags decreases with increasing transfer size. For the
short connections, the push flag ratio is extremely high, between 74% and 86%.

In the remaining of this section, we want to assess in more details the way the
application influence the transfer time. We will first show that the application
tends to fragment the transfer in small flights of packets that prevent TCP from
relying on FR/R in cases of losses. In a second stage, we focus on the way the
application forces TCP to pace the data.

5.1 Synchronism and Losses

For client/server applications, one often observes that even if the server is send-
ing a large amount of bytes/packets, the actual exchange is fragmented: the server
sends a few packets (hereafter called a train of packets), then waits for the client
to post another request and then sends its next answer. If such a behavior is pre-
dominant in TCP transfers, it can have a detrimental impact if ever the train size
is too small as it might prevent TCP from performing FR/R in cases of losses.

The question we raise is thus: are the two parties involved in a transfer syn-
chronized or not? Proving synchronism requires an a priori knowledge of the
application semantics. We can however prove that the synchronism hypothesis

Revisiting the Performance of Short TCP Transfers 269

cannot be rejected as follows: for a given transfer, each time we observe a transi-
tion from one side sending packets, say A, to the other side sending packets, say
B, we observe if the first packet from B acknowledges the reception of the last
packet from A. If this is not the case, then there is no synchronism, otherwise,
synchronism can not be rejected. Applying this methodology to the three traces,
we obtained that for each trace, the fraction of connections for which synchro-
nism could not be rejected was extremely high: 88.6% for the ADSL trace, 94.4%
for the Portland trace and 95.3% for the Eurecom trace.

10
0

10
1

10
2

10
30

0.2

0.4

0.6

0.8

1

Train Size − ADSL

C
D

F Initiator

Remote party

10
0

10
1

10
2

10
3

10
40

0.2

0.4

0.6

0.8

1

Train size (Portland− Hotspot)

C
D

F

Initiator

Remote party

10
0

10
1

10
2

10
3

10
4

10
50

0.2

0.4

0.6

0.8

1

Train size (Eurecom)

C
D

F

Initiator

Remote party

Fig. 4. Cumulative distribution of transmitted size blocs

For the connections for which synchronism could not be rejected, we looked
at the distribution of the size of the trains of packets sent. We distinguished
between the initiator of the connection and the remote party, as we expect the
latter to be some kind of server that usually sends larger amount of packets than
the former that simply posts requests. As illustrated by Figure 4:

– Trains size sent by the remote part are larger than those sent by the initiator,
in line with our hypothesis that the remote party be a server;

– More than 97% of initiator trains are less than 3 data packets, which leaves
TCP unable to trigger any Fast Retransmit, even if Limited Transmit is
used;

270 A. Hafsaoui, D. Collange, and G. Urvoy-Keller

– More than 75% of remote party trains are less than 3 data packets, which
again leaves TCP unable to trigger the fast recovery/retransmit, even if
Limited Transmit is used.

Taking a broader perspective, the fraction of connections that have a maximum
train size of 3 packets is 85.2% for the DSL trace, 40.5% for the Portland trace
and 54% for the Eurecom trace. Sizes of those connections remain quite in line
with our definition of Section 4.1 as about 87% of those Eurecom and Portland
connections have less than 7 packets. It falls to 62% for the DSL trace. For all
3 traces, we observe the vast majority (over 97%) of those connections have less
than 20 packets.

5.2 Data Pacing

In this section, we focus on the transfers that obey to the definition of synchro-
nism introduced in the previous section. For those transfers, we want to assess
how the application1 slows down the actual data transfer. To do so, we term A
and B the two parties involved in the transfer (A is the initiator of the trans-
fer) and we break down the data transfer times into a set of components (see
Figure 5):

– T i
train time(A): time needed to transfer the i-th train of the initiator;

– T i
train time(B): is the time needed to transfer the remote party data train;

– T i
warm-up(A): time between receiving the last data packet from B and sending

train i. The warm-up accounts either for the user thinking time or for some
latency to generate the data at the server side for instance;

– T i
warm-up(B): time between receiving the last data packet from A and sending

train i.

Note that to obtain accurate estimates of those durations that are related to
the sender or receiver side, we have to shift in time the time-series of packets
received at the probe. Specifically, we assume that a packet received from A at
probe P was sent RTTP−A

2 in the past and will be received RTTP −B

2 in the future,
where RTTP−A (resp. RTTP−B) is the RTT between P and A (resp. B) . While
doing this operation, we assume that the RTT of the transfer stays constant.

The above breakdown strategy results in a complete partition of the total
transfer time. The application can impact both warm-up and train times. Con-
cerning train times, we sum for each party, A or B, the total train times, from
which we substract the recovery times if any. We term those values Ttrain time(A)
and Ttrain time(B). We also record the total number of distinct data packets sent
by A or B. We next compute the duration that an ideal TCP layer with an
initial congestion of 1, delayed acknowledgment turned on, an infinite capacity,
an RTT equal to RTTA−B and the same number of packets to send as A or
B would take to complete the transmission of all those packets. We term those
duration Ttheory(A) and Ttheory(B). The difference between theoretical quantities

1 We consider the application in a broad sense, including the user interactions.

Revisiting the Performance of Short TCP Transfers 271

Fig. 5. Connections data time

0

0.5

1

1.5

2

2.5

Portland Hotspot − Short transfers

T
im

e
(S

ec
on

ds
)

Pacing−A
Warm−up−B

Pacing−B

Warm−up−A

Theory −B
Theory−A 0

10

20

30

40

Portland Hotspot − Large transfers

T
im

e
(S

ec
on

ds
)

Warm−up−B

Pacing−B

Pacing−A

Warm−up−A

Theory−B Theory−A

Fig. 6. Application impact for the Portland trace

and the total train time, Ttrain time(A) − Ttheory(A) and Ttrain time(B) − Ttheory(B),
represent estimates of the delay introduced by the application on top of TCP.
We term them as pacing times in the remaining of this section.

Figure 6 presents the result of applying the above methodology to the Portland
trace. The two other traces offer qualitatively similar results. We observe when
looking at Figure 6 that the warm up time of A (initiator) and the pacing
time of B (remote party) represent the largest shares of the train time of A
and B respectively. A possible explanation behind this observation is that the
“average” connection features characteristics close to a client/server application
with a large thinking-time of the user, that leads to large warm-up values for
A, and a server whose rate is limited either by some back-end server or the use
of a rate policy. A precise assessment of the causes behind those phenomena
clearly calls for more advanced studies, that we leave for future work. For the

272 A. Hafsaoui, D. Collange, and G. Urvoy-Keller

time being, the major lesson learned from this study is that the application slow
down most transfers in many different ways and this impact is observable for
both small and large transfers. This is somehow in contrast to losses, which can
have a more detrimental impact, but only for a minority of transfers.

6 Conclusion

In this paper, we have analyzed on three different traffic traces the performance
limitations of short and of interactive TCP transfers.

Short transfers sending less than seven packets are not able to apply Fast
Retransmit. Thus, they are really sensitive to loss events in the network. These
short transfers represent the majority of transfers. We have also observed very
long tear-down delays, between the last data packet of the connection and the
last control packet. This tear-down delay does not influence the user perception,
but it may affect the measurement of response times of short transfers in network
management functions.

The sensitivity to loss concerns also many long transfers as many of them are
a sequence of alternate exchanges and the vast majority of these bursts are less
than 3 packets. Such a feature has a direct influence on the ability of TCP to
recover from a loss using Fast Retransmit.

We have also highlighted that the delay to transfer a burst is usually much
larger than the pure transmission time. Causes behind these slow downs can be
found at the sender, e.g., rate shaping, and also at the receiver side, e.g., thinking
time. To the best of our knowledge, this work is the first of its kind to pinpoint
and quantify the impact of the application on top of TCP. An important lesson
learned from this study is that while losses can have a highly detrimental impact
on the transfer times, losses occur in fact (and hopefully) very rarely. In contrast,
the application affects almost all flows and leads to a substantial slow down of
the transfers.

References

1. Fomenkov, M., Keys, K., Moore, D., Claffy, K.: Longitudinal study of Internet
traffic in 1998-2003. Technical Report, Cooperative Association for Internet Data
Analysis CAIDA (2003)

2. Ben Azzouna, N., Guillemin, F.: Analysis of ADSL traffic on an IP backbone link.
In: IEEE GLOBECOM, San Francisco (2003)

3. Allman, M., Balakrishnan, H., Floyd, S.: Enhancing TCP’s Loss Recovery Using
Limited Transmit. RFC:3042 (2001)

4. Allman, M., Floyd, S., Partridge, C.: Increasing TCP’s Initial Window. RFC:3390
(2002)

5. Kotz, D., Henderson, T., Abyzov, I.: CRAWDAD data set dartmouth/campus,
http://crawdad.cs.dartmouth.edu

6. Ayesta, U., Avrachenkov, K.: The Effect of the Initial Window Size and Limited
Transmit Algorithm on the Transient Behavior of TCP Transfers. ITC-SS15, Ger-
many, Wuerzburg (2002)

http://crawdad.cs.dartmouth.edu

Revisiting the Performance of Short TCP Transfers 273

7. Cardwell, N., Savage, S., Anderson, T.: Modeling TCP Latency. In: IEEE INFO-
COM, Tel-Aviv (2000)

8. Melia, M., Stoica, I., Zhang, H.: TCP Model for short lived flows. IEEE Commu-
nications Letters (2003)

9. Arlitt, M., Krishnamurthy, B., Mogul, J.C.: Predicting short-transfer latency from
TCP arcana: A trace-based validation. In: ACM SIGCOMM, Philadelphia (2005)

10. Ebrahim-Taghizadeh, S., Helmy, A., Gupta, S.: CP vs. TCP: a Systematic Study
of adverse Impact of Short-lived TCP Flows on Long-lived TCP Flows. In: IEEE
INFOCOM, Miami (2005)

11. Barakat, C., Altman, E.: Performance of short TCP transfers. In: NETWORKING,
Paris (2000)

12. Padhye, J., Firoiu, V., Towsley, D., Kurose, J.: Modeling TCP Throughput: A Sim-
ple Model and its Empirical Validation. In: ACM SIGCOMM, Vancouver (1998)

13. Siekkinen, M., Urvoy-Keller, G., Biersack, E.W.: On the interaction between in-
ternet applications and TCP. ITC-20, Ottawa (2007)

14. Rewaskar, S., Kaur, J., Smith, F.D.: A Passive State-Machine Approach for Accu-
rate Analysis of TCP Out-of-Sequence Segments. ACM Computer Communication
Review (2006)

	Revisiting the Performance of Short TCP Transfers
	Introduction
	Related Work
	Data Sets
	Well-Behaved connections

	Short Transfers
	Definition
	Transfer Time Break-Down
	Recovery Time

	Application Impact
	Synchronism and Losses
	Data Pacing

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

