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Abstract—Diversity order of linear equalization (LE) is inves-
tigated for the case of linearly precoded block transmission in
doubly selective channels. A connection between the orthogonal
deficiencyod(.) [1] of the effective channel matrix at the receiver
and an earlier proof that LE achieves full diversity in frequency
selective channels [2] is highlighted. For doubly selective channels
it is argued that od of the channel matrix at the receiver shares
the same upper bound as that of a closely related matrix for
which an od bound is derived. Finally, simulation results are
provided to substantiate all arguments made in the paper.

I. I NTRODUCTION

Fading channels pose a major challenge to reliable com-
munications, particularly over wireless channels. At the re-
ceiver, an equalization technique that optimally exploitsthe
inherent diversity in fading channels is a convenient counter-
measure against fading channels. Frequency selective fading
provides multipath diversity due to the presence of multiple
independently fading components. In block transmission sys-
tems, when the channel coherence time is shorter than the
transmit block length, temporal variations of the channel give
rise to time-selectivity. However, this same time-selectivity
of the channel also provides Doppler diversity [3] which
can be exploited by the receiver. Linear Equalization (LE)
is a low-complexity albeit sub-optimal alternative to optimal
maximum-likelihood equalization (MLE). Recent research has
concentrated on quantifying the performance of diversity order
of LE in fading channels. While the diversity order of LE
for transmission over frequency selective channels has been
studied in [4], the diversity order of LE in time-selective and
doubly selective channels is less understood. In [5], the authors
used the Complex-Exponential Basis Expansion Model (CE-
BEM) [6] with Q + 1 basis functions to model the doubly
selective channel of memoryL. The authors showed that by
employing linear precoded block transmission, the maximum
diversity in the channel is upper bounded by(Q + 1)(L + 1)
and can be achieved when maximum-likelihood decoding is
used at the receiver. However, ML incurs a huge computational
complexity therefore it is of interest to investigate the diversity
order achieved by linear equalization for block transmission
over doubly selective channels. In this paper, we study the
performance of linear minimum mean squared error zero
forcing (MMSE-ZF) receivers for linearly precoded block
transmission in doubly selective channels and show that LE

also achieves maximal diversity offered by doubly selective
channels with the same precoder that enables MLE to achieve
multiplicative multipath-Doppler diversity.

II. SIGNAL MODEL

In Fig. 1 we show the block diagram of the transmission
model for block transmission over fading channels.

s[i] ŝ[i]
Parser Θ

s[k] x[k] y[k]
hi,l Equalizer

Fig. 1. Block diagram of transmission model.

At the transmitter, complex data symbolss[i] are first parsed
into length-N blocks. Then-th symbol in thek-th block is
given by [s[k]]n = s[kN + n] with n ∈ (0, 1, ..., N − 1).
Each blocks[k] is precoded by aM × N matrix Θ where
M ≥ N and the resultant blockx[k] is transmitted over the
block fading channel. In the signal model, we consider the case
of doubly-selective channels of orderL. Frequency-selective-
only and time-selective-only channels can be represented as
special cases of doubly selective channels. It is well known
that the temporal variation of the channel taps in doubly
selective channels with a finite Doppler spread over a finite
duration can be captured by finite Fourier bases. We therefore
use CE-BEM [6] withQ+1 basis functions to model the time
variation of each tap in a block duration. The basis coefficients
remain constant for the block duration but are allowed to
vary with every block. The time-varying channel for each
block transmission is thus completely described by theQ + 1
Fourier basis functions and(Q + 1)(L + 1) coefficients. In
generalQ is chosen such thatQ ≥ 2⌈fmaxMTs⌉ where1/Ts

is the sampling frequency andfmax is the Doppler spread
of the channel. The coefficients themselves are assumed to
be zero-mean complexi.i.d Gaussian random variables. This
is a reasonable assumption for a rich scattering environment
with non-line-of-sight reception. Usingi as the discrete time
(sample) index, we can represent thel-th tap of the channel
in the k-th block

hi,l =

Q∑

q=0

hq(k, l)ej2πfqi, (1)



l ∈ [0, L], fq = (q−Q/2)/M . The corresponding receive sig-
nal is formed by collectingM samples at the receiver to form
y[k] = [y(kM +0), y(kM +1), . . . , y(kM +M −1)]T . When
M ≥ L, this block transmission system can be represented in
matrix-vector notation as [5]

y[k] = H[k; 0]Θs[k] + H[k; 1]Θs[k − 1] + v[k], (2)

where v[k] is a AWGN vector whose entries have zero-
mean and varianceσ2

v and is defined in the same way
as y[k]. H[k; 0] and H[k; 1] are M × M matrices whose
entries are given by[H[k; t]]r,s = h(kM+r,tM+r−s) with
t ∈ (0, 1) and r, s ∈ (0, ..., M − 1). Defining D[fq]
as a diagonal matrix whose diagonal entries are given by
[D[fq]]m,m = ej2πfqm, m ∈ (0, 1, ..., M − 1), and further
defining[Hq[k; t]]r,s = hq(k, tM +r−s) as Toeplitz matrices
formed of BEM coefficients, it is straightforward to represent
Eq. (2) as

y[k] =

1∑

t=0

Q∑

q=0

D[fq]Hq[k; t]Θs[k − t] + v[k] (3)

III. D IVERSITY ORDER OF LINEAR EQUALIZERS

A. Frequency selective channel

Consider the case of zero-padded (ZP) block transmission
of time-domain symbol vectors[k] in a frequency selective
channel of orderL. Such a scheme involves paddings[k] with
M − N ≥ L zero symbols before transmission over the fre-
quency selective channel. In other words, the precoding matrix
Θ = [IN 0N×(M−N)]

T . Since the frequency selective channel
is a special case of a doubly selective channel corresponding
to Q = 0, we can drop the subscriptq in the received signal
representation and rewrite Eq. (3) as

y[k] = H0[k; 0]Θs[k] + H0[k; 1]Θs[k − 1] + v[k] (4)

In general, sinceM > L, the delay spread of the channel
introduces inter-block-interference (IBI) at the receiver and is
represented by the second term on the RHS of Eq. (4).H0[k; 1]
is a strictly upper-triangular matrix with non-zero elements in
only the lastM −L columns of the matrix. Zero-padding has
the desirable effect of setting IBI to zero sinceH0[k; 1]Θ = 0
and the received signal can therefore be expressed as

y[k] = H[k]s[k] + v[k]. (5)

where H[k] = H0[k; 0]Θ, the effective channel seen at
the receiver due to zero-padding (in general, precoding)
at the transmitter, is aM × N Toeplitz matrix with
[h0(k, 0), h0(k, 1), ..., h0(k, L),01×M−L−1]

T as its first col-
umn. The linear estimate for the symbols of thekth received
block is then given by the MMSE-ZF equalizer

G
MMSE−ZF = (HH [k]H[k])−1H

H [k]. (6)

in what follows, we shall simplify the notation ofH[k] = H.

1) Diversity order of LE: In [1] the authors introduce
a metric namely the orthogonality deficiency (od) of the
equivalent channel matrixod(H) at the receiver and prove
that LE can achieve the same diversity as MLE if there exits
0 < ν < 1 such that

od(H) < 1 − ν (7)

For the case of ZP transmission in frequency selective chan-
nels, the Toeplitz structure ofH ensures thatdet(HH

H) > 0.
Our interest lies in finding a lower bound for this value.
Here we use well known concepts from linear prediction
theory to provide an upper bound forod(H) and prove
that od(H) is bounded strictly below 1. Consider the linear
prediction problem of a stationary process with covariance
matrix (HH

H) and spectrum|H(f)|2 given by

H(f) =
L∑

l=0

h(l)e−j2πfl, (8)

‖h‖2

2
=

∫ +1/2

−1/2

|H(f)|2df . (9)

Then, (HH
H) can be factorized asLDL H , where L is a

lower-triangular matrix with unit diagonal andD is a diagonal
matrix whosenth diagonal element, denoted byσ2

n corre-
sponds to the(n− 1)th order prediction error variance of this
process. In the limiting case, we have

lim
N→∞

(det(HH
H))1/N =

(
N−1∏

n=0

σ2
n

)1/N

→ σ2
∞

, (10)

where the infinite order prediction error varianceσ2

∞
is related

to the spectrum|H(f)|2 [7] as

σ2

∞
= exp

(∫ +1/2

−1/2

ln |H(f)|2df

)
=

|H(f)|2

|P (f)|2
, (11)

whereP (f) is the monic minimum phase equivalent ofH(f)
and is given by

P (f) = 1 +

L∑

l=1

ple
−j2πfl (12)

Due to the fact that minimum phase filter coefficients are
bounded, it was shown in [8] that

‖p‖2

2
=

∫ +1/2

−1/2

|P (f)|2df = (1 +

L∑

l=1

p2
l ) ≤ cL =

L∑

l=0

(
l

L

)2

.

(13)
From Eq. (11) and Eq. (13), we have

σ2

∞
=

‖h‖2

2

‖p‖2

2

≥
‖h‖2

2

cL

. (14)

From Eq. (14), Eq. (10) and the definition of orthogonal
deficiency in [1] we have

od(H) = 1 −
det(HH

H)

det(diag(HH
H))

< 1 −

(
1

cL

)N

, (15)

which concludes our proof.



2) Discussion: In [2] it was shown for the first time that
the MMSE-ZF equalizer collects full diversity for linearly
precoded transmission in frequency selective channels by
showing that

‖(HH
H)−1H

H)‖−2 > C ‖h‖2, (16)

where‖.‖ on the LHS of Eq. (16) is the Frobenius norm,h
is the channel impulse response,C is a constant independent
of the channel and is given byC = λmin/(C1N(R + 1)) (cf.
Eq. (18) in [2]) andR = M−N . We show here that Eq. (16) in
fact implies Eq. (7). To demonstrate this, letX = (HH

H).
Since X is positive definite for‖h‖2; so is X−1. From a
straightforward application of the arithmetic-geometricmean
inequality for positive numbers, we have

det(X−1) ≤

(
1

N
tr(X−1)

)N

, (17)

det(X) ≥

(
N

tr(X−1)

)N

(18)

Since‖(HH
H)−1H

H)‖2 = tr(X−1), we have from Eq. (18)
and Eq. (16)

det(X) ≥

(
λmin‖h‖2

C1(R + 1)

)N

(19)

Substituting this in the definition of orthogonal deficiencywe
have

od(H) < 1 −

(
λmin

C1(R + 1)

)N

. (20)

B. Doubly selective channels

We now look at the case of block transmission in doubly
selective channels. The channel is assumed to be of orderL
and the time-variation of each channel tap within a block
is captured byQ + 1 complex-exponential basis functions.
The k-th receive block is then represented as in Eq. (3). The
precoding matrixΘ that we consider here is known to enable
diversity order of(Q + 1)(L + 1) for ML receivers in doubly
selective channels [5] and is given by

Θ = FH

P+Q
T1 ⊗ T2, (21)

whereFP+Q is a(P +Q)-point DFT matrix,T1 = [IP 0P×Q]T ,
T2 = [IK 0K×L]T . P andK are chosen such thatM = (P +
Q)(K + L) andN = PK. The PK-length symbol vector is
defined in the frequency domain. The zero-padding matrixT2

nulls the inter-block-interference component in the received
signal, i.e.,Hq[k; 1]Θs[k − 1] = 0. As a result, the received
block can now be represented as

y[k] =

Q∑

q=0

D[fq]Hq[k; 0]Θs[k] + v[k], (22)

Using standard Kronecker product identities, one can show
that

Hq[k; 0]Θ = FH

P+Q
T1 ⊗ H̃q[k; 0]T2 (23)

whereH̃q[k; 0] is a K + L × K + L Toeplitz matrix formed
by the firstK + L rows and columns ofHq[k; 0]. Eq.(22) can
then be re-written as

y[k] =

Q∑

q=0

D[fq]
(

FH

P+Q
T1 ⊗ H̃q[k; 0]T2

)
s[k] + v[k] (24)

Note that

D[fq] = DP+Q[fq(K + L)] ⊗ DK+L[fq] (25)

Eq. (25) representsD[fq] as Kronecker product of time-
variation over two scales.DP+Q[fq(K + L)] is a sizeP + Q
diagonal matrix withexp(j2πpfq(K +L), p ∈ (0, 1, · · · , P +
Q − 1) on its diagonals and represents time-variation on a
coarse scale (complex-exponentials sampled at sub-sampling
interval of (K + L)Ts) and DK+L[fq] is a diagonal matrix
of sizeK + L with exp(j2πkfq(K + L), k ∈ (0, 1, · · · , K +
L− 1). Using Eq. (25) and standard matrix identities, we can
decompose the received signal as in Eq. (26) whereJ[q] =
J(q−Q/2) andJ is a circulant matrix with[0, 1, 01×P+Q−2]

T

as the first column. Since the matrix(FH

P+Q
⊗ IK+L) has no

effect on the diversity of the doubly selective channel, for
the analysis of the diversity order of MMSE-ZF receiver, the
effective channel matrix can be represented as

Hds[k] =

Q∑

q=0

(JP+Q[q]T1) ⊗ (DK+L[fq]H̃q[k; 0]T2) (28)

Fig. 2 illustrates the structure of the equivalent channel matrix
Hds[k] for this case due to precoding.̄Hq represents the
product matrixDK+L[fq]H̃q[k; 0]. In particular, it is a block-
Toeplitz matrix with constituent blocks which are in turn
formed by the product of a diagonal matrixDK+L[fq] and a
Toeplitz matrix formed by the corresponding BEM coefficients
of the q-th basis function.

Hds[k] =

H̄0 = DK+L[f0]eH0[k; 0]

0

H̄2

H̄1

H̄0

H̄0

H̄1

H̄2

H̄0

H̄1

H̄2

0

0 0

0

0

Fig. 2. Equivalent channel matrix for doubly selective channel.

1) Diversity order of LE in doubly selective channels: We
first consider a closely related matrix̃Hds[k] which is a block
Toeplitz matrix where the constituent blocks are formed by
H̃q[k; 0] (In Fig. 2 this corresponds tōHq = H̃q[k; 0]) Then,

H̃ds[k] =

Q∑

q=0

(JP+Q[q] ⊗ Hc
q[k; 0])(T1 ⊗ T2), (29)

= H̃[k]T (30)



y[k] =

Q∑

q=0

(
(DP+Q[fq(K + L)]FH

P+Q
T1) ⊗ (DK+L[fq]H̃q[k; 0]T2)

)
s[k] + v[k], (26)

y[k] = (FH

P+Q
⊗ IK+L)

Q∑

q=0

(
(JP+Q[q]T1) ⊗ (DK+L[fq]H̃q[k; 0]T2)

)
s[k] + v[k], (27)

whereHc
q[k; 0] is a circulant matrix whose first column is the

same as the first column of̃Hq[k; 0], T = (T1 ⊗ T2). Note
thatH̃ds[k] is block Toeplitz with Toeplitz blocks (BTTB) and
H̃[k] is block circulant with circulant blocks (BCCB) and is
therefore diagonalizable, i.e.,

H̃[k] = (FH

P+Q
⊗ FH

K+L
)D(FP+Q ⊗ FK+L), (31)

whereFK+L is a (K + L)-point DFT matrix,D is a block
diagonal matrix with diagonal matricesD0,D1...DP+Q−1 on
its diagonals. The entries inDp are given by

[Dp]i,i =

Q∑

q=0

L∑

l=0

h(q, l)e−
j2πil
K+L e−

j2πpq
P+Q , (32)

with p ∈ (0, 1, · · · , P + Q − 1) and i ∈ (0, 1, · · · , K +
L − 1). We now introduce the vector of stacked chan-
nel coefficients h[k] = [hT

0 , hT
1 , · · · , hT

Q] with hq =
[hq(k, 0), hq(k, 1), ..., hq(k, L)]T and

V = F̃P+Q ⊗ F̃K+L, (33)

where F̃P+Q corresponds to the first1 + Q/2 and lastQ/2
columns ofFP+Q and F̃K+L corresponds to the firstL + 1
columns ofFK+L. Then D = diag(d) contains the two di-
mensional (2-D) DFT ofh[k], i.e, d := Vh[k]. Thereafter, by
definingF = (FP+Q⊗FK+L)T , andϕ := (φ0, φ1, · · · , φR−1)
as the indices of theR smallest diagonal elements ofd, we
can extend theLemma in [2] for the 2-D case and show that

‖(H̃
H

ds[k](H̃ds[k])−1(H̃
H

ds[k])‖−2 > C ‖h[k]‖2, (34)

Extending the results in Sec. III-A2 above, we can show that

od(H̃ds[k]) < 1 −

(
λmin

C1(R + 1)

)N

, (35)

λmin andC1 are both obtained by a straightforward extension
of [2] and R = M − N . In our case, if we collect the
rows of V corresponding to the indices inϕ in Vϕ, then
λmin = minvarphi(λmin(VH

ϕ Vϕ)), with λmin(.) denoting the
minimum eigenvalue of a matrix and the outer minimization is
over all subsets of(0, 1, · · · , M−1), C = λmin/(C1N(R+1)),
C1 := maxϕ ‖Θϕ‖

2 with R elements,Θϕ being theN × M
matrix obtained by first removing all rows ofF with indices
belonging toϕ, computing the inverse of this square matrix,
and insertingR zero columns at column indices corresponding
to the indices inϕ. The maximization to obtainC1 is done over
all subsets of(0, 1, · · ·M − 1) with R elements.

Furthermore, we can also consider theLDL
H decomposi-

tion of (H̃
H

ds[k]H̃ds[k]) with the nth diagonal element ofD

corresponding this time to the(n−1)th order prediction error
variance of a 2-D stationary process with covariance matrix
(H̃

H

ds[k]H̃ds[k]) and spectrum|H(f1, f2)|
2 given by

H(f1, f2) =

Q∑

q=0

L∑

l=0

h(q, l)e−j2πf1le−j2πf2q, (36)

then asN → ∞,

(det(H̃
H

ds[k](H̃ds[k]))1/N → σ2
∞,2−D, (37)

with

σ2
∞,2−D = exp

(∫ +1/2

−1/2

∫ +1/2

−1/2

ln |H(f1, f2)|
2df1df2

)

(38)
ConsideringH(f1, f2) as a 1-variable polynomial inf2 with
coefficients being polynomials inf1, the following inequalities
in Eq. (39) - Eq. (42) leads us to the expression

od(H̃ds[k]) < 1 −

(
1

cLcQ

)N

(43)

The proof above shows that orthogonal deficiency of the
BTTB matrix related to the effective channel matrixHds[k]
is indeed bounded above by a value strictly less than 1.
Note that due to its dependency ondet(HHH), is related
to the degree of predictability of any of its column based
on the observations of its previous columns. In the case of
H̃ds[k], this amounts to the prediction error variance of a 2-D
stationary process while in the case ofHds[k], this results in
the prediction error variance of a 2-Dnon-stationary process
since the stationarity is destroyed by pre-multiplicationof the
Toeplitz blocks ofHds[k] by the diagonal matrixDK+L[fq]
(consequentlyHH

ds[k]Hds[k] is only a block Toeplitz matrix
and not BTTB). Since stationary processes are known to be
more predictable than non-stationary processes, the orthogonal
deficiency ofod(Hds[k]) will always be lower thanod(H̃ds[k])
and will therefore share the same upper bound. In Table. I we
present a comparison of empirical results for maximum value
of orthogonal deficiency ofHds[k] and H̃ds[k] to corroborate
this argument. The column at the extreme right corresponds
to an analytical upper-bound forod(H̃ds[k]) as in Eq.( 43).
The other two columns correspond to the maximum value of
orthogonal deficiency ofod(Hds[k]) andod(H̃ds[k]) over108

Monte-Carlo realizations of a doubly selective channel with
Q = 2, L = 1 for two different values ofP, K. It is observed
that indeedod(Hds[k]) is slightly lower thanod(H̃ds[k]).



Test Case od(Hds[k]) od(eHds[k]) 1 − ( 1

cLcQ
)N

K = 2, P = 2 0.844300451 0.851578361 0.978938817
K = 4, P = 3 0.999946896 0.999955760 0.999990658

TABLE I
COMPARISON OF ORTHOGONAL DEFICIENCY OFHds AND eHds .

IV. N UMERICAL RESULTS

In this section we provide simulation results to show
that MMSE-ZF receiver achieves full diversity in doubly
selective channels. The diversity order of MMSE-ZF receiver
is estimated based on the slope of the outage probability
curve. Monte-Carlo simulations were carried out for a fixed
transmission rate for different SNR points. The decision-point
SNR for a fixed arbitrary symbol indexn in the k-th symbol
block s[k] was computed as

SNRn =
ρ

[H[k]HH[k]]−1
n,n

, (44)

whereH[k] represents the equivalent channel matrix for the
doubly selective channel andρ is the SNR. When the decision
point SNR was below the SNR required to support the fixed
transmission rate, the channel was declared to be in outage.
The slope of the outage probability curve was then used
as an estimate of the diversity order. In addition to this,
we compare the slope of the MMSE-ZF receiver to that of
the matched filter bound (MFB) which is known to collect
all the available diversity in the channel. In Fig. 3 we plot
the performance of LE for linearly precoded transmission in
doubly selective channel withQ = 2, L = 1, P = 3, K = 4.
The outage probability curve exhibits a slope of(Q+1)(L+1)
which leads us to conclude that LE achieves full diversity
in doubly selective channel when an appropriate diversity
enabling precoder is used at the transmitter.

V. CONCLUSIONS

In this contribution, we showed that linear equalizers collect
full diversity offered by doubly selective channels in the
presence of appropriate precoding. For this case, the maximum
value of orthogonality deficiency of a matrix closely related
to the effective channel matrix at the receiver was shown
to be strictly bounded away from 1. It was argued that
orthogonality deficiency for the channel matrix also sharesthe
same upper bound and hence achieves full diversity with linear
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Fig. 3. Diversity order of LE in doubly selective channel.

equalization. Simulation results were provided and shown to
sustain the arguments made in this paper.
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∫ +1/2

−1/2

∫ +1/2

−1/2

ln |H(f1, f2)|
2df1df2 =

∫ +1/2

−1/2

df2

∫ 1/2

−1/2

ln |H(f1, f2)|
2df1, (39)

≥

∫ +1/2

−1/2

df2
1

cL

ln

∫ +1/2

−1/2

|H(f1, f2)|
2df1, (40)

≥
1

cLcQ

ln

∫ +1/2

−1/2

df2

∫ +1/2

−1/2

|H(f1, f2)|
2df1, (41)

⇒ (det(H̃
H

ds[k](H̃ds[k]))1/N ≥
1

cLcQ

∫ +1/2

−1/2

∫ +1/2

−1/2

|H(f1, f2)|
2df1df2. (42)


