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Abstract—Diversity order of linear equalization (LE) is inves- also achieves maximal diversity offered by doubly selectiv

glgatbeld f0r| thtﬁ CaShe of Ilineirly PreccidedbmtOCk tratrrl]smiStShiD inl channels with the same precoder that enables MLE to achieve
oubly selective channels. A connection between the orthogal i linati ; } ; ;

deficiencyod(.) [1] of the effective channel matrix at the receiver multiplicative multipath-Doppler diversity.
and an earlier proof that LE achieves full diversity in frequency
selective channels [2] is highlighted. For doubly selectavchannels Il. SIGNAL MODEL
it is argued that od of the channel matrix at the receiver shares ) . L
the same upper bound as that of a closely related matrix for N Fig. 1 we show the block diagram of the transmission
which an od bound is derived. Finally, simulation results are model for block transmission over fading channels.
provided to substantiate all arguments made in the paper.
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Fading channels pose a major challenge to reliable com-
munications, particularly over wireless channels. At tee r
ceiver, an equalization technique that optimally expladits
inherent diversity in fading channels is a convenient cesnt At the transmitter, complex data symbelg] are first parsed
measure against fading channels. Frequency selectivegiadnto lengthV blocks. Then-th symbol in thek-th block is
provides multipath diversity due to the presence of mtip@iven by [sk]l, = s[kN + n] with n € (0,1,...,N — 1).
independently fading components. In block transmissics syFach blocks[k] is precoded by a\/ x N matrix © where
tems, when the channel coherence time is shorter than fHe= NN and the resultant block[k] is transmitted over the
transmit block length, temporal variations of the chanrieég Plock fading channel. In the signal model, we consider tiseca
rise to time-selectivity. However, this same time-selgtti of doubly-selective channels of ordér Frequency-selective-
of the channel also provides Doppler diversity [3] whici®nly and time-selective-only channels can be represerged a
can be exploited by the receiver. Linear Equalization (L ecial cases of doubly selective channels. It is well known
is a low-complexity albeit sub-optimal alternative to opal that the temporal variation of the channel taps in doubly
maximum-likelihood equalization (MLE). Recent researais h selective channels with a finite Doppler spread over a finite
concentrated on quantifying the performance of diversitieo duration can be captured by finite Fourier bases. We thexefor
of LE in fading channels. While the diversity order of LEUSe CE-BEM [6] withQ + 1 basis functions to model the time
for transmission over frequency selective channels has be@riation of each tap in a block duration. The basis coeffisie
studied in [4], the diversity order of LE in time-selectiveda remain constant for the block duration but are allowed to
doubly selective channels is less understood. In [5], thiecas vary with every block. The time-varying channel for each
used the Complex-Exponential Basis Expansion Model (CELlock transmission is thus completely described bydhe 1
BEM) [6] with Q + 1 basis functions to model the doublyFourier basis functions anft) + 1)(L + 1) coefficients. In
selective channel of memory. The authors showed that bygeneral? is chosen such tha@ > 2[ f,,,a. M T | wherel/T;
employing linear precoded block transmission, the maximuth the sampling frequency anfl,... is the Doppler spread
diversity in the channel is upper bounded &y + 1)(L + 1) ©f the channel. The coefficients themselves are assumed to
and can be achieved when maximum-likelihood decoding #§ zero-mean complei.d Gaussian random variables. This
used at the receiver. However, ML incurs a huge computdtior& & reasonable assumption for a rich scattering envirohmen
complexity therefore it is of interest to investigate theedlsity With non-line-of-sight reception. Usingas the discrete time
order achieved by linear equalization for block transnoissi (Sample) index, we can represent thth tap of the channel
over doubly selective channels. In this paper, we study thethe k-th block
performance of linear minimum mean squared error zero Q
forcing (MMSE-ZF) receivers for linearly precoded block hiy = th(hl)eﬂﬂfﬂ, (1)
transmission in doubly selective channels and show that LE 4=0

Fig. 1. Block diagram of transmission model.



le0,L], fy = (¢—Q/2)/M. The corresponding receive sig- 1) Diversity order of LE: In [1] the authors introduce
nal is formed by collecting/ samples at the receiver to forma metric namely the orthogonality deficiencyd) of the
ylk] = [y(kM +0),y(kM +1),...,y(kM+M —1)]T. When equivalent channel matrixd() at the receiver and prove
M > L, this block transmission system can be representedtiat LE can achieve the same diversity as MLE if there exits
matrix-vector notation as [5] 0 < v < 1 such that

ylk] = H[k; 0]@s[k] + H[k; 1)Oslk — 1] + V[K],  (2) od(H) <1-v (7
] ) For the case of ZP transmission in frequency selective chan-
where v[k] is a AWGN vector whose entries have zeropeis the Toeplitz structure 6¢ ensures thatet(H” H) > 0.
mean and variance; and is defined in the same wayo, interest lies in finding a lower bound for this value.
as y[k|. H[k;0] and H[k;1] are M x M matrices whose pare e use well known concepts from linear prediction
entries are given byH[k;t]l.s = Agarsrinsir—s) With theory to provide an upper bound ferd(7) and prove
t € (0.1) and r,s € (0,...M — 1). Defining Df,] that o4(7) is bounded strictly below 1. Consider the linear
as a diagonal matrix whose diagonal entries are given Byagiction problem of a stationary process with covariance

D[flmm = €e2™fem m € (0,1,...,M — 1), and further matrix (HHH) and spectrumH ()2 given b
defining[Hg[k; t]].s = he(k,tM +7r— s) as Toeplitz matrices ( ) pectrum# (f) g y

formed of BEM coefficients, it is straightforward to represe L ionf
Eq. (2) as H(f) = Y h(l)e >/, (8)
=0
1 Q +1/2
ylk] = > " DIf I Hylk: 1@slk — ] + VK] (3) iz = /_1/2 [H(f)I*df - ©9)
t=0 g=0

Then, (H""H) can be factorized a&DL *, wherelL is a
lIl. DIVERSITY ORDER OF LINEAR EQUALIZERS lower-triangular matrix with unit diagonal aridl is a diagonal
matrix whosen'" diagonal element, denoted by’ corre-
sponds to thén — 1)* order prediction error variance of this

Consider the case of zero-padded (ZP) block transmissigibcess. In the limiting case, we have

of time-domain symbol vectos[k] in a frequency selective N1 N
channel of ordel.. Such a scheme involves paddisjg] with ~
M — N > L zero symbols before transmission (Ii[/@é]r the fre- ]\}@m(det(HHH))l/N = (H Ui) —ol,  (10)
guency selective channel. In other words, the precodingixnat o ) .":O ] )
©=y 0N><(MfN)]T- Since the frequency selective channa¥here the infinite order prediction error variancg is related

is a special case of a doubly selective channel correspgndifi the spectrumH (f)[* [7] as
to @ = 0, we can drop the subscrigtin the received signal +1/2 \H(f)[?
ot =exp( [ miH()PA) -

A. Fregquency selective channel

representation and rewrite Eq. (3) as =PI (11)
y[k] = Ho[k; 0]©s[k] + Ho[k; 1]©s[k — 1] + V[k]  (4) whereP(f) is the monic minimum phase equivalent &1 f)

dis gi b
In general, sincel > L, the delay spread of the channef '~ = o' >

introduces inter-block-interference (IBI) at the receiaed is Pf) = L _ionfl 12
represented by the second term on the RHS of EqH4l); 1] (f) =1+ me (12)

is a strictly upper-triangular matrix with non-zero elertseeim o =1 ) o

only the lastM — L columns of the matrix. Zero-padding hadue to the fact that minimum phase filter coefficients are
the desirable effect of setting IBI to zero sindg[k; 1)@ = 0 Pounded, it was shown in [8] that

and the received signal can therefore be expressed as +1/2 L L /N2
Ipllz = /1/2 PP =1+ p) Sew=D (L) -
- =1

y[k] = H[K|s[k] + v[k]. 1=0

(13)
where H[k] = Ho[k;0]@, the effective channel seen atrom Eg. (11) and Eq. (13), we have
the receiver due to zero-padding (in general, precoding) , Ih(2 _ (2
at the transmitter, is aM x N Toeplitz matrix with ~= ol = e (14)

ho(k,0), ho(k,1), ..., ho(k, L), 01xa—r—1]" as its first col-
o(k, 0), ho(k, 1), ... ho(k, L), O1xp—1.-1] 4 From Egq. (14), Eq. (10) and the definition of orthogonal

umn. The linear estimate for the symbols of i receive . .
deficiency in [1] we have

block is then given by the MMSE-ZF equalizer

det(H"H 1\"
GMMSE-ZF _ (W) HI . (6) Od(H)_l_det(d?ég(HH;i))<1_(a) - 09

in what follows, we shall simplify the notation &f([k] = H. which concludes our proof.




2) Discussion: In [2] it was shown for the first time that Whereﬁq[k;o] isaK + L x K + L Toeplitz matrix formed
the MMSE-ZF equalizer collects full diversity for linearlyby the firstK + L rows and columns ofl ;[%; 0]. Eq.(22) can
precoded transmission in frequency selective channels ttwen be re-written as
showing that

Q
[(HEH) T HT) |2 > C |h)?, ae) Y= Z::O D{fq] (FﬁmTl © Hylk; 0]T2) slk] + V(K] (24)

where||.|| on the LHS of Eq. (16) is the Frobenius nori,

) . . . Note that

is the channel impulse responge,is a constant independent

of the channel and is given by = A\ /(C1N(R 4+ 1)) (cf. _ D[f,] = Dpiolfo(K + L)] @ D[ f4] (25)
Eq. (18)in [2]) andR = M —N. We show here that Eq. (16) in .
fact implies Eq. (7). To demonstrate this, &t = (K" ). EQ. (25) represent®|f,] as Kronecker product of time-
Since X is positive definite for[|h[|*; so is X~'. From a variation over two scale®,.,[f,(K + L)] is a sizeP + Q
straightforward application of the arithmetic-geometriean diagonal matrix withexp(j2rpf (K +L),p € (0,1,---, P+

inequality for positive numbers, we have @ — 1) on its diagonals and represents time-variation on a
N coarse scale (complex-exponentials sampled at sub-sagmpli
det(X 1) < (itr(X1)> ' 17) interval of (K + L)Ty) qnd Dx+r[fq] is a diagonal matrix
N of size K + L with exp(j2nkf,(K + L),k € (0,1,--- | K +

N L —1). Using Eq. (25) and standard matrix identities, we can

det(X) > ( N ) (18) decompose the received signal as in Eq. (26) wiége =
—Atr(x) JW9=Q/2) andJ is a circulant matrix with0, 1, 01xp 4o _2]7

as the first column. Since the matri¥;, , ® | ...) has no

: H —1agH\j2 _ -1
Since||(H"H)™ HT)||* = tr(X ™), we have from Eq. (18) effect on the diversity of the doubly selective channel, for

and Eq. (16) the analysis of the diversity order of MMSE-ZF receiver, the
Amin |2 N 9 effective channel matrix can be represented as
det(X) > | =—— 1
0> () (49 @ )
Substituting this in the definition of orthogonal deficieneg Has[k] = Z(‘]”Q[q]Tl) ® (Ducrr[folHqlk; 0]T2) - (28)
have N 7=0
od(H) < 1— Amin (20) Fig. 2 illustrates the structure of the equivalent channatrin
Ci(R+1) Has[k] for this case due to precodindd, represents the

product matrixDHL[fq]ﬁq[k;O]. In particular, it is a block-
o Toeplitz matrix with constituent blocks which are in turn
We now look at the case of block transmission in doubly med by the product of a diagonal matix, ., [f,] and a

selective channels. The channel is assumed to be of drdefroep|itz matrix formed by the corresponding BEM coefficent
and the time-variation of each channel tap within a block ine ¢-th basis function.

is captured by@ + 1 complex-exponential basis functions.

B. Doubly selective channels

The k-th receive block is then represented as in Eq. (3). The ~—
precoding matrix® that we consider here is known to enable Ho N0 70
diversity order of(Q + 1)(L + 1) for ML receivers in doubly —
selective channels [5] and is given by H ﬁ&%
©@=F T,0T, (21) Has[k] =|| A || Fi|| Fo s

whereF, ., is a(P+Q)-point DFT matrix,T, = [l » 0,,,]", 0 || Ry | Ay Ho = Dicrz [fo] Fo[k: 0]
T, =[lx 0x,.]". P and K are chosen such thdt = (P + I
Q)(K + L) and N = PK. The PK-length symbol vector is 0 | 0 |H
defined in the frequency domain. The zero-padding matsix —
nulls the inter-block-interference component in the reeei Fig. 2. Equivalent channel matrix for doubly selective afiein
signal, i.e.,Hy[k; 1]@s[k — 1] = 0. As a result, the received 1) Diversity order of LE in doubly selective channels: We
block can now be represented as first consider a closely related matitik;s[k] which is a block

0 Toeplitz matrix where the constituent blocks are formed by

y[k] = Z D[f,]Hq[k; 0]©S[k] + V[K], (22) Hqlk;0] (In Fig. 2 this corresponds td, = H,[k; 0]) Then,

q=0 Q
Using standard Kronecker product identities, one can show  Haslk] = > (Jriolg @ H [k 0)(T, @ Ta), (29)
that q=0

H,[k;01© = F2, T, @ H,[k; 0]T, (23) = HET (30)



Q

Y] = 3 ((ralfoK + LIFE T @ (Do [foIFalksOT2) ) sik] + VIK, (26)
q=0
Q
Yk = (Fio ®1s) Y ((rralalTs) © (Ducs o [falFglki O]T2) ) slk] + VI, (27)

=0

Q

whereH¢[k; 0] is a circulant matrix whose first column is thecorresponding this time to thgw — 1)** order prediction error
same as the first column &1,[k;0], 7 = (T, ® T,). Note vgrli{ancg of a 2-D stationary process with covariance matrix
thatH (%] is block Toeplitz with Toeplitz blocks (BTTB) and (H 4,[k]Has[k]) and spectrum (f1, f2)|* given by

‘H[k] is block circulant with circulant blocks (BCCB) and is

therefore diagonalizable, i & :
ere oreN iagonalizable, i.e., Hfr, fo) = ZZh(q,l)e*ﬂ"flle*ﬁ”?q, (36)
MK = (Y, @ FIL )D(Frio ©Feyn),  (31) a0 1=0
whereF, ., is a (K + L)-point DFT matrix,D is a block then asN — oo,
diagonal matrix with diagonal matricéB,, D;...Dp_,_, ON n - N )
its diagonals. The entries iR, are given by (det(H g [k](Has[k]) ™ — 05 2- D, (37)
Q L o . with
Dy, = h(q, e~ RFE e~ P54, 32
Do) =323 hia (32) e
. . 0209 p = €Xp / I |H(f1, f2)*df1df>
with p € (0,1,--- P+ Q@ — 1) andi € (0,1,---, K + —1/2 J-1/2
L — 1). We now introduce the vector of stacked chan- . i
nel coefficients hlk] = [h0T7 h?, ... ,hg] with h, = ConsideringH (f1, f2) as a 1-variable polynomial irf with
[hy(k,0), he(k, 1), ..., hy(k, L)]T and coefficients being polynomials ifi, the following inequalities
_ _ in Eq. (39) - Eq. (42) leads us to the expression
V= FP+Q ® FK+L1 (33 N
whereF ., corresponds to the first + Q/2 and lastQ/2 od(Hgs[k]) < 1 — ( ) (43)
columns ofF,,, andF,,, corresponds to the first + 1 Crle

columns ofF., .. ThenD = diagd) contains the two di- The proof above shows that orthogonal deficiency of the
mensional (2-D) DFT oh[k], i.e,d := Vh[k]. Thereafter, by BTTB matrix related to the effective channel matiik, [k]
definingF = (Fr, o ©Fx. )T, andy := (do,é1, - ,¢r-1) s indeed bounded above by a value strictly less than 1.
as the indices of thé? smallest diagonal elements df we Note that due to its dependency at(H”H), is related
can extend the.emma in [2] for the 2-D case and show thatiy the degree of predictability of any of its column based

H(ﬁl[lc](ﬁds[k])”(ﬁ;{s[k])l\” > C ||h[k]|, (34) On the ol_Jservations of its previ_oqs columns. _In the case of
Hs[k], this amounts to the prediction error variance of a 2-D
Extending the results in Sec. 1lI-A2 above, we can show thattionary process while in the case éf,.[k], this results in
B \ N the prediction error variance of a 2-n-stationary process
od(Hgslk]) <1 — (%> , (35) since the stationarity is destroyed by pre-multiplicatidrihe
Ci(R+1) Toeplitz blocks ofH4[k] by the diagonal matriXD . [f]
Amin @andC, are both obtained by a straightforward extensioftonsequentlyH . [k]H4s[k] is only a block Toeplitz matrix
of [2] and R = M — N. In our case, if we collect the and not BTTB). Since stationary processes are known to be
rows of V corresponding to the indices ip in V,, then more predictable than non-stationary processes, thegutta
Anin = minvawhi()\mm(\)ng)), with A..i, (.) denoting the  deficiency ofod(H 4s[k]) will always be lower thamd(H 4, [k])
minimum eigenvalue of a matrix and the outer minimization iand will therefore share the same upper bound. In Table. | we
overall subsets of0, 1, -~ , M —1),C = A,,;,,/(C1N(R+1)), presenta comparison of empirical results for maximum value
C1 := max, |©®, > with R elements®,, being theN x M  of orthogonal deficiency of 4,[k] andH,[k] to corroborate
matrix obtained by first removing all rows of with indices this argument. The column at the extreme right corresponds
belonging toy, computing the inverse of this square matrixto an analytical upper-bound fard(H44[k]) as in Eq.( 43).
and insertingk zero columns at column indices correspondinghe other two columns correspond to the maximum value of
to the indices inp. The maximization to obtai6;, is done over orthogonal deficiency ofd(H 4s[k]) andod(H4s[k]) over 108
all subsets 0of0,1,--- M — 1) with R elements. Monte-Carlo realizations of a doubly selective channehwit
Furthermore, we can also consider th® L” decomposi- Q =2, L =1 for two different values ofP, K. It is observed
tion of (H,[k]H4s[k]) with the nt" diagonal element o>  that indeedbd(Hy, [k]) is slightly lower thanod(H 4[k]).



Test Case od(Hgs[k]) | od(Hgs[k]) — (cLlcQ W ,
K =2,P =2 | 0.844300451| 0.851578361| 0.978938817 we
K =4,P =3 | 0.999946896| 0.999955760| 0.999990658

TABLE | ~
COMPARISON OF ORTHOGONAL DEFICIENCY O 45 AND Hys.

IV. NUMERICAL RESULTS 1070

In this section we provide simulation results to show o
that MMSE-ZF receiver achieves full diversity in doubly i
selective channels. The diversity order of MMSE-ZF receive
is estimated based on the slope of the outage probability

curve. Monte-Carlo simulations were carried out for a fixed 107}
transmission rate for different SNR points. The decisiomp -
SNR for a fixed arbitrary symbol index in the k-th symbol W B u b

block s[k] was computed as SNRIdB]

SNR, p Fig. 3. Diversity order of LE in doubly selective channel.
MR - : : .
equalization. Simulation results were provided and shoovn t
where H|[k] represents the equivalent channel matrix for theustain the arguments made in this paper.
doubly selective channel andis the SNR. When the decision
point SNR was below the SNR required to support the fixed
transmission rate, the channel was declared to be in outalgk X. Ma and V\gZhangly Funld?mental |I%ts of |I?§2rEeguﬂfﬂ Diversity,
capacny, anda comp eX|ty, nformation eory, ransactions on,
The slope. of the outage. propablllty curve was then us_ed vol. 54, no. 8, pp. 3442-3456, Aug, 2008,
as an estimate of the diversity order. In addition to thigz] c. Tepedelenlioglu, “Maximum multipath diversity witinear equaliza-
we compare the slope of the MMSE-ZF receiver to that of tionin precoded OFDM systemdiformation Theory. IEEE Transactions
- - : on, vol. 50, no. 1, pp. 232-235, Jan. 2004.
the matchgd fllter_bound _(MFB) which is kn0\_/vn to collec[[3 A Sayeed and B. Aazhang, “Joint multipath-doppler dity in mo-
all the available diversity in the channel. In Fig. 3 we plot " bile wireless communicationsCommunications, |EEE Transactions on,
the performance of LE for linearly precoded transmission in] éol-T47,gol- 1|,_ pr?- 123(1—%?32M360019?:- . eyl
- e - 7 - . Tepedelenlioglu and Q. Ma, “On the performance ofdinequalizers
dOUny selective Ch_a_mnel Wlt@ - 2,’ L=1,P=3 K =4 for block transmission systems3lobal Telecommunications Conference,
The outage probability curve exhibits a slope@+1)(L+1) 2005. GLOBECOM ’05. IEEE, vol. 6, pp. 5 pp.—, Nov.-2 Dec. 2005.
which leads us to conclude that LE achieves full diversit§]
in doubly selective channel when an appropriate diversity
enabling precoder is used at the transmitter. 6]

(44)
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V. CONCLUSIONS

In this contribution, we showed that linear equalizersell [7]
full diversity offered by doubly selective channels in th
presence of appropriate precoding. For this case, the nuemim
value of orthogonality deficiency of a matrix closely rethte
to the effective channel matrix at the receiver was shown
to be strictly bounded away from 1. It was argued that
orthogonality deficiency for the channel matrix also shanes
same upper bound and hence achieves full diversity wittatine

+1/2 p+1/2 112 12
/1/2 /1/2 I [H(f1, f2)|Pdfrdfa = /_1/2 dfa /_1/21H|H(f1,f2)|2df1, (39)
+1/2 1 +1/2 )
> [, B ], P (40)
+1/2 +1/2
2
- CLCq ln/l/z de/ /2 H (s )P df, (41)
~H o~ +1/2 ,+1/2
= (det(Hds[k](Hds[k]))l/N > ol J_1) /1/2 f17f2)| dfldf2 (42)



