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Abstract— Coordination in a multi-cell/link environment has
been attracting a lot of attention in the research community
recently. In this paper, we consider the problem of coordinated
beamforming where base stations (BS) equipped with multi-
ple antennas attempt to serve a separate user each despite
the interference generated by the other bases. We propose a
framework for a distributed optimization of the beamformer s at
each base, where distributed is defined as using “local CSIT”
only. We present and compare two distributed approaches (one
iterative and another direct approach) which have in commonthe
optimization of the beamformers as a combination of so-called
egoistic and altruistic solutions for this problem. We provide the
intuitions behind these approaches and some theoretical grounds
for optimality in certain cases. Performance is finally illustrated
through numerical simulations.

I. I NTRODUCTION

The problem of coordinating multiple co-channel interfering
transmitters for improving the aggregate capacity finds impor-
tant applications in the context of cellular networks with full
resource reuse, cognitive radios, and spectrum sharing. Having
multiple antennas at transmitters and receivers provides a
powerful framework for coordination of the transmission and
promises great improvements in terms of error resilience and
rates achieved. The gains depend, however, on i) the number
of transmitters and receivers, ii) how much they are allowedto
cooperate and iii) the channel state information (CSI) available
at each. In scenarios involving multiple interfering transmitter-
receiver pairs, if either all transmitters or all receiversshare
their entire data and as a result perform joint transmissionor
joint decoding respectively, the situation will be conceptually
equivalent to a broadcast channel (BC) and a multiple access
channel (MAC). In these cases interference mitigation is well
understood. However, if this is not the case (i.e. a distributed
optimization scenario where the exchange of data and CSI
among transmitters is limited), then an interference channel
(IC) results. It is this latter situation which we consider here,
since sharing data may put too much strain on the backhaul of
the system in a cellular system, or cause unwanted interference
in an ad-hoc peer-to-peer scenario.
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Note that the MISO-IC setting, assuming each transmitter
has multiple antennas and each receiver a single antenna, was
previously considered for example in [1], [2] while the more
general MIMO IC, which corresponds to receivers also having
multiple antennas, is considered in [3], [4], among others.[2]
and subsequent publications [5], [6] of the same authors have
focused on the case of two transmitters and full CSI at the
transmitters (CSIT). These authors consider the problem from
the viewpoint of game theory, with transmitters as players;
in this case a parametrization of the Pareto boundary of the
rate region was found, and different algorithms suggested
for finding different points on the boundary, particularly the
maximum sum rate point. [7] considers a parametrization of
the Pareto boundary in the more general case. In contrast, [3]
focuses on the Nash Equilibrium for the MIMO case, where
each transmitter optimizes his transmit covariance to achieve
the best possible rate, given that no cooperation takes place.

Most of the work above assumes a central knowledge of
CSI. In practice, for obvious scalability reasons, it is highly
desirable that each transmitter optimize its precoder based on
local channel knowledge only. In this case, it is reasonable
to assume that it knows the channel between itself and all
receivers that are within its range, either through user feedback
or, in a TDD system, from those users’ transmission in the
uplink. In this paper we propose two approaches dealing with
MISO and MIMO interference channels, under constraint of
distributed optimization of the beamformers (i.e. local CSIT
at each transmitter).

The techniques build up on the fact, recently brought up
in [5], [6], that Pareto-optimal (i.e. reaching the boundary
of the rate region) beamforming solutions for the two-link
MISO-IC take the form of a linear combination between ex-
treme solutions, known as the egoistic and altruistic solutions
respectively. Although such solutions are compatible witha
distributed optimization, the computation of the optimal linear
combination weights presented so far in the literature required
centralized CSIT. In this paper we propose two methods for a
distributed computation of the combination weights. The first
method is presented for the MISO case and relies on the so-
calledvirtual SINR framework. The second method is based on
the idea of iterative games and can handle the MIMO case.



This paper presents a unified view of these approaches and
some performance comparisons.

Notation: Throughout the paper boldface lowercase letters
are used to denote vectors and boldface uppercase for matrices.
E is the expectation operator andI is the identity matrix.
CN denotes a complex circularly symmetric random variable.
V(max)(A) is the eigenvector ofA corresponding to the
maximum eigenvalue ofA; V(min) denotes the eigenvector
corresponding to the minimum eigenvalue.

II. SYSTEM MODEL

The general scenario we consider is that of the MIMO in-
terference channel whereNc transmitters (for example BSs in
the cellular context) each communicate with a single receiver
(mobile station (MS)). Each BS hasNt > 1 transmit antennas,
each MSNr ≥ 1 antennas.
We adopt a narrow-band channel model with frequency-flat
block fading. Under linear precoding at each of the transmitters
(no joint multibase precoding since BSs do not share the data
symbols), the signal transmitted by BSk, may be written as:

xk =
√

pkwksk, (1)

wheresk ∼ CN (0, 1) is the symbol being transmitted intended
for userk1, wk is the unit-norm precoding vector used to carry
this symbol, so‖wk‖ = 1, pk ≤ P , wherepk is the transmit
power used, andP is the transmit power available at each BS.
The signal received at userk is:

yk =

Nc
∑

j=1

√
pjHjkwjsj + nk, (2)

whereHjk ∈ CNt×Nr 2 is the channel between that user and
BS j, nk ∼ CN (0, σ2

nI) is the noise at the considered receiver.
We assume that receivers have full CSI (CSIR) and perform
single-user detection, i.e. they do not attempt to decode the
interfering signal. Denoting byvk the receive beamforming
vector at userk, the receive signal after receiver processing is
given by:

ỹk = vH
k





Nc
∑

j=1

√
pjHjkwjsj + nk





=
√

pkv
H
k Hkkwksk +

Nc
∑

j=1,j 6=k

√
pjv

H
k Hjkwjsj + ñk.

Assuming unit-normvk, ñk ∼ CN (0, σ2
n).

Given our assumptions, the rate achieved at the user served
in cell k is given by:

Rk = log2(1 + γk), (3)

1I.e. Gaussian codebooks are used, even though these may be suboptimal
for the interference channel.

2Note that in what follows, for the MISO case, the channel matrices reduce
to row vectors and lower case will be used to denote the corresponding
variables, i.e.hjk instead ofHjk for example.

where the SINRγk is equal to:

γk =
pk|vH

k Hkkwk|2
σ2

n +
∑

j 6=k pj |vH
k Hjkwj |2

. (4)

The rate regionR is defined as the set of rates that may
be achieved simultaneously at the different BSs, under their
individual power constraints (cf. (5)).

R = {(R1, . . . ,RNc
) ∈ R

Nc

+

|Rk as in (3), ∀k ∈ {1, . . . , Nc}} . (5)

III. A D ISTRIBUTED FRAMEWORK FORBEAMFORMING

COORDINATION

A. Distributed CSIT

The performance of the above-described system will depend
on how much CSI is allowed to be shared between the different
nodes involved. Thus if CSI is collected at a central node, or
made available at each BS, then the optimal (for the system
performance metric of interest) beamforming vectors for each
BS, can be computed. This, however, comes at the cost of sig-
naling overhead. Hence, the interest of cooperative distributed
approaches, which limit the exchange of information between
the transmitters while trying to optimize system performance.

In this work, each transmitter’s knowledge is limited to the
channel between itself and all users3, i.e. transmitterj knows
Hjk, k = 1, . . . , Nc.

Our main performance metric is the sum rate achieved
across the system. However, maintaining fairness among users
in terms of individual rates is also important. Another desired
performance feature is our ability to reach the rate region
boundary.

Given the distributed nature of the problem, one can think
of BSs as players in a game, the strategies they choose to
follow affect the global system performance. The objectiveis
for each BS to find a ”good” (in terms of our performance
metrics) strategy to play.

B. Beamforming Coordination

The distributed approaches we adopt can be related, as will
become clear later on, to some extreme beamforming strategies
and previous results obtained for the full CSIT case for the
two-link MISO interference channel.

1) Extreme Beamforming Strategies: Assuming no power
control (justified below), i.e. each transmitter always uses full
power, two extreme beamforming strategies arise: anegois-
tic strategy, where the interference generated is completely
ignored and the focus is on maximizing the useful signal
received at one’s own user, and analtruistic strategy where
the main focus is on trying to reduce the interference caused
to others. Remarkably both these strategies are consistentwith
the distributed CSIT assumption above.

3Strictly speaking, each transmitter only needs to know the channels
between itself and users that are close enough to suffer frominterference.



1) Maximum Ratio Transmission (Egoistic strategy): In
this case, the transmit beamforming vector at transmitter
k is given by:

wMRT
k =

hH
kk

‖hkk‖
. (6)

2) Interference Minimizing Transmission (Altruistic
strategy): If enough antennas are available at the trans-
mitter, zero-forcing (ZF) of the generated interference
is possible and the optimal ZF beamforming vector is
given by:

wINT
k =

Π⊥,khH
kk

‖Π⊥,khH
kk‖

(7)

whereΠ⊥,k is the projection matrix onto the null space
of the channels being interfered. Otherwise, in order to
minimize the total interference caused,wINT

k can be
selected to be the right singular vector corresponding to
the smallest singular value of the aggregate interfered
channelH−k = [hk1 . . .hkk−1hkk+1 . . .hkNc

].

2) Previous Results on the Parametrization of the MISO
Interference Channel with full CSIT: [2], [5], [6] show the
following main result, which will be of some importance in
our later derivations, for the case of two transmitters under
full CSIT.

Theorem 1 (reproduced from [6]): Any point on the Pareto
boundary is achievable with the beamforming strategies

wi(λi) =
λiw

NE
i + (1 − λi)w

ZF
i

‖λiw
NE
i + (1 − λi)wZF

i ‖ , i = 1, 2 (8)

for some0 ≤ λi ≤ 1.
In the above theorem,wNE

i = wMRT
i and wZF

i = wINT
i

from (6)-(7).
Thus Pareto optimal beamformers belong to the set:

S ≡
{

w ∈ C
Nt |w = αwMRT

i + βwINT
i , α, β ∈ R+,

‖w‖ = 1} . (9)

It was also shown that:
Proposition 1 ([7]): Along the Pareto boundary of the

MISO-IC, andNt ≥ Nc, full power must be used at each
transmitter.

IV. PROPOSEDDISTRIBUTED BEAMFORMING STRATEGIES

Given Proposition 1, we ignore power control from now
on and assume allpk = P, ∀k = 1, . . . , Nc, though this
may be suboptimal, for single-antenna receivers at least, when
Nt < Nc, i.e. when there are at least as many interferers
as antennas at a given BS. Under this setup, we adopt two
different approaches to distributed coordinated beamforming, a
first approach presented for the MISO case solely, and another
more general approach for MIMO cases.

A. MISO case: Virtual SINR framework

Given the local information at each transmitter, we propose
a simple transmission scheme based on having each transmitter
maximize what we refer to as a virtual SINR. This essentially
corresponds to balancing between the desired signal power
generated and the noise plus interference generated at other
users.

Under full power transmission, a virtual SINR at base
stationk is defined as:

γvirtual
k =

|hkkwk|2
1
ρ

+
∑

j 6=k αkj |hkjwk|2
, (10)

whereαkj ∈ R+, j, k = 1, . . . , K are a given set of weights,
and ρ = P

σ2
n

. This can be seen as the SINR achieved on the
uplink of a system where at thekth base station, receive vector
wk is used to process the received signal, mobile stationk

transmits its signal with powerP , and mobile stationsj, ∀j 6=
k transmit with powerαijP : the notion of a virtual uplink
was first introduced in [1] in the context of downlink power
control and beamforming in a multicell environment.

1) Two-link case Analysis: For the two-link case, the fol-
lowing proposition holds and allows us to relate the solution
to the setS in (9).

Proposition 2: Maximizing the virtual SINRs in (10) for
anyα12, α21 ∈ [0,∞) yields beamforming vectors of the form
(8), with:

λi =
1

ραīi‖hīi‖2 ‖Π⊥
iī
hii‖

‖hii‖
+ 1

, (11)

where ī = mod (i, 2) + 1, i = 1, 2, andΠ⊥
īi

= I − h
H
iī

hiī

‖hiī‖
2 .

Proof: Details in [8].
It is easy to see that any point covered by the parametriza-

tion in Theorem 1, equivalently any point in setS, can be
reached for appropriateα12 and α21. But which pair ofα’s
to use and still have a distributed solution? The following
theorem provides a hint.

Theorem 2: The rate pair attained with full-power transmis-
sion and precoding usingwk ’s that maximizeγvirtual

k in (10)
with α12 = α21 = 1, lies on the Pareto boundary of the rate
region.

Proof: Details in [8]. The proof relies on a version of
the parametrization given in Theorem 1.

2) Proposed Algorithm: This leads us to propose the fol-
lowing distributed algorithm: transmit with full power andwith
precoding vectorwk given by:

wk = arg max
‖w‖2=1

|hkkw|2
1
ρ

+
∑

j 6=k |hkjw|2 . (12)

This is a generalized eigenvalue problem. Its solution is thus
the unit-norm right eigenvector corresponding to the largest
(and only non-zero in this case) generalized eigenvalue of the
matriceshH

kkhkk and 1
ρ
I +

∑

j 6=k hH
kjhkj .



B. General MIMO case: Iterative Beamforming

In [9], an iterative algorithm, termedDistributive Bargain-
ing Solution (DBS), was proposed for the MISO IC whereby
each transmitter selects its beamforming vector as a linear
combination of its MRT and ZF solutions, i.e. as a member
of set S; the Pareto boundary is approached by gradually
changing the combination coefficients (and consequently the
direction of the beamforming vectors) in each iteration so that
every link would have a higher transmission rate. To extend
this to the MIMO scenario, we start by revisiting the concepts
of egoistic and altruistic solutions.

1) Egoistic Solution: The Egoistic solution of BSk, k =
1, . . . , Nc, is to maximize, given its local knowledge, its user’s
expected received SINR,γk. I.e., each BS finds:

w
(ego)
k = argmax

wk

EHkj ,j 6=k

{

|vH
k Hkkwk|2

}

, (13)

which constitutes an intuitive generalization of the MRT
solution in the MISO case (cf. (6)). We assume an SINR-
maximizing MMSE receivervk to be used, given by:

vk = CRk
−1Hkkwk, (14)

whereCRk =
∑Nc

j=1,j 6=k Hkjwjw
H
j HH

kj + σ2
nI, is the covari-

ance matrix of the received interference and noise at MSk.
For independent identically distributed (iid)CN (0, 1) chan-

nel coefficients, the following theorem holds.
Theorem 3: The optimal Egoistic solution (cf. (13)), for

iid CN (0, 1) channel coefficients, is to transmit along the
eigenvector corresponding to the maximum eigenvalue of
HkkH

H
kk. Thus:

w
(ego)
k = V(max)(HkkH

H
kk) (15)

andvk is defined in (14).
Proof: The proof is provided in [10].

2) Altruistic Solution: Given its local CSI knowledge, BS
k minimizes the sum of the expected interference it causes at
the other MS’s. The latter is only one of the possible opti-
mization metrics, employed here for tractability. interference
it generates to other MSj, j 6= k. Thus, BSk finds:

w
(alt)
k = argmin

wk

EHjj ,Hji,i6=j,k

Nc
∑

j=1,j 6=k

|vH
j Hjkwk|2. (16)

As before, each MSk uses a MMSE receiver given by (14).
In the two-cell scenario, for i.i.d.CN (0, 1) channel coeffi-

cients, one can easily obtain the optimal transmit beamformer
w

(alt)
k .
Theorem 4: With only 2 cells, for i.i.d. CN (0, 1) chan-

nel coefficients, the optimal altruistic strategy isw(alt)
k =

V(min)(HH
jkHjk).

Proof: We only provide a sketch of the proof. A more
detailed version is provided in reference [10].

The optimal transmit beamformer for BSk as defined in
(16) can be shown to simplify to:

w
(alt)
k = argmin

wk

σ−4
n x

(1 + σ−2
n x)2

, k = 1, 2, (17)

where x = wH
k HH

jkHjkwk, j 6= k. The expression is
minimum whenx is minimum, thereby yielding the result.

For a more general case, the altruistic solution of multicell
scenario is simply stated as:

w
(alt)
k = V(min)





Nc
∑

j 6=k

HjkH
H
jk



 (18)

andv
(alt)
k is defined in (14).

3) The Distributive Bargaining Solution (DBS): The DBS
algorithm introduced in [9] for the MISO case is summarized
below.

Denote the beamforming vector of transmitteri in iteration
j by wi(j). Intuitively, it is reasonable to initialize the
beamforming vectorswi(0) to be the egoistic solutionsw(ego)

i

because users start off with a non-cooperative setting. However
they can also be initialized in a joint altruistic setting (see [9]).

At iteration j,

• At transmitteri, the beamforming vector is updated as
follows: wi(j) = wi(j−1)+δw(j) andwi(j) → wi(j)

‖wi(j)‖

whereδw(j) is computed based on the 1-bit feedback sent
by its receiver at the previous iteration.

• At receiver i, the MMSE receiver beamforming vector
vi(j) is computed using the newwk(j), ∀k, as in (14).
MS i then computes its rater(j)

i (cf. (3)), and reports
back to its transmitter a single bit of feedback to inform
it of its satisfaction: a ‘1’ for an increment of data rates
(i.e. r

(j)
i > r

(j−1)
i ), a ‘0’ otherwise.

A stop condition is implemented so that the beamformer
trajectory is halted as near as possible to the Pareto boundary.
Many options may be considered. A reasonable and intuitive
stopping condition is that a transmitter stops cooperatingand
terminates the algorithm when it encounters a decrement of
transmission rate. In other words, transmitteri, 1 ≤ i ≤ Nc

stops cooperating if

r
(j)
i < r

(j−1)
i . (19)

V. SIMULATION RESULTS

The performance of the proposed distributed coordinated
beamforming approaches was tested, in terms of average sum
rates, for a relatively realistic scenario whose parameters are
specified in table I. User locations in each cell follow a uniform
distribution.

A. MISO Scenarios

The average sum rates achieved using the virtual SINR
approach and the DBS scheme are compared to each other and
to the egoistic and the altruistic schemes described in Section
III-B.1.

Figure 1 illustrates the performance for 3 antennas at each
BS, and 3 cells in the setup. In the curves shown as in
all the simulations conducted for the MISO case, the virtual
SINR scheme outperforms the others in terms of average sum
rates achieved. Note that for this layout, as soon as there is



Parameter Value
Path loss model Cost-231 for small medium city

K 3, 7
Cell radius 1000 m

Gtx 16 dB
Shadowing mean 0 dB

Shadowing variance 10 dB
Grx 6 dB

Edge SNR 5-15 dB

TABLE I

SIMULATION SETUP PARAMETERS
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Fig. 1. Sum rates vs. cell-edge SNR, MISO case.

more than 2 antennas per base station, zero-forcing can be
performed and for all but the egoistic strategy, linear increase
of the sum rate with the cell-edge SNR in dB is observed.
When the number of antennas available does not allow for
interference cancellation, saturation occurs as SNR increases.

B. MIMO Scenarios

The sum rate performance of the proposed DBS scheme
is compared to that of the altruistic and egoistic solutionsas
defined earlier.

In Figure 2, the sum rate vs.Nt is plotted at SNR=15dB.
Note that the performance gap between the proposed scheme
and the egoistic and altruistic solutions increases withNt

because of the increased dimension or degrees of freedom.
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Fig. 2. Sum rates versusNt at 15dB cell edge SNR.

In Figure 3, the sum rate performance is plotted for increas-

ing Nc. The altruistic solution performs better than the egoistic
solution as interference increases. Although the amount of
interference increases, the proposed scheme outperforms and
maintains a constant performance gap with respect to the
altruistic and egoistic solutions.
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Fig. 3. Sum rates versusNc at 15dB cell edge SNR.

VI. CONCLUSION

In this paper, two different distributed coordinated beam-
forming approaches, based on partial CSI at each BS, both
of which can be brought back to formulating the solution as
a linear combination of an egoistic and an altruistic solution,
were proposed. Their performance was illustrated via numer-
ical simulations. The virtual SINR framework outperforms
the iterative beamforming algorithm but the latter has the
advantage that it lends itself to the MIMO case.
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