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ABSTRACT

Precise automatic music transcription requires accurate mod-
eling and identification of the spectral content of the audio
signal. Whereas a deterministic model in terms of modulated
periodic signals allows to distinguish different notes, the pres-
ence of multiple notes separated by octaves poses a big prob-
lem since they share the same periodicity, and hence com-
pletely overlapping spectral content. In this paper we propose
the introduction of a spectral model to allow distinction of
such mixtures of spectral content at various octaves. Cyclic
correlations are estimated at its pitch and decomposed into
even and odd parts, corresponding to even and odd harmon-
ics.

Index Terms— Music transcription, Audio Processing,
Pitch Detection, Periodic signal extraction

1. INTRODUCTION

Fundamental frequency (f0) estimation of a periodic signal
has been dealt with extensively in the literature. Many meth-
ods devoted to this estimation try to extract this information
by using a function of time or frequency (ACF [1],[2], AMDF
[3], [4], cepstrum [5], spectrum [6],[7] and High Resolution
method [8]). However, audio signals are rarely monophonic
and several fundamental frequency can be present at the same
time. In the research of speech processing [4] and in the con-
text of musical signal analysis (automatic transcription for ex-
ample), ([9],[10]) multipitch estimation is an important topic.
The spectral interference of the overtones of simultaneous
notes has been analyzed by various methods, some aiming
at detecting a periodicity in the signal [11], in its spectrum
[6], or by using a combination of both spectral and temporal

∗EURECOM’s research is partially supported by its industrial members:
BMW Group Research And Technology BMW Group Company, Bouygues
Telecom, Cisco Systems, France Telecom , Hitachi, SFR, Sharp,STMicro-
electronics, Swisscom, Thales. The research work leading tothis paper has
also been partially supported by the European Commission under contract
FP6-027026, Knowledge Space of semantic inference for automatic annota-
tion and retrieval of multimedia content – K-Space.

methods [12], [13]. Other research are based on of a bayesian
framework [14] or in a perceptually compliant context [13].
For treating periodic signals, the state of the art was limited to
the estimation of pure periodic signals with periodicity equal
to an integer number of samples [15, 16]. In these references,
the authors propose a Maximum Likelihood approach to an-
alyze pure periodic signals. The decomposition of audio sig-
nals into periodic features was reconsidered in [17], and was
applied for periodic source separation. In [18] the authors
have proposed to merge the periodic signal analysis and sinu-
soidal modeling in order to give more flexibility to the peri-
odic signal analysis and impose more structure on sinusoidal
modeling. They have considered periodic signals with non-
integer period, global amplitude variation and time warping.
Temporal or spectral methods tend to make sub-octave or oc-
tave errors respectively and more again when multiple octaves
of the same note are present, since they share the same period-
icity and hence completely overlapping spectral content. If a
note and its octave are played together the even harmonics of
the note should been increased by the harmonics of its octave.

Here we depart from the theory of the method based on
cyclic correlation analysis, extending it by using the evenand
odd part of the periodic signature of the signal. In section 3
we apply the method as a pitch determination algorithm on
both synthetic and acoustic signal. Then, in section 4 we use
it for solving the octave ambiguity problem and compare it to
a more sophisticated spectal method and, finally, we conclude
the work in section 5.

2. PROPOSED METHOD

2.1. Method

Generally audio signals are defined as a sum of sinusoids with
time varying parameters and an additional noise. For an in-
strumental or a speech signal, the signal is also harmonic with
fundamental frequency equal tof0.
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As defined in [19] the periodic signal can be expressed by its
generalized ACF , which is cyclic and without any phases.
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where∗ denotes the convolution operator; andδ the Kroe-
necker delta. Its spectral expression is given by:
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The spectral envelope of a such periodic signal can be
written as:
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We can define the even and odd parts of the cyclic correlation:
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The influence on the spectrum is expressed as follow:

S(f) = Se(f) + So(f), (13)
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Fig. 1 show the frequency selection of the even and odd
parts. As the Fourier Transform is done withP points, with
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Fig. 1. Even and odd parts of the spectrum.

P the period of the signal, each point of the spectrum is a
peak of the periodic signal and the Spectrum represent the
spectral envelope. If we define the fundamental frequency as
the first harmonic, the even part cancels the odd harmonics
and leaves the even harmonics unchanged and vice-versa for
the odd part.

2.2. Definition of the periodic signature

The signal is first resampled to a power of two samples for
avoiding problem when the even and odd part are computed
and for having an integer period.Then the signal is cuted into
frames of lengthP , the periodic signature is expressed by its
generalized ACF :

RP = IDFT (|DFT (XP )|p) (18)

whereRP andXP are two matrices for which each col-
umn represent a period of the signal and its cyclic representa-
tion respectively:

XP = [x1 . . . xm] (19)

xm = [s(1+(m−1)P ) . . . s(mP )]
T (20)

WhereT denote the transpose operator,m is the number of
period in the analysed signal andx is a signal vector contain-
ing P samples.

As the harmonics of an audio signal are time varying
and non perfectly harmonic, we need to have a robust esti-
mate of the periodic signal. This signature is estimated as
the principal vector of the eigen value decomposition ofRP .
We defineu, the periodic signature, as the first column of
U = SV D(RP ).

Then the odd and even parts of the signature are com-
puted:
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3. APPLICATION TO PITCH DETECTION

3.1. Discussion

For estimating the pitch of the signal we reduce the set of
fundamental frequencies to the first twelve frequencies of
the first octave from a midi correspondance. For all of this
set we perform the algorithm describe before and choose
as candidate the one which maximize an energy criterium.
Since the periodic signature is normalized in energy we will
work with its even part, but the even part also represents
the octave of the pitch so we change the set of candidates
to the previous octave. Working with the lower octave can-
didates didn’t reduces the set of octaves to the first one.
When a candidate is choosed, we compute the energy of its
Even To Odd Parts Ratio (EOR), if it’s more than a
threshold we decide that its true octave is the next one and we
continue on the next octave by keeping as periodic signature
the even part.

Since the energy of the periodic signature is normalised to
one, the energy of the Even and Odd Part are bounded to0.5,
the choosed threshold is compared to the Even to Odd Parts
Ratio and set to10.

3.2. Simulation

For this simulation we have generated light inharmonic sig-
nals, in fact all the parameters are randomly generated. The
Inharmonicity coefficient is set toB = 10−5, so the frequen-
cies follows as a rulefn = n f0

√
1 + B n2. The am-

plitudes and phases are uniformly distributed from [0;1] and
[0;2π] respectively. The amplitudes are also decreasing with
the index and the sum of the amplitudes is normalized to1.
We have choose the tessitura of the guitar for our analyse so
the set of midi code is [40;88].

Fig. 2 show the result of the analysis, as expected the notes
are correctly interpreted on the octave zero, and their trueoc-
taves are correctly found. The second possible candidat is
also show for each notes, as we can see for the first and a half
octave it has a semitone difference but for the next octave it’s
a perfect fourth difference (5 semitones upper).

3.3. Application to a true signal

For this analysis we have record all the first37 notes of the
guitar (midicode40 to 76) on a acoustic guitar. The notes
are played with a guitar pick and the guitar was plugged and
link to an external soundcard. The analysis is made on the
first 250ms of the signal (including the attack). Note that the
guitar was not perfectly tuned (impossible) and the used can-
didate are determined again by the midi reference frequency.

Fig. 2 show the result of the analysis for the guitar, the
result is not perfect but we can see that if a note is not well
detected its octave is false and the note found is the perfect
fourth of the played note, the second candidat of the previous
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Fig. 2. Pitch detection and Octave Selection for a synthetic
signal.
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Fig. 3. Pitch detection and Octave Selection for guitar.

analysis, in this case the true note become the second choice.
Note that the perfect fourth share some harmonics in the even
part but don’t share its fundamental frequency.

4. APPLICATION TO THE OCTAVE PROBLEM

In this section we analyse the octave problem. The octave
problem appears when a note an its octave are played together.
They share the same periodicity and the even harmonics of the
played notes are amplified by the harmonics of the Octave.
For the analysis we assume that the fundamental frequencies
are known. In spectral analysis there is, at least, two way for
estimating even and odd frequencies. The first one consist on
finding all the peaks in the spectrum, by peak picking, and by
paying attention to don’t miss some of them otherwise an odd
harmonic can become an even harmonic and vice-versa, an-



other point is the inharmonicity of the signal. For finding the
peaks we have to adjust, from one peak to the next one, the
distance and searching a local maximum around it. The sec-
ond method is equivalent to the proposed method, it consist
on computing the spectra of the matrixXP , define before, and
taking the average trough the time dimension, it’s a Welch’s
periodogram, then the even harmonics are the even samples
of the spectrum.

4.1. Note plus its Octave

Here a note is played with and without its octave, recorded in
the same condition as before with an acoustic guitar. We com-
pare the results of the proposed method with the first spectral
technics (with peak picking). The second spectral method ex-
plain before give very similar result than the proposed one
(temporal) so we just show our proposed method. The results
(Fig. 4) are poor for the two methods due to the coloration of
the spectra.
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Fig. 4. Octave problem, a note with its octave.

We have decided to add in our framework another one
preprocessing, for the rest of the simulation we will work in
the prediction error of the signal. The signal is modeled as an
autoregressive model of order ten, the prediction error is the
residual. And we defined that a note can’t be interpreted as its
octave but a note with its octave can be interpreted as the note
alone.

The results (Fig. 5) are better for the two methods. The
dashed line is the upper value of the notes alone, in the two
cases we make one error.

4.2. Note plus its first two octaves

In this part the notes are compared to the case where the first
two octaves are present simultaneously. The analysis is per-
formed at the fundamental frequency (f0), at twice and triple
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Fig. 5. Octave problem in the prediction error, a note with
its octave with the temporal method (top) and the spectral
method (bottom).

of the frequency. For a visibility problem we don’t show the
result for the notes alone and for an evident reason the analy-
sis is done on the first octave (midi code40 to 52).

The results in Fig. 6 are also good for the two methods.
The analysis at the fundamental frequency find the next oc-
tave, at the first octave we found the2nd octave and after
there is nothing.

4.3. Note plus its second octave

Now we compare the two methods for the case of a note with
its second octave (an octave is missing). The second octave
influence one harmonic over four from the fourth harmonic,
so the result of the analysis sould be slightly similar to the
previous analysis. Fig. 7 shows the result, we know which
octave is the last one but nothing between the note and the
octave, the only possibility for solving this problem is to esti-
mate the envelope of the individual component of the signal.
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Fig. 6. Octave problem in the prediction error, a note with its
first and second octaves. Temporal method (top) and Spectral
method (bottom).

4.4. Parameters used

The records were performed with a sampling frequency of
44100 Hz with a normal acoustic guitar, the sound card use
is a Firebox from Presonus. The period of each analysis is
resampled to512 which allow a significant number of decom-
position for the Even and Odd decomposition. The parameter
p of thegeneralized ACF is set to1. The order of the pre-
dictor used for the prediction error is10 and the time duration
of each analysis is250 ms.

5. CONCLUSION AND FUTURE WORK

A novel pitch determination algorithm is proposed using the
separation of the Even and Odd parts of a cyclic signature of
the signal. The ratio of the even and odd parts can determine
the octave of the note. Simulations on synthetic and true sig-
nal show the potential of the proposed method, which can be
improve by adding some constraints on the pitch candidat. A
temporal vision for the estimation of the present octave in the
signal is proposed, the results are compared to a more opti-
mised method reach similar results. Although the intermedi-
ate octave problem is not solved we will extend our algorithm
by including the estimation of the spectral envelope.
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