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Abstract— Cognitive radio devices will be able to seek and
dynamically use frequency bands for network access. This will
be done by autonomous detection of vacant sub-bands in the
radio spectrum. In this paper1, we propose a new method for
blind detection of vacant sub-bands over the spectrum band.
The proposed method exploits model selection tools like Akaike
information criterion (AIC) and Akaike weights to sense holes
in the spectrum band. Specifically, we assume that the noise
of the radio spectrum band can still be adequately modeled
using Gaussian distribution. We then compute and analyze
Akaike weights in order to decide if the distribution of the
received signal fits the noise distribution or not. Our theoretical
result are validated using experimental measurements captured
by Eurécom RF Agile Platform. Simulations show promising
performance results of the proposed technique in terms of sensing
vacant sub-bands in the spectrum.
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I. INTRODUCTION

Recent results published by Federal Communications Com-
mission (FCC), see [1], concluded that spectrum utilization
depends strongly on time and place. In this setting, it was
also concluded that allocated bands are sometimes under
utilized. Traditional approach to spectrum management is very
inflexible in the sense that frequency bands are exclusively
licensed to users and each system has to operate within a
limited frequency band. However, with most of the spectrum
being already allocated, it is becoming exceedingly hard to
find vacant bands to either deploy new services or to enhance
the existing ones. This spectrum limitation has had profound
impacts on the research directions of wireless communications
community.

Cognitive radio has been proposed as the means to promote
efficient utilization of the spectrum by exploiting the existence
of spectrum holes [2]. The spectrum use is concentrated on
certain portions of the spectrum while a significant amount of
the spectrum remains unused. These holes can be classified
into three types [3]:

1) Black spaces, which are occupied by high power inter-
feres some of the time,

2) Grey spaces, which are partially occupied by low power
interferes,

1The work reported herein was partially supported by the European projects
E2R and SENDORA and National projects GRACE and IDROMEL.

3) White spaces, which are free, no one send information
on this band, but it is occupied by natural and artificial
forms of noise.

In this paper we focus on sensing white spaces.
Spectrum sensing has been identified as a key enabling

cognitive radio to not interfere with primary users, by detecting
in reliable way primary users signals. Thus classical sensing
techniques are based on primary user modulation type, power,
frequency and temporal parameters. Spectrum sensing is often
considered as a detection problem. Many techniques were
developed in order to detect the holes in the spectrum band.
Focusing on each narrow band, existing spectrum sensing
techniques are widely categorized into energy detection [4]
and feature detection [5]. However, the performance of the
energy detector is susceptible to unknown or changing noise
levels and interference. In addition, the energy detector does
not differentiate between modulated signals, noise, and inter-
ference but can only determine the presence of the energy.
It does not work if the signal is direct-sequence or frequency
hopping signal, or any time varying signal. On the other hand,
cyclostationary models have been shown in recent years to
offer many advantages over stationary models. Thus, cyclo-
stationary feature detection performs better than the energy
detector. However, it is computationally complex and requires
significantly long observation time.

In this paper, we propose a new method to sense vacant
frequency sub-bands over the spectrum band for cognitive
radio communications. The idea of the proposed technique
is based on scanning the frequency band to locate white
spaces (spectrum holes) in the spectrum. The vacant sub-
bands can then be used of cognitive radio communication
without affecting primary system quality of service (QoS).
The technique exploits model selection tools like Akaike
information criterion (AIC) [6] and Akaike weights [7]. AIC
was recently used in the literature to estimate the number of
significant eigenvalues of the covariance matrix of a given
observation vector in [8]. The main goal within our contri-
bution is to exploit Akaike weights information in order to
decide if the distribution of the received signal fits the noise
distribution. Specifically, the proposed technique compute the
Akaike weights and, depending on these results, we can
conclude on the nature of the sensed sub-band.

The remainder of the paper is organized as follows. In
Section II, we revisit the AIC model selection tool and present



the problem statement. In Section III, we give a brief review
of model selection using AIC: the AIC is presented and the
Akaike weights are derived. The detection approach based
in model selection is developed in Section IV. Finally, we
present some simulation results of the proposed technique in
Section V. Section VI concludes the paper.

II. PROBLEM STATEMENT

Our goal is to detect vacant sub-band over the spectrum
band exploiting the Akaike Infirmation Criterion (AIC). It is
well known that ambient noise can be modeled using Gaussian
distribution. Thus, we propose to analyze Akaike weights
information in order to determine the position of vacant band
in the spectrum of the received signal. This section gives a
short review of the basic ideas.

It is assumed that the samples of the received signal
are distributed according to an original probability density
function f , called the operating model. The operating model
is usually unknown, since only a finite number of observations
is available. Therefore, approximating probability model must
be specified using the observed data, in order to estimate the
operating model. The approximating model is denoted as gθ,
where the subscript θ indicates the U -dimensional parameter
vector, which in turn specifies the probability density function.

In information theory, the Kullback-Leibler distance de-
scribes the discrepancy between the two probability functions
f and gθ and is given by [6]:

D(f‖gθ) = E{log fX(X)} − E{log gθ(X)}
= −h(X)−

∫
fX(x) log gθ(x)dx (1)

where the random variable X is distributed according to
the original but unknown probability density function f , and
h(.) denotes differential entropy. This distance measure is
not directly applicable, since the original probability density
function f is not known. It is known, however, that the
Kullback-Leibler distance is nonnegative, i.e., D(f‖gθ) ≥ 0.
This implies that the Kullback-Leibler discrepancy,

−
∫

fX(x) log gθ(x)dx = h(X) + D(f‖gθ) (2)

approaches the differential entropy of X from above for
increasing quality of the model gθ. The differential entropy
of X is reached if and only if f = gθ. Applying the weak law
of large numbers, this expression (2) can be approximated by
averaging the log-likelihood values given the model over N
independent observations x1, x2, ..., xN according to:

−
∫

fX(x) log gθ(x)dx ≈ − 1
N

N∑
n=1

gθ(xn) (3)

The Kullback-Leibler discrepancy (2) depends on the es-
timated vector θ, which itself is a function of the actual
observations x1, x2, ..., xN . If another set of observations
x̃1, x̃2, ..., x̃N is used, a different Kullback-Leibler discrepancy

would be obtained. The expected Kullback-Leibler discrep-
ancy is given by:

−Eθ

{∫
fX(x) log gθ(x)dx

}
(4)

where the expectation is taken with respect to the distribution
of the estimated parameter vector θ. This expression (4) cannot
be computed, but estimated.

III. MODEL SELECTION USING AKAIKE INFORMATION
CRITERION

The information theoretic criteria was first introduced by
Akaike in [6] for model selection. Assuming a candidate
model, the idea is to decide if the distribution of the observed
signal fits the candidate model. The AIC criterion is an
approximately unbiased estimator for (4) and is given by:

AIC = −2
N∑

n=1

log gθ̂(xn) + 2U (5)

The parameter vector θ for each family should be estimated
using the minimum discrepancy estimator θ̂, which minimizes
the empirical discrepancy. This is the discrepancy between the
approximating model and the model obtained by regarding
the observations as the whole population. The maximum
likelihood estimator is the minimum discrepancy estimator for
the Kullback-Leibler discrepancy.

Consider a probability distribution parameterized by an
unknown parameter θ, associated with either a known proba-
bility density function or a known probability mass function,
denoted as fθ. As a function of θ with x1, x2, ..., xN fixed,
the likelihood function is:

L(θ) = fθ(x1, x2, ..., xN ) (6)

The method of maximum likelihood estimates θ by finding
the value of θ that maximizes L(θ). The maximum likelihood
estimator (MLE) of θ is given by:

θ̂ = argθ max L(θ) (7)

Commonly, one assumes that the data drawn from a par-
ticular distribution are i.i.d. with unknown parameters. This
considerably simplifies the problem because the likelihood
can then be written as a product of N univariate probability
densities:

L(θ) =
N∏

n=1

f(xn | θ) (8)

and since maxima are unaffected by monotone transforma-
tions, one can take the logarithm of this expression to turn it
into a sum:

L∗(θ) =
N∑

n=1

log f(xn | θ) (9)

Consequently, the expression of the maximum likelihood in
our case is:

θ̂ = argθ max
1
N

N∑
n=1

log gθ(xn) (10)



The maximum of this expression can then be found numer-
ically using various optimization algorithms. This contrasts
with seeking an unbiased estimator of θ, which may not
necessarily yield the MLE but which will yield a value that (on
average) will neither tend to over-estimate nor under-estimate
the true value of θ. The maximum likelihood estimator may
not be unique, or indeed may not even exist.

Akaike weights can be computed using (5), in order to
decide if the distribution of the received signal fits the noise
distribution or not. The Akaike weights can be interpreted as
estimate for the probabilities that the corresponding candidate
distribution show the best modeling fit. It provides another
measure of the strength of evidence for this model, and is
given by:

Wj =
e

1
2Φj

∑N
i=1 e

1
2Φi

(11)

where Φj denotes the AIC differences defined by:

Φj = AICj −mini AICi (12)

where mini AICi denotes the minimum AIC value over all
analysis windows. The Akaike weights allow us not only
to decide if the distribution of the received signal fits the
Gaussian distribution, but also provide information about the
relative approximation quality of this distribution.

IV. BLIND DETECTION APPROACH BASED ON
MODEL SELECTION

In this section, we present a new approach to detect the idle
sub-bands based on the applications of the Akaike weights
introduced by Akaike in [6] and [7].

We consider that the ambient noise can be modeled using
Gaussian distribution and its norm can be modeled using
Rayleigh distribution. In particular, we scan the spectrum band
of the received signal with the mean of frequency sliding
window. We then compute Akaike weights of the band of
interest. Finally, we fix a threshold in order to decide on the
nature of the received signal. The flow chart of the proposed
algorithm is shown in Fig. 1, which can be implemented in
four steps:

1) Distribution Parameters estimation:
In the first step of the algorithm, we choose the size of the

observed window in order to estimate parameters θ̂ over this
window using (10). As an exemple, the window is set to 200
kHz for GSM signals, which is equal to the GSM bandwidth.

2) Computing AIC and Akaike weights:
In the second step, we compute the value of AIC and then

Akaike weights using (11). Once we get the corresponding
Akaike weights, we shift the window by one sample till the
end of the band.

3) Bandwidth Division:
The third step gives the position of vacant sub-bands over

the spectrum. In fact, the maximum value of Akaike weights
determines the position of one vacant sub-band (called refer-
ence sub-band). We then divide the spectrum with respect to
the reference sub-band as shown in Fig. 2.

Distribution Parameters 

estimation 

Calculate the Akaike 

weights

> Threshold

No

Yes

Decide Occupied 

Band

Decide Vacant Band

                                .

Input Signal

Compute AIC

Bandwidth Division

Fig. 1. The flow chart of the blind spectrum sensing algorithm based on
model selection using Akaike weights

4) Threshold Decision:
Finally, we fix a threshold of Akaike weights measurements.

Here, we can decide whether primary user signal exists or not.
If the computed Akaike weights of Gaussian distribution is
lower than the threshold, we can conclude that any primary
user signal exists (vacant sub-band). Then, a secondary user
can utilize the sub-band. Otherwise, if the computed Akaike
weights of Gaussian distribution are larger than the threshold,
the decision information of the algorithm is the presence of
the primary user (occupied sub-band).

V. SIMULATION RESULTS

The proposed blind detection approach is evaluated using
Eurécom RF Agile Platform [9]. It covers an RF band from
200 MHz to 7.5 GHz, with a maximum bandwidth of 20
MHz. It is able to receive and transmit almost all the exist-
ing commercial Radio Access Technologies. Concerning the
transmitted power, the target is comparable to existing GSM
terminals (+21 dBm). On the receiver side, the noise figure
is from 8 to 12 dB, depending on the frequency band. The
RF equipment include up to 4 antennas and 4 RF chains.
In addition, it allows for experimenting with system on-chip
architectures for wireless communications.
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Fig. 2. Akaike weights for a baseband GSM signal at the carrier of 953
MHz.

At a first stage, we focus on GSM signals at carrier of
953 MHz with a bandwidth of 7680 MHz. We capture 10
realizations spaced by 1 ms and apply the proposed technique
to evaluate the performance of the blind algorithm in terms of
primary user detection signal. Time channel samples are stored
in a vector of size N (with N equal to 20480). Parameters θ
are estimated over 533 samples which correspond to the GSM
bandwidth (equal to 200 kHz).

Fig. 2 depicts the Akaike weights obtained from the base-
band GSM signal. It is clearly shown from Fig. 2 that vacant
sub-band detection turns out to do a simple peak detection.
Accordingly, we adopt this strategy in a first step and improve
our algorithm by fixing a threshold of 1% below or above to
decide whether the received signal is data or noise respectively.

At a second stage, we have also considered a WiFi signal at
the carrier of 2430 MHz. The size of the window is around 500
kHz. Akaike weights with Gaussian distribution are presented
in Fig. 3, for the baseband WiFi signal. The threshold is
set 1%. Similarly to the case of GSM sensing, we obtain
interesting results in terms of primary user signal detection.
Fig. 3 shows also that, for Akaike weight value larger than
the threshold, we can locate vacant sub-bands, and, for Akaike
weights lower than the threshold, we decide the presence of
data signal.

VI. CONCLUSION

Although the importance of blind sensing in the conception
of cognitive radio devices, only few algorithm exist in the
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Fig. 3. Akaike weights for a baseband WiFi signal at the carrier of 2430
MHz.

literature. In this paper, we propose a new detection method of
vacant sub-band in the radio spectrum. The proposed algorithm
using AIC and Akaike weights is based on model selection
of the received signal distribution. The obtained performance
results are promising, as has been shown by simulation. The
proposed algorithm exhibits very interesting results in term of
primary user signal detection in a perfectly blind way.
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