
Ontology-Based Secure XML Content Distribution

Mohammad Ashiqur Rahaman, Yves Roudier, Philip Miseldine, and Andreas Schaad

SAP Research, EURECOM
{mohammad.ashiqur.rahaman,

philip.miseldine,andreas.schaad}@sap.com,
{yves.roudier,mohammad.rahaman}@eurecom.fr

Abstract. This paper presents an ontology-driven secure XML content distribu-
tion scheme. This scheme first relies on a semantic access control model for XML
documents that achieves three objectives: (1) representing flexible and evolvable
policies, (2) providing a high-level mapping and interoperable interface to docu-
ments, and (3) automating the granting of fine-grained access rights by inferring
on content semantics. A novel XML document parsing mechanism is defined to
delegate document access control enforcement to a third party without leaking the
document XML schema to it. The Encrypted Breadth First Order Labels (EBOL)
encoding is used to bind semantic concepts with XML document nodes and to
check the integrity of a document.

1 Introduction

The increasing standardization of XML processing (e.g. XML Schema, DTD, XSL)
makes it possible for peer organizations to cooperate and to integrate their information
systems through XML document production and exchanges. Documents are structured
and modeled through XML schemas in peer organizations. Schemas may contain valu-
able and confidential information about resources, strategies, services, or information
system structure closely tied to business processes which organizations do not want to
expose. The data model may evolve due to changes in the organization, for instance
after a merger; existing data exchanges with peers should however be maintained. We
claim that, although data models may differ from one organization to another or vary
with time, the semantics of document data units like subtrees or nodes might constitute
a more stable and interoperable interface between organizations. Semantic Web lan-
guages like RDF [3] and OWL [2] make it possible to share an ontology describing a
conceptual data model, independently from XML data structure yet that can be mapped
to instances of XML schemas. We also claim that access control can be defined at the
semantic level notably to achieve a simpler expression of policies with complex organi-
zation rules and constraints. First, expressing access rights over a single concept might
result into granting authorizations to multiple XML documents or portions thereof. Sec-
ond, and more importantly, authorizations on concepts might be automatically inferred
from the expression of the right to access a related concept. Third and finally, as shown
in related work like Rei [13], ontologies can formally describe an access control model
by representing policy concepts as first-class objects. We contend that this feature is
particularly suitable to inter-organizational document exchange systems, by making it

D. Gritzalis and J. Lopez (Eds.): SEC 2009, IFIP Series 297, pp. 294–306, 2009.
c© IFIP International Federation for Information Processing 2009

Ontology-Based Secure XML Content Distribution 295

Ontology-based XML Content Distribution System

6.b
XML Content User

Shared Ontology among
Providers, Distributor & Users

Encrypted & Encoded
XML Content

SPARQL Engine

SPARQL Query
Generator

Submit

OWL/RDF triples of
document concepts

(3.b)

Encrypted & Encoded
XML content

Peer Company
(XML Content

provider)

Encrypted & Encoded
XML Content

Authorization
Policy

Deliver

OWL/RDF triples of
policy

Query
Results (4)

Contained Concepts

SPARQL
 Query (5.a)SPARQL

Query (3.a)

(5.b)

Requested Concepts (2)

XML content
Deliverer

Permit / Deny (6.c)

Content
Signatures (7)

Query Results (6.a)
Authorized Concepts

XACML Engine

Register (1)

Fig. 1. The Ontology-based XML Content Distribution System. The numbered lines depict the
sequence of operations upon a registration request.

possible to store incremental versions of access control policies, possibly timestamped
in the same fashion as documents to which they apply, thereby easing user revocation.

This paper describes access control mechanisms addressing all three objectives: our
solution integrates ontologies for describing and reasoning over documents and autho-
rization policies, which we implement using SPARQL [4] together with XACML [11].
We assume a large scale system where documents have to be distributed to many users:
scalability is an essential issue here, and the content providers can not serve content to
a large number of users nor to authenticate each of them. Documents may be updated,
even after they are initially released by their provider. We assume a third party which
we term a distributor, takes care of the transient storage and of the distribution of doc-
uments. Its role is important since users may not be online when a document is sent
around. Message oriented middleware (MOM) or publish/subscribe paradigms provide
examples of middleware adapted to such tasks. Content providers and users may pertain
to different organizations and even be competitors: not every document should thus be
readable by any user (Fig 1).

2 Solution Overview

Semantic data model. A domain-specific ontology provides the common language to
communicate thecontentsof anXMLdocument.Fig 2showsasemanticgraph ofconcepts
as it may be defined through such an ontology (e.g. work order, production and quality-
inspection). It also illustrates how these concepts may be mapped to XML documents in
a manufacturing production environment scenario. Two document providers are consid-
ered here, the production department and the quality inspection company. Conceptually,

296 M.A. Rahaman et al.

WorkOrder

QualityInspection Production

QualityInspection
Details ResourceDetails ProductionDetails

subClassOf subClassOf

hasWorkOrderSpecifics hasWorkOrderSpecifics
hasResourceSpecifics

hasResourceSpecifics

BusinessUnit

SalesDept ProductionDept

subClassOf subClassOf

QualityInspection
Dept

subClassOf

hasWorkOrderhasWorkOrder

 …………
<ProductionOrder id = “4”>
 <ProductSpecification>
 <ProductType> consumer </>
 <Quantities> 50 </>
 <Materials>
 <!—Details of raw meterials>
 </Materials>
 </ProductSpecification>

 <ResourceSpecification>
 <MachineOperator id=”23”>

<!-- Employee Info-->
 </MachineOperator>
 <MachineToOperate>
 <Machine name=”mixingMachine”
 model=”GHN2006”> </>
 <OperationProtocol>
 <!-- Operation Details-->
 </OperationProtocol>
 </MachineToOperate>
 </ResourceSpecification>
</ProductionOrder>

 ……………

……………
<QualityInspectionOrder id=”3”>
 <QualitySpecification>
 <ConsignmentQuality>
 <!—Consignment details-->
 </ConsignmentQuality>
 <QualityEvaluation>
 <EvaluationMetric>
 <ProductionTime>30 days</>

<DeliveryTime>2 days</>
 </EvaluationMetric>
 <QualityEvaluation>
 </QualitySpecification>

 <ResourceSpecification>
 <QualityTester id=”23”>

<!-- Employee Info-->
 </QualityTester>
 <ProductToInspect>
 <!--Production Order Info-->
 </ProductToInspect>
 </ResourceSpecification>
</QualityInspectionOrder>

………………

WorkOrderMeta
data

hasMetadata

BusinessUnitMeta
data

hasMetadata

Fig. 2. A semantic graph of work order document concepts in a production domain. The ’Produc-
tion’ work order, ’QualityInspection’ work order and ’ResourceDetails ’ concepts are mapped to
the corresponding XML data model excerpts using a mapping relation, ∂ .

the metadata (e.g. ID, priority level (urgent, normal, escalated), issue date) for all work
orders (production order, quality-inspection order) would be the same for all work orders.
However, each work order contains specific details that will be taken into account by a
specific business unit. For example, the quality inspection order would carry information
regarding the specification of the product quality and the metrics to measure them.

Document encoding. Users and providers will not share all existing XML schemas,
since these describe the provider’s information system organization. Authorizations
will be given to users to access contents related with particular semantics, as described
through the concepts of an ontology. We assume the distributor is trusted by providers
to host and to selectively deliver their contents to authorized users only. The distribu-
tor has access to the semantics of every node he receives from the provider. While it
can decide whether to forward that node to a user, it should not know the structure of
complete documents. On the other hand, an authorized user should clearly be able to
read some content he receives. Such a secure exchange of documents can be achieved
through the separate encryption of each document node with a secret that the provider
and the consumer share. At the middleware level, a concept and the document portions
to which it maps are encoded together by a content provider. The concepts described in
that encoded document will be accessible by distributors. The document encoding will
however hide the structure of the schema underlying the document and protect the con-
tent through encryption and integrity protection measures. Providers will define explicit
access control rules and will also likely issue inference rules describing how to generate
new access control rules. For instance, additional access rights might be granted on a
subclass of a granted concept. Some inference rules might also describe constraints and
prevent a single user from being granted two exclusive authorizations. The distributor
enforces the authorization policy defined by the provider. XACML uses the notion of
subjects, resources, and actions, to describe access control rules. In our setting, a user
would be modeled as a subject, and ontological concepts as resources. Actions would
largely consist in read, delete, and write, to describe the usage governing the mapped
XML content.

Ontology-Based Secure XML Content Distribution 297

AuthorizationPolicy

XMLContentUser

Credential

hasCredential

haXMLContentUser

XML Content
Provider

hasAuthorizationPolicy

ConcepthasAccess

AuthorizationPolicy

XMLContentUser

Address Credential

hasAddress hasCredential

haXMLContentUser

XML Content
Provider

hasAuthorizationPolicy

ConcepthasAccess

ProviderMetadatahasProviderdata

PolicyMetadatahasPolicydata

(a) (b)
XML provider user_credentials Ci

P1 Cred1 WorkOrder
P2 Cred2 QualityInspection

O
O1
O2

XML provider user_credentials Ci

P1 Cred1 WorkOrder
P2 Cred2 QualityInspection

O
O1

O2

Uadd

www.one.com
www.two.com

Fig. 3. The table represents the policy specification by the XML content providers. Policy ontol-
ogy is maintained by the distributor. (a) Initial policy ontology.(b) Updated policy ontology.

Interaction Phases. We consider five basic phases in our document distribution sys-
tem. In the first phase the provider sends encoded and encrypted XML content to the
distributor using the EBOL technique detailed in Section 4 (Fig 1). Associated autho-
rization policies might also be sent to the distributor which will enforce them on behalf
of the provider. In a second phase, the user registers for some concepts with the distrib-
utor. The user has to provide valid credentials to access XML content mapped to the
requested concept as discussed in Section 3. Credentials might for instance consist of
certificates issued by some authority. Depending on the applicable authorization policy,
the distributor then sends a set of content signatures (cf. Section 4) to the authorized
users. The content signature describes the encoding, and serves as a mean to verify the
XML content subsequently distributed. In a third phase, the distributor performs a se-
lective delivery of relevant XML contents to registered users. It determines and extracts
the authorized content out of the documents sent by one or multiple providers. This
process is performed over the encoded and encrypted XML content. The user verifies
the received XML content, both semantically and structurally, in a fourth phase using
the content signatures. The fifth phase is the unregistration of a user. It may occur at
user’s request, or be forced by the distributor if the user credentials expired or if the
provider’s policy is changed. This final operation is outside the scope of this paper.

3 Authorization Policy

3.1 Ontology-Based Data Model

This section describes the ontology-based data model used to express flexible authoriza-
tion policies. A concept Ci is an abstraction that can be communicated among peers. An
ontology is a shared set of concepts in a domain. The ontology is defined primarily by
the notions of class, subclass, and properties representing concepts and their relation-
ships using OWL [2].

298 M.A. Rahaman et al.

Definition 1. Concept Containment: Let C be the collection of all concepts and Ci,Cj

∈ C . If there is a subclass hierarchy from Ci to Cj denoted as Ci ⇒,,⇒ Cj then Ci

contains Cj and noted as Ci � Cj.

Example. Fig 2 shows a collection of concepts C = {BusinessUnit, BusinessUnit
Metadata, etc.} for a production hall. WorkOrder contains QualityInspection and
Production, i.e. WorkOrder � QualityInspection, WorkOrder � Production. �

3.2 Ontology-Based Authorization Policy

We describe an ontology-based authorization policy as a set of explicit rules constructed
as follows ([x+] is used to denote a non-empty set of elements of type x):

1. Rules take the general form [user credentials, [Ci]+,O]+ stating that access over
one or more concepts Ci is allowed to the user holding user credentials provided
O is true.

2. Expression O characterizes relationships and constraints verified by browsing the
semantic graph (such as of Fig 2). This expression enables a provider to restrict
eligible concepts of the ontology, and may be parameterized by user credentials or
elements of [Ci]+, as described in Section 5.

Fig. 3(a) shows an example of a policy specified by two XML content providers P1(i.e.
Production department) and P2 (i.e. Quality assurance company) of the Fig 2. O1 for the
user with credential Cred1 is: if a user is allowed to access the concept WorkOrder then
he is also allowed to access to all the contained concepts of WorkOrder. O2 for the user
with credential Cred2 is: he is allowed to access the concept QualityInspection if he
has access to the concept ResourceDetails. The distributor describes such policies of
the providers and generates policy instances as an OWL triple (see Fig 1 and 3) using
SPARQL. Any change in the policy such as adding an address parameter for request
filtering or adding metadata about provider and policy (shown in Fig 3(b)) would in-
troduce additional concepts and relationships among them. For example, P2 may add a
constraint, O2, expressing that the user is allowed to access QualityInspection if any
other provider allows the user the same access right.

4 XML Parsing, Encoding and Encryption

Encoding requires parsing the XML document: we use a breadth-first order technique
to parse the XML nodes level by level from root to the leaves and to encode structure
and conceptual information on the fly (Fig 4). This section describes the mapping of
concepts to XML data units and the parsing, encoding, and encryption method in detail.

4.1 Ontology Mapping to XML Structure

An XML document, d, identified by docid (e.g. URI, RDF) is a collection of parsed
XML nodes and a document portion di is a subtree rooted at node i of d. A mapping
defines relations (∂) from a concept and its sub-class hierarchical path to document
portions di which is used to determine the XML content associated to concepts. Such a
mapping is illustrated by the following example.

Ontology-Based Secure XML Content Distribution 299

a

cb

d e f g

a

cb

d e f g
7,26,25,24,2

3,12,1

1,0 a

cb

d e f g
103,2787,2766,2748,27

35,1419,14

7,8

(I) XML Document (III) Encrypted BOL (EBOL)(II) Breadth First Order Labeling (BOL)

Fig. 4. (I) XML document tree. (II) BOL labeling. (III) Encrypted BOL labeling. Solid and dotted
lines respectively depict explicit (I) and implicit (II,III) hierarchy representations and storage.

Example. In Fig 2, the concepts ProductionDetails and ResourceDetails, identified
by the paths over the semantic graph BusinessUnit.ProductionDept.hasWorkOrder.
Workorder.Production.ProductionDetails and ...Production.ResourceDetails are
mapped to the document portions rooted at <ProductSpecification> and
<ResourceSpecification> of the production department’s XML data model. In
the quality assurance company’s data model, the concepts ResourceDetails and
QualityInspection, identified by the path expressions ...QualityInspection.
ResourceDetails and ...QualityInspection are mapped to the document portions
rooted at <ResourceSpecification> and <QualityInspectionOrder>
respectively. �

4.2 Encrypted Breadth-First Order Labels for XML Parsing

Once the mapping is done the provider parses the XML documents as follows: sibling
nodes are stored into a FIFO queue and associated a BOL (an integer pair as defined
below) capturing various structural relationships of the parsed XML node (i.e. parent-
child, siblings, left/right child) with a minimal memory footprint.

Breadth First Order Labels (BOL): A BOL is a pair of integers associated to an
XML node as it is parsed in breadth first order. The first integer in the pair is the order
associated with a node whose left siblings and ancestors have already been parsed and
thus have associated BOLs. The second integer is the depth of the node in the document
which is increased by one as new depth level is reached. The BOL starts with (1,0) as
illustrated in Fig. 4 (the example given is a binary tree, but BOLs can be defined on any
type of tree)

Let a be the parent of two nodes b,c ∈ di. We denote its BOL as Ba. Let forder and
flevel be two functions operating on a BOL respectively returning the BOL order (first
attribute of the BOL pair) and BOL depth (second attribute). Let us assume that b is the
last child of a parsed and that c is to be parsed next. c will be associated a BOL with
forder(Bc) = forder(Bb)+ 1. flevel(Ba) uniquely identifies the depth level of the node a
in d. The order of the BOL exhibits the following structural properties:

1. forder(Ba) uniquely identifies node a in document d and the subtree da rooted at a.
2. Let Ba

Highest be the largest BOL order of a parsed node in document portion da; then
Ba

Highest > forder(Bz) > forder(Ba), where z ∈ da.
3. forder(Bc) > forder(Bb) > forder(Ba).

300 M.A. Rahaman et al.

c

gf

Document Tree
doc1

b
c
2

FIFO Queue

b

ed

(3,1)(2,1)

(1,0) a

cb
(35,14)(19,14)

(7,7) Ontology mapping

BOL
Computation

EBOL
Computation

b

ed

a

c
2
d

0
a
1

2
d
e

e f
g

c

gf

a

(4,2) (5,2) (6,2) (7,2)

3

d
e
f
g

Document
Encoding

&
Encrypting

ed gf
(48,27) (66,27) (87,27) (103,27)

a

cb

ed gf

[Cia, Epa]

[Cib,Epb] [Cic,Epc]

[Cig,Epg][Cid,Epd] [Cie,Epe] [Cif,Epf]

Node Nx:(doc1,Ex,ExHighest) Cix: (Nx,Ci) CEx: (Cix, Ix)
a (doc1,(7.7),(35,14)) (Na,Ca) (Cia, Ia)
b (doc1,(19.14),(19,14)) (Nb,Cb) (Cib, Ib)
c (doc1,(35.14),(35,14)) (Nc,Cc) (Cic, Ic)
- - - -

[CEx,Ciz,]
[CEa]

[CEb,Cia,]
[CEc,Cia]

-

Epx

Epa

Epb

Epc

-

Encoding

Fig. 5. Execution steps of the XML processing by document providers

The first property is used to identify and extract a specific document portion from
a document. Combined with the depth level of a node, that property ensures that any
unexpected move, copy or replace activity in the document is detected. The second
property imposes an upper bound on the BOL of any queried node parsed in a document.
In effect, it detects if a node is added or deleted and which one it is. The third property
permits detecting any unintended swapping among the children in a received document
portion (subtree).

A BOL is by definition plain text and thus may reveal important structure specific
information (i.e. information leaking), such as number of nodes and thus the size of the
document and even hierarchical relationship among the nodes to an adversary. Encryp-
tion over such BOL numbers protects this undesired information from leaking.

Encrypted BOL (EBOL): Let Ba be the BOL of an XML node a. Let fe be an order
preserving encryption function [5]. The EBOL of a, denoted as Ea is a pair of integers
defined as : (fe(forder(Ba)), fe(flevel (Ba))). While fe(forder(Ba)) is performed for each
node a, fe(flevel(Ba)) is performed if a is the first node in a level.

The EBOL preserves exactly the same properties of BOL (see Fig 4). The EBOL
order value hides the actual node number and its depth level as opposed to the BOL
attributes and thus prevents information leaking.

4.3 Encoding Method

In the following, encoding elements are introduced to describe concepts that are mapped
to data units (i.e. subtrees or nodes) as well as the properties of these data units and their
encryption.

Node Identifier: Let x be a node in di. The node identifier of x denoted as Nx is a tuple
formed by three elements (docid,Ex,Ex

Highest), where docid is the document identifier
of di, Ex is the EBOL of x, Ex

Highest is the highest EBOL in the document portion rooted
at x. A node identifier is unique for all documents in the system. The depth included in
Ex uniquely determines the node’s level. Ex and Ex

Highest together determine the parsed
document portion. Finally, docid resolves appropriate XML nodes of the associated
document with respect to the same concept.

Node Integrity: The node content consists of attributes, their values and text content
inside the tag but not any descendants of the node. The node integrity code is a hash
computed out of the concatenation of a node identifier and content, denoted as Ix =
H(Nx,Ctx), where Nx is the node identifier, Ctx is the content of x, and H is a one way
collision resistant hash function.

Ontology-Based Secure XML Content Distribution 301

Content Signature: Let Ci and x be a concept and an XML node respectively. The con-
tent signature, denoted as Cx

i , is a pair (Nx,Ci), where Nx is the node identifier of x and
Ci is a concept mapped to x. The content signature incorporates semantic information
such as conceptual and structural information attached to an XML nodes.

Content Encoding: An encoding information CEx of a node x is CEx = (Cx
i , Ix), where

Cx
i is the content signature and Ix is the node integrity respectively. Each XML node x

is encoded as a pair [CEx,C
z
i], where CEx is the encoding information of node x and Cz

i
is the content signature of the parent node z of x. For the root node of a document the
encoded node is [CEx].

Document Encryption: Each encoded node is encrypted using a key shared between
the content provider and the content user. After encryption, an XML node x is repre-
sented as [Cx

i ,E
x
p], where Cx

i is the content signature of x and Ex
p is the encrypted value

of the content encoding pair [CEx,C
z
i] of the node x.

Fig 5 depicts the encoding and encryption processing of XML nodes using EBOL
described above.

5 Access Control Enforcement and Distribution

Semantic Access Control. The distributor maintains the shared OWL ontology describ-
ing the document concepts (Fig 2). It also maintains an OWL ontology describing the
providers’ authorization policies (Fig 1) so as to enforce access control through selec-
tive data distribution. Deciding on eligible concepts for a user as well as finding which
access control rules apply requires reasoning on these ontologies. We suggest the use
of SPARQL [4] as a way to implement such inference rules. A SPARQL query can be
crafted to find concepts which a user can be implicitly granted access to starting from
one concept to which the user is explicitly granted access. The result to such a query
would for instance consist in a set of concepts related through a subclass relationship
and that should equally be granted access according to the provider policy or to some
domain-specific knowledge. SPARQL queries over the document concepts allow us to
reason about the semantic graph patterns. SPARQL queries over the policy ontology
can also be used to reason and evaluate the policies by dynamically computing the ag-
gregated authorized concepts for a user. To this effect, the distributor would have to host
an engine like Joseki [1] to interpret queries.

The distributor must host a XACML engine to evaluate a registration request for
concepts and return a response (i.e. Permit/Deny) to the user. In case of a ”Permit”
it responds by sending the content signatures of the accessible concepts. (see Fig 1)
Upon the receipt of a XACML request for a set of concepts (1), the service determines
all the contained concepts of the requested concepts (by concept containment) to get
all the candidate accessible concepts. The XACML engine forwards such a request to
the SPARQL generator (2) to convert it into SPARQL queries (3.a) using the requested
concepts over the shared ontology represented as OWL triples (3.b). For instance, a
registration request for the concept WorkOrder from a user with credential Cred1 is
converted into the following SPARQL by the query generator:

PREFIX po: <http://www.owl-ontologies.com/Ontology1223675912.owl#>
SELECT ?subClasses
WHERE { ?subClasses rdfs:subClassOf po:WorkOrder. }

302 M.A. Rahaman et al.

The above SPARQL query returns all the subclass concepts of WorkOrder (4), i.e.
QualityInspection, Production. If any of these result concepts also has subclass con-
cepts then similar queries are performed recursively. To this end, multiple candidate
concepts are determined while the initial request might only be for one concept. In case
the user does not request for specific concepts then all the concepts in the ontology
are candidate concepts to be evaluated further. In particular, a similar query should be
performed starting from the most general concepts to determine all the concepts in the
domain. In order to determine the authorized concepts for the requested user, the above
query result (i.e. QualityInspection, Production) is then used into a further SPARQL
query (5.a) which evaluates associated policy triples from all providers (5.b). The result
of this query is the maximal set of aggregated concepts (possibly empty if none is per-
mitted) that are accessible to the requester (6.a). The rule O1 of provider P1 described
at Section 3.2 allows the requester to access the subclass concepts. The following query
is used to evaluate this rule:
PREFIX po: <http://www.owl-ontologies.com/Ontology1224765032.owl#>
SELECT ?concept
WHERE{{?user po:hasCredential po:Cred1}{?user po:hasAccess ?concept.}}

The first WHERE clause determines the users with credential Cred1 and the second
clause determines the accessible concepts for those users. If the result set contains the
QualityInspection and Production concepts then the XACML engine returns a ”Per-
mit” response to the user (6.b,6.c). The XML content distributor in the system then
extracts the content signatures of the authorized concepts by manipulating only the
encrypted and encoded content for the requested user and sends those as a response
to a successful registration (7). Otherwise, none of these concepts is accessible to the
requester and the XACML engine simply denies access (6.c).

Selective XML Content Distribution. The XML content distributor sends the encrypted
and encoded XML content to authorized users after identifying the appropriate XML
content. This can be handled by two functions auth list(U) and distribution list(D).
The former returns a maximal set of authorized concepts for a user U . The latter returns
the set of concepts for which the mapped XML nodes are currently distributed by the
distributor D. An encrypted XML content (i.e. [Cx

i ,E
x
p]) for an authorized user contains

node Nx, its content under encoding CEx, and concept Ci in the content signature, i.e.
Cx

i by definitions of Section 4.3. The selective delivery of XML content to an authorized
user U proceeds as follows:

1. Separate allowed concepts: find all Ci ∈ auth list(U) ∈ distribution list(D).
2. Determine allowed nodes: match concepts of auth list(U) with encoded concepts

in Cx
i

3. Extract associated encrypted and encoded XML nodes (i.e. [Cx
i ,E

x
p]).

4. Finally, send user U the encoded and encrypted XML nodes extracted in step 2.

6 XML Content Verification

Upon receipt of encrypted and encoded XML nodes, an end user is able to perform a
semantic verification followed by an EBOL-based verification. In the following, we use
AU to denote the list of content signatures and RU the set of encrypted and encoded
nodes received by the user U during registration and after delivery respectively. NA and
NR denote the set of node identifiers in AU and RU respectively.

Ontology-Based Secure XML Content Distribution 303

6.1 Semantic Verification

In order to detect any semantics-related authorization violation, the following verifica-
tion steps must be performed.

1. (C-I) have all concepts been received?
2. (C-II) have all XML nodes from different documents been received?
3. (C-III) do the document nodes correspond to nodes mapped with a desired concept?

The user U verifies whether all the concepts of AU it has access to are contained
in RU . The verification is as follows: (∀c ∈ AU∃r ∈ RU � (NR,Ci) = (N

′
A,C

′
i)), where

(N
′
A,C

′
i) is the content signature, if there is a concept in RU with an identical concept,

then all the authorized concepts have been received by U (C-I verified).
U then verifies whether it has received all XML nodes from different documents. It

checks a belong-to relation between all the document identifiers docid in the authorized
node identifiers of AU and the document identifiers doc

′
id of the received node identifiers

of RU . This check is as follows: (∀n ∈ NA∃r ∈ NR|(docid = doc
′
id)); i.e. for each node

in NA, if there is an identical document identifier in NR, then all the nodes have been
received by U (C-II verified).

(C-III) can be verified by C-I. Let Cr be a received concept then a user verifies
whether Cr belongs to AU , that is Cr ∈ AU . If this verification fails then the received
concept Cr is not a desired one.

6.2 EBOL-Based Verification

After a successful semantic verification, a user U can verify the following EBOL-based
integrity violations:

1. (S-I) has the node content been changed?
2. (S-II) has some XML nodes not been received?
3. (S-III) have some nodes been moved?
4. (S-IV) has the node order been changed?

U decrypts the received XML nodes in NR and traverses each document portion rooted
at r ∈ NR in breadth first order. Let x be the current visiting node. After decrypting an
encoded node x gives the following encoded node:

[x,Cx
i , [CEx,C

z
i]] = [x,< Nx,Ci >, [[< Nx,Ci >, Ix],Cz

i]]

U takes Nx from the outer Cx
i and x’s content, Ctx, and then computes the local hash

of x as I
′
x = H(Nx,Ctx) which is then compared with Ix. If any mismatch is found, the

node content has been changed (S-I verified).
U further checks the belong-to relation between all node identifiers of AU and the re-

ceived node identifiers of RU . This check is as follows: (∀a∈NA ∃r ∈NR|(Er,Er
Highest)

= (E
′
a,E

′a
Highest)); i.e. for each node in NA, if there is an identical node identifier in NR,

then all the nodes have been received by U (S-II verified).
The verification process continues as the value of the node identifier Nx in the outer

Cx
i must match with the inner node identifier Nx in CEx. If not, then an integrity violation

304 M.A. Rahaman et al.

is detected and the node x can be discarded immediately without knowing the precise
violation. To be precise, the elements of outer Nx are compared with the corresponding
elements of the inner one. (a) if forder(Ex) 	= forder(E

′
x), where E

′
x is in the inner Nx this

means an order change is detected. (b) if flevel(Ex) = flevel(E
′
x) then the depth level of

x in outer Nx is compared with the depth level of the received node in the inner Cx
i . If

they do not match then the node x is moved to another depth level (S-III semi verified).
The success of previous element wise matching does not guarantee a full integrity

check. The depth level of the outer Nx must be compared with the depth level of the
parent z of x in the inner Cz

i . If the latter is not less than the former then the node x is
moved (S-III fully verified).

During the breadth-first order traversal for a current node x, an order of EBOL Ex

smaller than that of any previously visited node detects to an integrity violation. No
such detection ensures that no order change was performed in a set of received XML
nodes (S-IV verified).

7 Related Work

There has been remarkable progress in recent years regarding access control to XML
data structures in a client/server paradigm [6,7,8,9,16,17,18]. In these approaches, the
server enforces access control policies on a per request basis. Instead, our work focuses
on delegating third parties the selective delivery of semantically equivalent content to au-
thorized users independently of providers. The work of [14,15] focuses on the delivery of
encrypted XML data: authorization policies are specified based on the XML hierarchical
structure yet document parsing is in post order. Our approach is fundamentally different
as policy specification is assumed to be on domain concepts and selective delivery is per-
formed based on the semantics captured in concepts, not document structure. Moreover,
the EBOL computation can be performed on the fly while parsing documents. Our previ-
ous work [20] focuses on enabling authorized users to exchange document portions using
a group key based approach that allows users with similar interests to be independent of
a central authority, although it does not address document semantics.

[12] and [19] propose an ontology based access control for XML documents having
variant schemas and semantically related documents respectively. However, none of
them considers issues related to dissemination of semantically related data or document
integrity and confidentiality. [10] discusses two ways ontologies can make it possible to
describe access control models, but in that case focusing on different features of RBAC
models. Although this work aims at modelling access control in a generic manner us-
ing Semantic Web methods in much the same way as our work, it does not specifically
address the protection of XML schemas defining the resources accessed nor the practi-
cal implementation of enforcement. [21] introduces a formal model for semantic access
control and associated algorithms which can be used in conjunction with our mecha-
nism to detect if two providers defined conflicting access control policies on documents
they distribute.

8 Conclusion and Future Work

This paper described an ontology-based XML content distribution system. Our solu-
tion protects the confidentiality of the document content and structure to protect the

Ontology-Based Secure XML Content Distribution 305

information system structure from other organizations and its content from unautho-
rized users. Document nodes are tagged with their semantic description and also incor-
porate integrity protection measures. Access control enforcement relies on a middle-
ware that makes use of the semantic tagging of each document node which our EBOL
scheme renders readable even for parties which cannot decrypt nodes. Semantic tagging
can be efficiently analyzed, even for large documents, because of the breadth-first order
parsing scheme adopted.

Our solution also illustrates in what respect semantic access control makes docu-
ment exchanges feasible across organizational boundaries while protecting the layout
of an organization’s information system. We described how access control enforcement
might be implemented by combining a XACML engine with a SPARQL engine. The
use of ontologies allows us not only to reason about document authorizations, but also
on the access control model: alternative paradigms, like the separation of concerns,
might be introduced as inference rules on the access control ontology. Future work will
investigate the implementation of such evolvable policies with Semantic Web methods.

Acknowledgment. This work is partly sponsored by EU IST-2004-026650 project
R4eGov. Thanks to Henrik, Lim, Smriti and Slim for their valuable comments.

References

1. Joseki - A SPARQL Server for Jena, http://www.joseki.org/
2. OWL Web Ontology Language Overview,

http://www.w3.org/tr/owl-features/
3. Resource Description Framework (RDF), http://www.w3.org/rdf/
4. SPARQL Query Language for RDF,

http://www.w3.org/tr/rdf-sparql-query/
5. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for numeric data.

In: SIGMOD 2004: Proceedings of the 2004 ACM SIGMOD international conference on
Management of data, pp. 563–574. ACM, New York (2004)

6. Lee, W.-C., Luo, B., Lee, D., Liu, P.: A flexible framework for architecting XML access
control enforcement mechanisms. In: Jonker, W., Petković, M. (eds.) SDM 2004. LNCS,
vol. 3178, pp. 133–147. Springer, Heidelberg (2004)

7. Damiani, E., di Vimercati, S.D.C., Paraboschi, S., Samarati, P.: Fine Grained Access Control
for Soap E-services. In: WWW 2001: Proceedings of the 10th international conference on
World Wide Web, pp. 504–513. ACM, New York (2001)

8. Damiani, E., di Vimercati, S.D.C., Paraboschi, S., Samarati, P.: A Fine-grained Access Con-
trol System for XML Documents. ACM Trans. Inf. Syst. Secur. 5(2), 169–202 (2002)

9. Fan, W., Chan, C.-Y., Garofalakis, M.: Secure XML Querying With Security Views. In:
SIGMOD 2004: Proceedings of the 2004 ACM SIGMOD international conference on Man-
agement of data, pp. 587–598. ACM Press, New York (2004)

10. Finin, T., Joshi, A., Kagal, L., Niu, J., Sandhu, R., Winsborough, W., Thuraisingham, B.:
Rowlbac: Representing Role Based Access Control in OWL. In: Proceedings of the 13th
ACM Symposium on Access Control Models and Technologies (SACMAT 2008), Estes
Park, CO, USA, pp. 73–82. ACM, New York (2008)

11. Godik, S., Moses, T.: eXtensible Access Control Markup Language (XACML), version 1.0,
OASIS Standard (2003)

http://www.joseki.org/
http://www.w3.org/tr/owl-features/
http://www.w3.org/rdf/
http://www.w3.org/tr/rdf-sparql-query/

306 M.A. Rahaman et al.

12. Jain, A., Wijesekera, D., Singhal, A., Thuraisingham, B.: Semantic-Aware Data Protection in
Web Services. In: Proceedings of IEEE Workshop on Web Services Security held in Berkeley,
CA (May 2006)

13. Kagal, L., Paolucci, M., Srinivasan, N., Denker, G., Finin, T., Sycara, K.: Authorization and
privacy for semantic web services. IEEE Intelligent Systems 19(4), 50–56 (2004)

14. Kundu, A., Bertino, E.: A new model for secure dissemination of xml content. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 38(3), 292–301
(2008)

15. Kundu, A., Elisa, B.: Secure Dissemination of XML Content Using Structure-based Routing.
In: EDOC 2006: Proceedings of the 10th IEEE International Enterprise Distributed Object
Computing Conference, Washington, DC, USA, pp. 153–164. IEEE Computer Society, Los
Alamitos (2006)

16. Kuper, G., Massacci, F., Rassadko, N.: Generalized XML Security Views. In: SACMAT
2005: Proceedings of the tenth ACM symposium on Access control models and technologies,
pp. 77–84. ACM Press, New York (2005)

17. Miklau, G., Suciu, D.: Controlling Access to Published Data Using Cryptography. In: VLDB,
pp. 898–909 (2003)

18. Murata, M., Tozawa, A., Kudo, M., Hada, S.: XML Access Control Using Static Analysis.
In: CCS 2003: Proceedings of the 10th ACM conference on Computer and communications
security, pp. 73–84. ACM Press, New York (2003)

19. Parmar, V., Shi, H., Chen, S.-S.: XML Access Control for Semantically Related XML Doc-
uments. In: Proceedings of the 36th Annual Hawaii International Conference on System
Sciences, p. 10 (January 2003)

20. Rahaman, M.A., Roudier, Y., Schaad, A.: Distributed Access Control for XML Document
Centric Collaborations. In: The 12th IEEE International EDOC Conference (2008)

21. Yagüe, M.I., del-mar Gallardo, M., Maña, A.: Semantic access control model: A formal
specification. In: di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005.
LNCS, vol. 3679, pp. 24–43. Springer, Heidelberg (2005)

	Ontology-Based Secure XML Content Distribution
	Introduction
	Solution Overview
	Authorization Policy
	Ontology-Based Data Model
	Ontology-Based Authorization Policy

	XML Parsing, Encoding and Encryption
	Ontology Mapping to XML Structure
	Encrypted Breadth-First Order Labels for XML Parsing
	Encoding Method

	Access Control Enforcement and Distribution
	XML Content Verification
	Semantic Verification
	EBOL-Based Verification

	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

