

Towards Secure SOAP Message Exchange in a SOA

Mohammad Ashiqur Rahaman, Andreas Schaad and Maarten Rits
SAP Research

805, Avenue du Docteur Maurice Donat
Font de l’Orme, 06250 MOUGINS

+33(0)4 92 28 62 00
{mohammad.ashiqur.rahaman, andreas.schaad, maarten.rits}@sap.com

Abstract
SOAP message exchange is one of the core services

required for system integration in Service Oriented
Architecture (SOA) environments. One key concern in a
SOA is thus to provide Message Level Security (as
opposed to point to point security). We observe that
systems are communicating with each other in a SOA
over SOAP messages, often without adequate protection
against XML rewriting attacks.

We have already provided a solution to protect the

integrity of SOAP messages in earlier work [1]. This
solution was based on the usage of message structure
information (SOAP Account) for preservation of
message integrity. However, this earlier work did not
discuss the issue of forging the SOAP Account itself. In
this paper, we discuss the integrity feature of a SOAP
Account within a more general context of the current
web service security state of the art.

Categories and Subject Descriptors
D.2.11 [Software Architectures] D.4.6 [Security and
Protection]
General Terms
Security, Design, Verification.

Keywords
SOA, SOAP Account, XML Rewriting Attack.
1. Introduction

A service oriented architecture (SOA) is a collection of
loosely coupled services available in the World Wide
Web [15]. Loose coupling means that the way a client
(which can be another service) communicates with the
service does not depend on the implementation of the
service. The concept of a SOA is, however not new [14].
One of the first service-oriented architectures was the use
of DCOM or Object Request Brokers (ORBs) based on
the CORBA specification. Figure 1 shows a basic SOA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
SWS’06, November 3, 2006, Alexandria, Virginia, USA.
Copyright 2006 ACM 1-59593-546-0/06/0011...$5.00.

A service consumer sends a service request message
to a service provider and the service provider returns a
response message to the service consumer. Optionally, a
SOA can also include a service that provides a directory
or registry of services. A service consumer can discover
services by examining the registry.

Although the concept of a SOA has thus been used for
years, the evolution of web services-based SOAs is still a
field of ongoing Research & Development in industry and
academia. We observe that with the emergence of web
service standards, the integration of systems in an A2A or
B2B fashion has become more and more accelerated.
Message exchange is one of the core services required for
system integration in SOA environments. This message
exchange is usually performed via the SOAP protocol.
Since messages may carry vital business information, their
integrity and confidentiality needs to be preserved and
SOAP Message exchange in a meaningful and secured
manner remains a challenging part of systems integration.

Since SOAP is based on XML, one particular exploit is
that of a XML rewriting attack which is a general name
for a distinct class of attacks based on the malicious
interception, manipulation, and transmission of SOAP
messages in a network of communication system. Using
WS-Security [2], WS-Policy [3] and other standards
correctly on SOAP we can avoid XML rewriting attacks
[4]. However, in practice, incorrect usage and application
of these standards by the human being is very likely and
leads to significant vulnerabilities.

In earlier work [1] we have shown that the usage of
SOAP message structure information, which we refer to as
SOAP Account , can be an efficient technique to detect
rewriting attacks. Although using SOAP Account [1]
we can detect XML rewriting attacks very early in the
validation process by a legitimate receiver of a SOAP
message, a SOAP Account itself might be a target of
attackers. Therefore this paper1 aims at providing an
analysis of the integrity of a SOAP Account itself.

1 The work of A. Schaad and M. Rahaman has been sponsored under
the EU IST-2004-026650 project “R4eGov”.

In this paper we describe web service security

architectures in a simplified way using WS standards
before addressing the issue of attacking a SOAP
Account itself. We concentrate on message level
security and thus show the necessity of message level
security in web services. We use concrete scenarios
showing how we achieve the integrity feature of a SOAP
Account assuming the presence of a malicious attacker.

The paper is thus organized as follows. Section 2

discusses related work. Section 3 reviews related
terminologies and techniques. Section 4 illustrates a state
of the art web service based security architecture focusing
on message flow and rewriting attacks with respect to a
real-world business scenario. In Section 5 we then
describe a scenario of a possible attack against a SOAP
Account and reason about the SOAP Account ’s
integrity. Section 6 concludes this paper.

2. Related Work

Security in SOAs has been an active research field
since the beginning of the SOA paradigm. This work is a
continuation of our previous work [1] where we have
presented and discussed an inline approach to include
SOAP structure information in the SOAP message and to
validate the information by the receiver of the message. In
particular, we can attach SOAP Account information into
the <Security> header in the WS-Security standard
[2]. Essentially our SOAP Account has proposed a new
SOAP header as any new standard in SOA does.
However, we took performance issues into account as
such an added SOAP header may introduce overhead in
the processing of XML (such as XML canonicalization).
We described a performance evaluation of the proposed
technique to detect XML rewriting attack on SOAP
messages which showed better performance when
compared to standard policy based techniques [1].

In [13] the authors suggested to follow certain

guidelines to integrate security aspects of web services
throughout the development process of building web
service based systems in service oriented architectures.

They suggest an iterative and incremental model to
incorporate web service security requirements, to design
web service security architecture, and to select web
service security standards for deployment. In addition,
they describe a case study where they exercise the
iterative and incremental model in the suggested way.

The SAMOA project [5] takes a formal approach to

verify and validate web services specifications with
rigorous techniques. SAMOA identifies common security
vulnerabilities during security reviews of web services
with policy-driven security [4] and proposes a tool named
policy advisor to identify vulnerabilities automatically and
to provide remedial advices. While their prior work [6]
describes generating and analyzing web services security
policies to detect XML rewriting attacks, this tool is able
to bridge the gap between formal analysis and
implementation quite efficiently. It also describes a formal
semantics for WS-SecurityPolicy [7], and proposes an
abstract link language [8] for specifying the security goals
of web services and their clients.

3. Terminologies and Techniques

In this section we present the terminologies and

techniques related to web services security that we later
refer to in this paper and that have been widely deployed
in industry. We also provide insights into the security
context that is required in a SOA.

3.1. SOAP

SOAP [12] is a XML based messaging framework

used to exchange encoded information (e.g. web service
request and response) over a variety of protocols (e.g.
HTTP, SMTP, MIME). It allows a program running in
one system to call a program running in another system
and it is independent of any programming model. SOAP
provides an easy way to design protocols for
communication between applications in an intranet or over
the internet.

Since the emergence of SOAP, systems rely on the

ability for message processing intermediaries to forward
messages. Security information is contained within the
SOAP message and/or SOAP message attachment, which
allows security information to travel along with the
message or attachment.

3.2. Point-to-Point Security vs. Message Level
Security for SOAP Messages

Point-to-Point security context preserves the security

context in between any two consecutive SOAP processing
nodes as shown in Figure 2.

Service
Consumer

Service
Registry
(UDDI)

Service
Provider

Service
Provider

Figure 1: Service oriented Architecture

Transport level security (e.g. SSL, TLS) [16] supports

Point-to-Point security context only (Figure 2) and does
not handle End-to-End multi-hopped messaging security.
So when a message is received and forwarded on by an
intermediary (A SOAP processing node e.g. SAP XI or
IBM Websphere) beyond the transport layer, both, the
integrity of data and any security information that flows
with it may be lost. This forces any upstream SOAP
message processors to rely on the security evaluations
made by previous intermediaries and to completely trust
them with respect to their handling of the content of
messages. Security is preserved only when data is on the
wire, but not when off the wire (e.g. files, databases).

Using transport level security the current state of the

art is invocation of HTTPS [17]. However, the
communication is transient, Point-to-Point, and encrypted
with known trusted parties which means that
authentication of the parties and confidentiality of the data
is guaranteed while data is in motion, but not while data
resides within an intermediary. Web services can and do
provide such features, but it is insufficient in several ways
when transport level security is used:

• Transport Level Security is not granular enough
because it encrypts everything.

• It is inflexible about routing because it is just
Point-to-Point.

• Reduced auditing capabilities.
• Can not avoid repudiation because it is not signing

the data.
• HTTP might not be the only transport that is used

nowadays.

We need to adhere to more stringent security
requirements for web services because:

• The point of interaction is more “over the internet”
(as opposed to “within an intranet”).

• Interaction happens between partners with no
previously established relationship.

• Program to program interaction (as opposed to
human to program interaction).

• More dynamic interaction (as opposed to static

interaction).
• Larger number of service providers and users.
• We need fine grained signature and encryption

where element wise signing and encryption may be
needed.

Message level security aka End-to-End security deals

with and solves most issues of a transport level security
scheme regarding its insufficiency, starting with
maintaining a security context (Figure 3) which is valid
End-to-End. The identity, integrity, and security of the
message and the caller need to be preserved over multiple
hops and more than one encryption key may be used along
the route with trust domains being crossed.

4. Web Service Security

From a more general perspective, Web services
describe the interaction of open WS* standards (e.g.
SOAP, WSDL, UDDI), different implementation
platforms (J2EE, .NET, ABAP), applications and devices.
Active presence of such diverse systems makes it
necessary to take an evolutionary approach that leverages
the existing technologies to cope with the security
concerns of a SOA. Web service specifications and
techniques for secure SOAs have been evolving rapidly.
SOAs provide loosely coupled applications to be
composed and integrated from a set of internal and
external services which are distributed over the internet.

In this section we present a simplified view of a web

service security architecture considering the interplay of
different Web Service standards and message flow when
we deploy or implement the different WS* standards
related to security in a simple sender and receiver
scenario. We also provide a business scenario which is
vulnerable to XML rewriting attacks.

4.1. WS Standards in Web Service Security
Architecture

WS-Security [2], WS-Policy [3], WS-SecurePolicy [9]
and other web service standards follow an evolutionary
approach to address the End-to-End security context issue

Service

Consumer

Intermediary

Security Context Security Context

Figure 2: Point-to-point Configuration

Service

Consumer

Intermediary

 Web service
Provider

Security Context

Figure 3: End-to-End Configuration

 Web service
Provider

in detail. Figure 4 shows a simple architecture of web
service security considering different WS standards.
Note that these mentioned standards play a central role in
web service security architectures along with other
standards.

WS-Security describes how to attach signature and
encryption headers to SOAP messages as well as how to
attach security tokens, including binary security tokens
such as X.509 certificates and Kerberos tickets. WS-
Security provides a framework to secure a SOAP message
using existing techniques (e.g. encryption, signature).

WS-Policy and WS-SecurePolicy describe the
capabilities and constraints of the security (and other
business) policies on intermediaries and endpoints (e.g.
required security tokens, supported encryption
algorithms). For example, a service provider may only
accept a X.509 security token which can be described
using the declarative syntax of WS-Policy and WS-
SecurePolicy.

As a SOA intends to provide the loose coupling of

services the issue of having trust among the different
entities (e.g. service provider, consumer, and
intermediary) comes into play. WS-Trust [10] describes a
framework for trust models that enables web services to
securely interoperate. For example, a client can send only
X.509 security tokens and the web service can accept only
SAML security tokens. WS-Trust provides a protocol to
get the SAML security token by presenting the X.509
security token. By doing so, WS-Trust resolves the token
format mismatch; trust between client and web service can
be established.

Using WS-Security independently for each message to
secure a conversation is possible, but it is rather
inefficient. WS-SecureConversation [11] describes how to
manage and authenticate message exchanges between

parties including security context exchange and
establishing and deriving session keys.

Note that, though correct usage of all these standards

can secure a SOAP message exchange in SOA, we
observe some limitations to achieve the expected security
[1]. We show an example of a possible attack in section
4.3.

4.2. Message Flow

On the sender side or Web Service Requester in Figure

5, at first the Requester will acquire the required security
token from the Security Token Service and then the
protocol stack generates SOAP envelopes that satisfy its
policy. It adds integrity and confidentiality credentials
under the <Security > header that is defined in WS-
Security. The header block allows attaching security-
related information targeted at a specific recipient in the
form of a SOAP actor/role. This may be either the
ultimate recipient of the message or an intermediary.
Consequently, elements of this type may be present
multiple times in a SOAP message. An active
intermediary on the message path may add one or more
new sub-elements to an existing header block if they are
targeted for its SOAP node or it may add one or more new
headers for additional targets.

Conversely, on the receiver side or Web Service

provider, a SOAP envelope is accepted as valid and
passed to the application if its policy is satisfied for this
envelope. Normally, the sender policy should be at least
as demanding as the receiver policy.

WS-Policy

WS-SecureConversation

Requester
Web Service

Security
Token
Service

Policy

Security
Token

Claims

Policy

Policy

Security
Token

Claims

WS-Security

WS-Trust

Figure 4: Simple Web Service Security Architecture

3.Sending to
Policy Module

4. Sign & send
SOAP
message to
web service

Web
Service

Requester

Web Service

Provider

Security Token
service 2. Get tokens to add to SOAP messages

7. Receive response from Web Service

Figure 5: Typical message flow between web services using
WS standards

Incorporating
WS-Policy in

SOAP

6. Validate
tokens

Checking SOAP
according to WS-

Policy

5.Enforcing
WS-Policy

1. Request for tokens

4.3. Possible XML Rewriting Attacks in a
Business Scenario

 XML rewriting attack is a general name for a distinct

class of attacks based on the malicious interception,
manipulation, and transmission of SOAP messages in
network of communication system. In this section we
show a scenario of business processes that are vulnerable
to such rewriting attacks.

Consider one service consumer of an online book shop

service requests for some particular book and pays for it
(Figure 6). Each successful request causes the consumer
to pay. We assume that one SOAP node (Ultimate
receiver) is supposed to process the SOAP header or
Body. A customer, Alice, wants to transfer 1000 Euros
from her account to the book shop’s owner (Bob’s)
account (Figure 6) for a requested book. Some malicious
attacker intercepts this message and updates it stating to
transfer 5000 Euros instead of 1000 Euros (Figure 7). An
attacker can now observe and manipulate the message on
the SOAP path. He can introduce a new false header (e.g.
Bogus) (Figure 7). Everything else, including the
certificate and signature, remains same. The <Bogus>
element and its contents are ignored by the recipient since
this header is unknown, but the signature is still
acceptable because the element at reference URI “ Id-2 ”
remains in the message and still has the same value. This
may cause the consumer to pay several times for the same
request and forces the service to do redundant work.

To detect the rewriting attack we add SOAP

Account information in the SOAP message before
sending it to the legitimate receiver. Figure 10 shows the
SOAP message after adding SOAP Account. The rati-

-onale behind using SOAP Account is described in
detail in [1]. We have designed and implemented a
module called AddSOAPAccount [1] to compute the
SOAP Account information for every SOAP message
that is exchanged in SOA environment. There is a
corresponding CheckSOAPAccount module in every
SOAP processing node which checks the safety of the
received SOAP message as described in [1] and in the
section 5.

Figure 8 shows the message flow when these modules

are deployed in a SOA. The difference between Figure 8

<Envelope>
<Header>
 …………
 <Security>
 <UsernameToken Id=1>
 <Username>Alice</>
 <Nonce>cGxr8w2AnBUzuhLzDYDoVw==</>
 <Created>2003-02-04T16:49:45Z</>
 <Signature>

 <SignedInfo>
 <Reference URI= #1><DigestValue>Ego0...</>
 <Reference URI= #2><DigestValue>Qser99...</>
 <SignatureValue>
 vSB9JU/Wr8ykpAlaxCx2KdvjZcc=</>
 <KeyInfo>
 <SecurityTokenReference><Reference URI=#3/>

<Body Id=2>
<BookTitle>ABC</>
 <TransferFunds>
 <beneficiary>Bob</>
 <amount>1000</>

Figure 6: A SOAP request before an attack (Excerpt)

<Envelope>
<Header>
 …………….
 <Security>
 <UsernameToken Id=1>
 <Username>Alice</>
 <Nonce>cGxr8w2AnBUzuhLzDYDoVw==</>
 <Created>2003-02-04T16:49:45Z</>
 <Signature>

 <SignedInfo>
 <Reference URI= #1><DigestValue>Ego0...</>
 <Reference URI= #2><DigestValue>Qser99...</>

 <SignatureValue>
 vSB9JU/Wr8ykpAlaxCx2KdvjZcc=</>
 <KeyInfo>
 <SecurityTokenReference><Reference URI=#3/>

 <BogusHeader>
 <Body Id=2>
 <BookTitle>ABC</>
 <TransferFunds>
 <beneficiary>Bob</>
 <amount>1000</>

<Body>
<BookTitle>ABC</>
 <TransferFunds>
 <beneficiary>Bob</>
 <amount>5000</>

Figure 7: A SOAP request after attack (Excerpt)

Message to bank’s web service says:”Transfer
1000 euro to Bob,signed Alice”

Verifying signature using key
derived from Alice’s secret
password

Attacker has intercepted the message

This reference and signature value is still valid

Attacker has added a BogusHeader
& included the Body

Amount has been changed to
5000 by the attacker

7.Enforci
ng WS-
Policy

5. Sending
signed
message
with SOAP
Account

3.Sending to
Policy Module

6.

Received

SOAP

message

Web Service
Requester

Web Service
Provider

Security Token service
2. Get tokens to add to SOAP

4. Sending SOAP
message to
SOAPAccount
module

9. Receive response from Web Service

Figure 8: Message flow using new approach
between web services

Adding
SOAP

Account
Info

Validating
SOAP Account

Info

Incorpor-
ating WS-
Policy in

SOAP

Checking

SOAP

according to

WS-Policy

1. Request for tokens

8. Validate
tokens

and Figure 5 is the added SOAP Account module
(AddSOAPAccount & CheckSOAPAccount) in a
SOAP processing node (i.e. Sender, intermediary,
receiver). Since new modules are added in every SOAP
processing node the number of exchanged messages is
increased by 2. A detailed performance analysis
considering the added modules is given in [1].

4.4. SOAP Account

Our concept of a SOAP Account [1] refers to the
general idea of keeping record of a SOAP message’s
structure of elements (e.g. Number of header elements,
number of signed objects, and hierarchy information of
the signed object).

Figure 9 shows the SOAP Account information

that is used to detect the XML rewriting attacks in the
scenarios of [1] and in this paper. As the main exploitation
of the rewriting attacks was based on the structural syntax
of a SOAP message, we focus on capturing the structure
related information in a SOAP Account . We use the
AddSOAPAccount [1] module to add this SOAP
Account information into outgoing SOAP message.

5. Attacks against SOAP Account

A SOAP Account itself is vulnerable to XML
rewriting attacks. Since the whole SOAP Account
information is signed before sending it to the legitimate
receiver any malicious attacker may try to forge it in the
same way as in the scenarios described in the section 4.3.
The usage of the CheckSOAPAccount [1] module in
every SOAP processing node acts as a safeguard to detect
any rewriting attacks against SOAP Account along with
attacks on other parts of the message.

To prevent this attack, the CheckSOAPAccount

module will do some routine checks as soon as the SOAP
message arrives. A first check is to make sure that the
received SOAP message must have a SOAP Account
header. If it is there then the module will verify the
signature of the SOAP Account . If several
intermediaries have their own SOAP Account then
there will be a nested signature as it is described [1]. If
verification is successful then the CheckSOAPAccount
module will do the rest of the routine work as described in
the section 5 of that paper [1]. Figure 10 and Figure 11
show a SOAP message having a SOAP Account as well
as an attacked SOAP message showing an attempt to forge
the SOAP Account header respectively. As in the
previous example scenario, the attacker is introducing one
new header and copying the SOAP Account information
under the new header (Bogus) keeping the signature valid.

But as we said that the CheckSOAPAccount module

will check the presence of SOAP Account header as a
SOAP header as soon as the message arrives. Since SOAP
Account is copied under a new element it is not a SOAP
header anymore (Figure 11). The module can immediately
throw an exception saying that SOAP Account has been
attacked. Again, we can detect the attack before doing any
kind of computation intensive task like canonicalization.

Even if the attacker provides its own SOAP
Account it will be immediately invalidated while doing
SOAP Account signature validation. The reasoning
behind this claim is as follows. Although the attacker may
provide its own SOAP Account having updated SOAP
structure information according to its attack, it can not
provide its own signature key information to sign the
SOAP Account in the existing <Security> header.
The <Security> header contains legitimate key
reference of the legitimate sender of the message (see
Figure 10). In Figure 10, the legitimate sender is Alice
who has provided her signature key reference in the
<KeyInfo> element which will be used for signature
validation. Besides, an attacked SOAP Account will be
under a new false header (in the case of Figure 11 it is
<BogusHeader>) which will be caught after the first
routine check by the CheckSOAPAccount module. The
attacker may insert a new <Security> header and its
own key reference to validate the added SOAP
Account . The CheckSOAPAccount module can det-

Number Of Child Elements of Envelope

Number Of Header Elements in SOAP
Header

Successor And Predecessor Relationship of Each Signed Object

Number Of References in each signature
Element

Parent Element

Sibling Elements

Sucessor And Predecessor relationship

Extension For Future

SOAP Account

Figure 9: SOAP Account

<Envelope>
 <Header>
 …………

 <Security>
 <UsernameToken Id=1>

 <Username>Alice</>
 <Nonce>cGxr8w2AnBUzuhLzDYDoVw==</>
 <Created>2003-02-04T16:49:45Z</>
 <Signature>

 <SignedInfo>
 <Reference URI= #1>
 <DigestValue>Ego0...</>
 <Reference URI= #2>
 <DigestValue>Qser99...</>
 <Reference URI= #3>
 <DigestValue>OUytt0...</>
 <SignatureValue>
 vSB9JU/Wr8ykpAlaxCx2KdvjZcc=</>
 <KeyInfo>
 <SecurityTokenReference>

 <Reference URI=#1/>

 <SoapAccount id=2>
 <NoChildOfEnvelope>2</>
 <NoOfHeader > 2 </>
 </SoapAccount>

 <Body Id=3>

 <BookTitle>ABC</>
 <TransferFunds>
 <beneficiary>Bob</>

 <amount>1000</>

Figure 10: A SOAP message with SOAP Account before
an attack (Excerpt)

-ect this added key reference in the <Security> header
in the same way described above. So, even if an updated
SOAP Account is provided by the attacker, it will be
detected eventually before signature value check of SOAP
Account . Moreover, the nested signature feature of
SOAP Account makes things harder for the attacker to
forge the SOAP Account . How SOAP Account is
processed using nested signature with several
intermediaries is described in [1].

To understand the issue of forging SOAP Account

with intermediaries and the reasoning to detect the attack,
we consider the online travel itinerary scenario in the
Figure 12 where there are several intermediaries, the
sender, and the ultimate receiver of a SOAP message is
shown. One service consumer (not shown in Figure 12) of
a travel itinerary web service broker A, requests for a
particular travel itinerary to get the best available price.
The travel itinerary broker A may forward the same
request several times to some flight booking systems of
the related airlines (B, C). The broker is supposed to show
the best available itinerary plan for the given request of
the service consumer. A malicious SOAP processor (e.g.
Broker, Flight Booking systems) may manipulate the
SOAP message as in the previous scenario to present a
bad itinerary plan in response. If the Broker is malicious it
can temper with the itinerary request itself.

If B or C performs this malicious attack the consumer

may not receive the best itinerary plan. In any case usage
of SOAP Account information will allow us to detect
the attack as soon the message is received and processed
by the following SOAP processor’s
CheckSOAPAccount module. Here every SOAP
processor will add its own SOAP Account using
AddSOAPAccount module in a nested fashion [1] so
that the ultimate receiver knows who did what. If any
malicious attacker tries to forge the SOAP Account in
the same fashion, the CheckSOAPAccount module of
the following SOAP processor can detect the attack during

<Envelope>
 <Header>
 …………….
 <Security>
 <UsernameToken Id=1>

 <Username>Alice</>
 <Nonce>cGxr8w2AnBUzuhLzDYDoVw==</>
 <Created>2003-02-04T16:49:45Z</>

 <Signature>

 <SignedInfo>

 <Reference URI= #1>
 <DigestValue>Ego0...</>
 <Reference URI= #2>
 <DigestValue>Qser99...</>
 <Reference URI= #3>
 <DigestValue>OUytt0...</>
 <SignatureValue>
 vSB9JU/Wr8ykpAlaxCx2KdvjZcc=</>

 <KeyInfo>
 <SecurityTokenReference>
 <Reference URI=#1/>

 <BogusHeader>
 <SoapAccount id=2>
 <NoChildOfEnvelope>2</>

 <NoOfHeader > 2 </>
 </SoapAccount>

 <Body id=3>

 <BookTitle>ABC</>
 <TransferFunds>
 <beneficiary>Bob</>

 <amount>1000</>

Figure 11. SOAP request after an attempt to attack on

SOAP Account (Excerpt)

SoapAccount is not a
SOAP header anymore

Verifying signature using
key derived from Alice’s
secret password

Message to bank’s web service
says:”Transfer 1000 euro to Bob, signed
Alice”

Custom-

er’s
Request

Web
service

(A)

Broker’s
Response

Web
service
System

(D)

Flight
Booking
System

(C)

Flight
Booking
System

(B)

Figure 12: Travel Itinerary scenario

his routine checks of the validity of the received SOAP
messages mentioned previously in this section.

6. Conclusion

In this paper we have presented a solution to protect
SOAP messages against XML rewriting attacks. This
solution was based on some prior work of ours [1] using
SOAP message structure information, which we refer as
SOAP Account , as an efficient technique to detect
rewriting attacks. Since a SOAP Account might be a
target of attackers itself, this paper focused on the
preserving the integrity of a SOAP Account .

We have presented our analysis of protecting the

SOAP Account from forging (XML rewriting attack)
based on a real-world business scenario. We have
concentrated on message level security and discussed two
different message flows with and without using a SOAP
Account . This was based on a simplified view of web
service security in a SOA to show exactly where the
concept of a SOAP Account fits into a SOA.

Considering that in a real-world scenario we might

encounter systems with a payload of some hundred of
thousands of SOAP messages exchanged on a daily basis,
our earlier work on SOAP Account and XML
processing related performance issues will need to be
confirmed again, this time in the context of a more
detailed performance analysis.

7. References

[1] Mohammad Ashiqur Rahaman., Rits Marten, Andreas
Schaad, ”An Inline Approach for Secure SOAP Requests and
EarlyValidation”,http://www.owasp.org/images/4/4b/AnInlineS
OAPValidationApproach-MohammadAshiqurRahaman.pdf
[2] http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
soap-message-security-1.0.pdf
[3] Bajaj, et al., Web Services Policy Framework (WS-Policy),
September,2004,http://www.ibm.com/developerworks/library/sp
ecification/ws-polfram
[4] K. Bhargavan, C. Fournet, A. Gordon, and G. O'Shea An
Advisor for Web Services Security Policies, http://
research.microsoft.com/~adg/Publications/details.htm#sws05
[5] Microsoft Research;
http://research.microsoft.com/projects/Samoa/
[6] K. Bhargavan, C. Fournet, and A. D. Gordon. Verifying
policy-based security for web services. In 11th ACM Conference
on Computer and Communications Security (CCS’04), pages
268–277, October 2004.
[7] T. Nadalin, ed., Web Services Security Policy Language
(WS-SecurityPolicy),Version 1.0, 18 December 2002,
http://www.verisign.com/wss/WSSecurityPolicy.pdf
[8] K. Bhargavan, C. Fournet, A. D. Gordon, and R. Pucella.
TulaFale: A security tool for web services. In International

Symposium on Formal Methods for Components and Objects
(FMCO’03), LNCS. Springer, 2004
[9] G. Della-Libera, M. Gudgin, P. Hallam-Baker, M. Hondo,
H. Granqvist, C. Kaler, H. Maruyama, M. McIntosh, A. Nadalin,
N. Nagaratnam, R. Philpott, H. Prafullchandra, J. Shewchuk, D.
Walter, and R. Zolfonoon. Web services security policy
language (WS-SecurityPolicy), July 2005. Version 1.1.
[10] http://specs.xmlsoap.org/ws/2005/02/trust/WS-Trust.pdf
[11]http://specs.xmlsoap.org/ws/2005/02/sc/WSSecureConversa
tion.pdf
[12] SOAP, http://www.w3.org/TR/soap/
[13] Carlos Gutierrez, Eduardo Fernandez-Medina, Mario
Piattini “Web Services Enterprise Security Architecture: A Case
Study” http://delivery.acm.org/10.1145/1110000/1103025/p10-
gutierrez.pdf?key1=1103025&key2=9585273511&coll=ACM&
dl=ACM&CFID=15151515&CFTOKEN=6184618
[14] G. Alonso and F. Casati and H. Kuno and V. Machiraju:
Web Services: Concepts, Architectures and Applications,
Springer-Verlag, 2004.
[15]http://java.sun.com/developer/technicalArticles/WebService
s/soa2/SOATerms.html#soawhy
[16] http://www.ietf.org/rfc/rfc2246.txt
[17] http://www.ietf.org/rfc/rfc2818.txt

