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Abstract. This paper discusses the efficiency of audits ra=erntives for
reducing free-riding in P2P storage applicatiohst is, lessening the number
of peers that can store their data without contiilgu to the storage
infrastructure. Audits are remote data verificasichat can also be used to
decide whether to cooperate with a given peer basedts behavior. We
demonstrate how an audit-based strategy can doenamadutperform the free-
riding strategy by exhibiting the equilibria of oewolutionary game theoretical
model of a P2P storage application.
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1 Introduction

Peer-to-peer (P2P) is an emerging technology isthi@ge system area whereby data
are distributed in a self-organizing manner to iplétpeers instead of using a central
storage outsourcing server. Such a distributedageorin particular aims at
maintaining a reliable storage without a singlenpaif failure, although without the
need for an expensive and energy-consuming stonfigestructure as offered by data
centers. Peers volunteer for holding data withigirtlown storage space on a long
term basis while they expect a reciprocal behafrimm other peers. Just like in P2P
file sharing, cooperation incentives have to beduse prevent selfish behaviors
whereby peers free-ride the storage system bynstatata onto other peers without
contributing to the storage infrastructure. Seliisés is however likely more attractive
in P2P data storage since unduly gained storagktm@used for an extensive period
of time contrary to bandwidth which is related tolyoone file sharing operation.
Remote data verification protocols have recentlyesped (e.g., [3], [5], [6], [7], [8],
[9], [10], and [11]) that aim at auditing peers @& to detect misbehaving ones that
claim to hold some data which they in fact destdby&/e claim that such auditing
protocols form the basis of an efficient cooperatiocentive mechanism. Generally,
such a mechanism is proven to be effective if démonstrated that any rational peer
will always choose to cooperate whenever it interadth another cooperative peer.
We evaluate this mechanism using an evolutionamneganodel describing the
evolution of strategies within large populationsaagsult of many local interactions,
each involving a small number of randomly seledtetividuals. We propose in this



paper an evolutionary game model of a P2P storggjers that we use to study under
which conditions an audit-based strategy wins sedfrinterested strategies.

The rest of this paper is organized as followsSéttion 2, an outline of the P2P
storage system is first provided. An evolutionagmg model of such system is
described in Section 3 and the solution of the hdtle evolutionary stable strategy,
is derived. Results obtained through numerical &tan experiments are finally
analyzed in Section 4.

2 A P2P storage system

We consider a P2P storage system in which peerstoemtheir personal data at other
peers. The latter, calldwblders should store data until thwvnerretrieves them. The
availability and correctness of stored data isqaically checked by the owner or its
delegates, calledrerifiers However, holders or verifiers may still misbehawve
various ways to optimize their own resource usage.

We assume that the storage application enforcasdom selection of holders and
verifiers (for instance using the method outlined [13]). This strategy aims at
preventing collusions between peers trying to gainunfair advantage out of the
storage system. Behavior assessment relies onddtrbased verification (see [13] for
more details) of the cooperation of peers as heldEnis assessment is the basis for
deciding whether to accept to store or to audittizeroholder on behalf of a given
peer. Audits result from the execution of a rendéa possession protocol (see [4])
periodically performed by verifiers. A peer choosegooperate with other peers that
have proven to be reliable in the past based oitsaud

One-stage or repeated games model interaction®iyainvolve the participants
to the storage of one piece of data. Modeling tbeage of multiple data as a one-
stage game would lead to overly complex games wiker In contrast, an
evolutionary game makes it easy to model the maopmes aspects of such
interactions occurring within populations of peefs evolutionary game model
describes interactions between randomly chosere@ayhus practically portraying
the random selection of holders and verifiers ie #udit-based approach outlined
above.

3 Evolutionary game

We propose in this paper an evolutionary game moidalcooperative storage system
with which we endeavor to evaluate under which @ios peers using the audit-
based strategy will dominate the system.

3.1 Game modd

In the proposed system, an owner stores data asphtr holders. It appointsn
verifiers for its data replica that will perioditatheck storage at holders.



The system is modeled as an evolutionary game. rélotgp to Friedman [1], dn
evolutionary game is a dynamic model of strategieraction with the following
characteristics: (a) higher payoff strategies temwkr time to displace lower payoff
strategies; (b) there is inertia; (c) players datmtentionally influence other players’
future actions.

One-stage game: The one-stage game represents an interaction éetare data
owner,r data holders, anth verifiers randomly chosen. Thus, the consideretdega
players are an owner,holders, anan verifiers. The one-stage interaction consists of
several phases:

- Storage phasethe owner stores data at théolders. At this phase, holders may
decide to keep data stored or to destroy them dipgmon their strategy (see next
paragraph “Evolutionary game”). Holders that crasHeave the system without
any notice are considered as defectors contraoyt@revious work [14].

- Delegation phasethe owner sends verification information to theverifiers in
order to be able to periodically check data at éxddWhether to cooperate with
the owner in verifying data is determined by eaehifier's strategy (see next
paragraph “Evolutionary game”).

- Verification phasea verifier can decide whether the holder has beeperative
based on the results of a verification protocohsas [3] and take potential action
depending on its strategy. A verifier whose stratiesgto cooperate will send the
owner the results it obtained by auditing the holde non-cooperative verifier
may mimic a cooperative strategy by sending a bagsslt. Verifiers are not
more trusted than other peers and may lie aboiftcation, for instance reporting
an absence of response to a challenge for a cdogelelder. A verifier might
also be framed by a malicious holder trying to midle@pear as a non-cooperative
verifier. Some verifiers may also crash or leave fystem, and be unable to
communicate results of verifications. The owneré¢fare cannot determine with
certainty whether a verifier chose to adopt a coatpes strategy. One negative
result from a verifier is also not enough for thener to decide that the holder is
non cooperative. Such a notification may howeveused as a warning that the
holder may have destroyed its data. Based on sugharaing, the owner would
replicate the endangered data, therefore maintpinomeven increasing storage
reliability to his advantage.

- Retrieval phasethe owner retrieves its data from theholders. If one holder
destroyed the data, the owner decides on poteatitdbn towards that holder
depending on its strategy (see next paragraph tHeolary game”).

Data storage is a long-term process during whiclersé peers may have been
storing data from multiple owners; we define thelationary game that models our
P2P storage application as a sequence of a randorher of such simultaneous one-
stage interactions.

Evolutionary game: Our proposed game is similar to the game in [2¢nmgtplayers
have either the role of the donor or the role &f técipient. The donor can confer a
benefitb to the recipient, at a cost to the donor. We consider three roles in our
game: owner, holder, and verifier; any peer may pkveral of these roles throughout
the game. In a one-stage game, the owner is coediderecipient, the holders and



m verifiers are donors. The owner gam# at least one holder donates at a cast
however if no holder donates then the owner géiiri§ at least one verifier donates at
a cost—ac (a<1) for each verifier. The latter case correspomdthé situation where
the cooperative verifier informs the owner of tteaddestruction, and then the owner
may replicate its data elsewhere in the networls timaintaining the security of its
data storage.

Holders and verifiers have the choice between catipg, which we call
interchangeably donate, or defecting:
- Cooperation whereby the peer is expected to kdegrstdata in its memory and
to verify data held by other peers on behalf ofahaer.
Defection whereby the peer destroys the data itdwagpted to hold, and also
does not verify others’ data as it promised to.

The peers’ strategies that we consider for study ar
- Always cooperateAlIC): the peer always decides to donate, when in dhee of
the donor.

- Always defect AlID): the peer never donates in the role of the donor.

- Discriminate D): the discriminator donates under conditionshé discriminator
does not know its co-player, it will always donatewever, if it had previously
played with its co-player, it will only donate ifsi co-player donates in the
previous game. This strategy resembles Tit-Foridt differs from it in that
both the owner (the donor) and its verifiers magidie to stop cooperating with
the holder in the future.

3.2 Observations

Let’'s consider a scheme (see Fig. 1) inspired fepmemic models which categorize
the population into groups depending on their qtbB2¢ Two states are distinguished:
“not known” and “known” states. Because of the m@mdselection of holders and
verifiers among all peers and given the presencehafn, there are always nodes
potentially in the “not known” state.
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Fig. 1. System dynamics

We denote the number of peers that a given peawvénage does not know at a
certain timet by D and the number of peers that it knows on averagienat by K.



Peers that may join the system are peers who weited by other members with a
fixed invitation ratel. Peers are leaving the system with a fixed depanate ofu.
The rates designates the frequency of encounter betweenpeess, one of them
being the holder (i.e., the probability that a pkeows about the behavior of another
peer).

We denote the total number of peers in the storsggem - excluding the
observing peer - as=D + K. The dynamics oK andD are given by the following
equations:

dD_/1 D
E— n—(0+u)
dK
E=0D—ul(=0n—(a+,u)l(
Sincen=D +K:
dn_(/1 )
dt wn

Let g be the probability that the discriminator knows whaandomly chosen co-
player chose as a holder strategy in a previousstage game (the discriminator
being an owner or verifier in that game). The pholity q is equal td/n, hence:

dq dK/dt Kdn/dt
dt  n n?

Thus,
dq
pT =0—(c+A)q
At time t=0, the set of peers in stafeis empty. Over time, peers in stddeenter
stateK with rates. A new peer joining the system is assigned dbateeaning that
initially g(0)=0. The result of the above differential equati®thus:

o
) =_——0- eI
The limit of q(t) whent — « is ¢/( o+ 1). If we consider a system without churn
(1=0), the limit becomes 1.

3.3 Fitness

We respectively denote the frequency (i.e., fractiothe population of playing peers)
of strategie\lIC by x, AlID byy, andD by z The expected values for the total payoff
obtained by the three strategies are denoted fyy, Uaip and Up, and the average
payoff in the population by:

U=xXUye+yXUsp +2xUp

The average payoffs that are also called fitnesgdch strategy are defined in the
following.

At time t, a participating peer will havetimes more chances to be chosen as a
holder andm times more chances to be chosen as verifier tharetohosen as an
owner.

A peer playing the strategyl LC will always cooperate: it will donate at a cest
if it is chosen as a holder or at a cest if it is chosen as a verifier. It will gain a
benefit b if it is chosen as an owner and at least one ofldta holders is not a



defector, otherwise, it may gain a bengfit if at least one of its verifiers is not a
defector.
Upiic = —rc —mac +b(1 —y") + fb(y"(1 —y™))
=—c(r+ma)+b(1—-y" +By"(1-y™))

A peer playing the strategyLLD will never cooperate, so it will never donate. It
will gain a benefitb if it is chosen as an owner and at least one adata holders is
not any of these types: a defector (type occurk fuiquency, i.e., probability) or a
discriminator that knows the peer (type occurs wptlobability gz on average).
Otherwise, the peer may gain a bengiif at least one of its verifiers is not of any of
the former two types.

Unip = b(1 = (v + q2)") + Bb((y + q2)" (1 = (y + q2)™))
=b(1-+q2)" +B(y+q2) (1 - +q2)™)

A peer playing the strategh will always cooperate if it does not know the
recipient or the latter was cooperative in a presimteraction. It will donate at a cost
—cif it is chosen as a holder or at a cest if it is chosen as a verifier. It will gain a
benefitb if it is chosen as an owner and at least one oflds holders is not a
defector, otherwise, it may gain a bengfit if at least one of its verifiers is not a
defector.

Up =—c(r+ma)(1—qy) + b1 —y" + By (1 —y™))

Strategies with higher fithess are expected togmafe faster in the population and

become more common. This process is calkgdiral selection

3.4 Replicator dynamics

The basic concept of replicator dynamics is that ghowth rate of peers taking a
strategy is proportional to the fitness acquiredhsy strategy. Thus, the strategy that
yields more fitness than the average fitness ofvthele system increases, and vice
versa. We will use the well known differential reptor equations:

dx _
at = x(Uaprc — U)
dy
E=)’( aLp — U)
dz
at z(Up - U)

3.5 Evolutionary stable strategy

A Strategy is said tanvade a population of strategy players if its fithess whe
interacting with the other strategy is higher tttaa fitness of the other strategy when
interacting with the same strategy. An evolutiolyastable strategy (ESS) is a
strategy which no other strategy can invade ipa#rs adopt it.

Case x#0, y=0, z£0: This case corresponds to a fixed point in the cepdr
dynamics, which means that a mixture of discrimimgaind altruistic population can
coexist and are in equilibrium.



Case x£0, y£0, z=0: In this case, the replicator dynamics of bothugtic and
defector populations are:

dx _ <0

i —xyc(r + ma) <
dy = + >0
P xyc(r + ma) =

The population of defectors wins the game and B8 [ attained at=0 andy=1.
Case x=0, y#0, z£0: There is an equilibrium point for which defectasad
discriminators coexisix€0, y=y,, Z=2,) which corresponds to:
dy dz _
dt — dt
The equilibrium point is then solution of the fallimg equation:
c(r + ma)(1 - qyo)

=b ((}’0 +qz0)" — ¥o"

+ (0" (1 = yo™) — (o + 470)" (1 = (o + 970)™) )
Table 1 describes equilibrium values in some paldic cases. More cases for
equilibrium values will be examined in Section 4.

Table 1. Finding the equilibrium fox=0, y0, z+0.

Conditions Yo 7

r=1, m=0, b#c, ) bo —c(oc+2) o) 1 . cA o) 1

q(t) t:; ﬁ min | max W, ) min (max (m, ), )

r=0, m=1, b#c, ) Bbo — ac(o + 1) . acl

q(t) H—Q;ﬁ min (max (W,O),l) min (max (m,o),l)
r=1,m=1, . c(l+a)—»b 0) 1 . A+pb—-—c(1+a) o) 1
q(t) H_O)o 1 min | max B—b, ) min { max B—b‘ »

Case x#0, y£0, z£0: There is one stationary poink=0, y=Y,, z=z,) for which
defectors will exploit and eventually deplete abperators. The amount of defectors
will first increase, and then converges to the igim where there is either
coexistence with discriminators, or winning oveerth or losing to them depending
on storage system parameters.

4 Numerical evaluation

The evolutionary game is simulated with a customusator using the differential
equations of subsection 3.4, and within severahages varying storage system’s
parameters.

Initial frequency of strategies. Fig. 2 shows the frequency of cooperators and
defectors over time, and demonstrates that witle tbmoperators will be eliminated
from the system by these defectors. The presendsafiminators in the system does



not prevent cooperators from being evicted fromaystem; however, discriminators
and defectors will converge to an equilibrium whieoth coexist (see Fig. 3).
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Fig. 2. Frequency of cooperators vs. defectors over timeé, r=7, 4=0.1,0=0.001,1=0.01,
6=0.05,b=0.05,¢=0.01,x(0)=0.9,y(0)=0.1, and(0)=0.

This equilibrium is perturbed by the injection olaage population of defectors, as
illustrated in Fig. 4 (by varying the initial fregocy of2). If discrimination becomes a
minor strategy in the population (frequery).1), it is completely eliminated from
the system. However, if a small population of defex is injected, discriminators
converge to the same equilibrium. So, there aredmdlibria that are determined by
the initial population of discriminatorsx=£0, y=1, z=0) and &=0, y=Yo, Z=2).

Frequency of strategies

Fig. 3. Frequency of the three strategies over time5, r=7, 4=0.1,¢=0.001,1=0.01,
6=0.05,b=0.05,c=0.01,x(0)=0.6,y(0)=0.1, and2(0)=0.3.



The discriminators do not win over defectors, bsedhe latter may still have a good
payoff if they interact with some discriminatorsathdo not know them vyet, for

instance for discriminators that just entered §stesn, or defectors that just joined in.
Additionally, defectors do not always win over ttiscriminators because there are
discriminators that already know them and that gkvehoose to defect with them.

The figure shows also a little decrease in the Ueegy of discriminators before

converging to the equilibrium. The decrease is tuthe fact that discriminators act
as cooperators in the beginning of the game simeg do not know the behavior of

defectors yet.
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Fig. 4. Frequency of discriminators over time varyi{@). m=5,r=7, f=0.1,0=0.001,
1=0.01,0=0.05,b=0.05,c=0.01, anck(0)=0.

Number of verifiers and replicas. Varying the number of data replicas or the
numberm of verifiers changes the equilibrium point. Inies r favors defectors
(see Fig. 5a).

1 i i i i i i 0.33
I I I I I I I
X 0.32
08F+-Y——+t-——1——+——1——+—
I S 0.31
I I I I I I
T e R
S I I I I I I I S
S I I I I I I I S
e | | | | | | | e
N 04-+--1--\N—-—-1——+——1— —+ — ~ 0.29
I I I I I I I
o N 0.28
02f NG
| | | | | I 0.27
I I I I ) I I
I I I I I I I I
0 1 | 1 | | . . 0.26 1
2 4 6 8 10 12 14 16 0 50 100
r m
(@) (b)

Fig. 5. Frequency of discriminators at equilibrium varyi@jr andm. r=7, m=5, $=0.1,
@=0.001,1=0.01,5=0.05,b=0.05,c=0.01,x(0)=0, y(0)=0.5, andz(0)=0.5.



This is because the fithess gain of discriminatiwgners is overwhelmed by the
fitness loss that results from data storage eo#tat is always paid by discriminating
holders. Increasing increases data reliability, thus increasing chamédsaving the
benefit b. But, this benefit is perceived by both populasicsf discriminators and
defectors without favoring one over the other.

Increasingm decreases the equilibrium value of discriminafoesjuency (see Fig.
5b). This is due to the fact that increasingncreases the cost of data verification.
This cost is just paid by discriminating verifiefBhat's why increasingn reduces
their fitness. Fig. 6 also illustrates the factttin@reasing the probability of encounter
o leads to an increase in the equilibrium value is€miminators’ frequency because
more discriminators get acquainted with more defect
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Fig. 6. Frequency of discriminators at equilibrium varyihg probability of encounter.
m=5,r=7,8=0.1,¢=0.001,.=0.01,b=0.05,c=0.01,%x(0)=0, y(0)=0.5, andx(0)=0.5.

Churn: The peer arrival raté affects the probability, and hence the equilibrium
point of the game (see Fig. 7). For a low churnaitie (smallt), the frequency of
discriminators at equilibrium is high; whereas éhigh churnout value (largg the
frequency at equilibrium decreases. For high chuitnpeers are not able to get
acquainted with all peers since there are always peers in the system, and
defectors may take advantage of the lack of knogdedf discriminators about the
system to gain benefit and remain in the game.aFsystem without churnout=0),
discriminators win against defectors that are elatéd from the game.
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Fig. 7. Frequency of discriminators at equilibrium varyihg arrival raté.. m=5, r=7,
$=0.1,0¢=0.001,6=0.05,b=0.05,c=0.01,x(0)=0, y(0)=0.5, and(0)=0.5.



Benefit and cost: Fig. 8 depicts the impact of the benefitand of the cost on the
frequency of discriminators at equilibrium. The uig shows thab and ¢ have
opposite effects on the equilibrium frequency afcdiminators: increasinigincreases
the frequency whereas increasingnakes it decrease. If the storage cost is sntall, i
will be compensated by the benefit. In contrasthéd storage cost is high>0.3x),
discriminators cannot cope with this high cost #émely will be eliminated from the
system by defectors.
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Fig. 8. Frequency of discriminators at equilibrium varythe ratioc/b. m=5,r=7, 4=0.1,
@=0.001,1=0.01,0=0.05,b=0.05,x(0)=0, y(0)=0.5, andz(0)=0.5.

Summary: Simulation results prove that there exist param&tdues for which
discriminators, who use an audit-based mechanisay min against free-riding
defectors. Discriminators are not hopeless wherfronting defectors, even if the
latter may dominate altruistalvays cooperatestrategy). At the equilibrium of the
game, both discriminators and defectors may codixisiere is churn in the system
otherwise discriminators will dominate. The replioa rater and the number of
verifiers m decreases the frequency of discriminators at thalierium for a small
value forr. Additionally, a costly storage or an increaséhi@ number of verifications
performed reduce this frequency.

5 Conclusion

In this paper, we validated an audit-based stratesggin evolutionary stable strategy
under some conditions as the basis for a P2P &tmgstem. The results obtained
show that such a strategy wins over a free-ridingtegy in a closed system. Given
reasonable constraints, they also show that thagegty can coexist with free-riders,
and even achieve a high frequency. The fact thgitegraphic primitives exist that
make the implementation of appropriate audit meismas possible without
unrealistic network bandwidth requirements is naety for practical
implementation. We are currently investigating otkecurity issues of P2P storage
systems, notably those raised by maliciousness.
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