
An Overview of OpenAirInterface Wireless Network
Emulation Methodology∗

Hicham Anouar, Christian Bonnet, Daniel Câmara, Fethi Filali, Raymond Knopp
Eurecom

2229, route des Crêtes
06904 Sophia Antipolis, France

first.lastname@eurecom.fr, openair tech@eurecom.fr

ABSTRACT
The OpenAirInterface wireless network emulator, a tool with
the dual objective of performing protocol and application
performance evaluation, in addition to real-time layer 2/3
protocol implementation validation, is described. The cur-
rent example protocol implementations closely resemble those
of evolving UMTS-LTE and 802.16e/m networks with the
additional possibility for creating mesh network topologies.
They do not provide any form of compliance, however, with
these standards. The emulation environment comes in both
real-time and non-real-time flavors based on RTAI/Linux
open-source developments. Novel ideas for physical layer
(PHY) abstraction are also reviewed.

1. INTRODUCTION
Performance evaluation of protocols and applications for

wireless networks is typically done through the use of regu-
lar simulators, small testbeds, or costly protocol testers. In
the first approach, even if relatively large networks are simu-
lated, abstractions of some crucial parts of the network stack
are made in order to make the simulation feasible. This ab-
straction can hide important issues that unfortunately may
only be revealed when the software is implemented and de-
ployed on a large scale. The use of testbeds, on the other
hand, is not only expensive but also the measurements pro-
duced on them are hard to predict and reproduce. The
best environment to evaluate applications and protocols for
wireless networks would one where one could use a real net-
work stack (e.g. provided by Linux or BSD), which is easy
to configure, with nodes deployed predictable way and that
results could be reproduced to verify the true difference be-
tween two different solutions. The emulation suite described
here intends exactly to fulfill these requirements. It is part
of the OpenAirInterface development platform [1].

The main difference between the methodology used here
with respect to existing open-source simulation tools is firstly
that it is built with a real-time framework in mind, using the
open-source real-time extension to Linux, RTAI [2], and sec-
ondly that it is part of a validation chain for a real protocol
implementation. With respect to more generic simulation
tools such as ns2 [3], the study of Cavin et al. [4] shows
∗This research is partially supported by Eurecom’s indus-
trial partners: BMW, Cisco Systems, France Telecom, Hi-
tachi Europe, SFR, Sharp, ST Microelectronics, Swiss-
com, Thales. The research work leading to this paper has
also been partially supported by the European Commission
FP6 project CHORIST and by the French RNRT project
APOGEE.

that even the simulation of simple protocols, using different
simulators, may yield significantly divergent results. Indeed,
as the simulators implement different models for the MAC
and physical layers, the result of the simulators say as much
about the simulated protocol, as it does about the particular
lower level implementation of the simulator. Offline discrete
simulators, such as ns-2, OPNET and Glomosim are highly
flexible and scalable, but event based simulators hardly will
be able to represent real-time applications without devia-
tions . Even though it is possible inject real time data in
the NS simulation and it is planned to ns3 to have emu-
lation support for traffic [5], these features are limited to
the network layer only. Our approach goes a step beyond
that, the proposal is to use the real stack to perform more
realistic and reliable simulations. This also reduces develop-
ment time since the code can be ported to the final real-time
implementation with very little redesign.

A similar approach to ours, in the sense of real-time be-
havior, is based on an extension of ns-2 and is described in
[8]. Both virtualization of nodes using the user-mode linux
(UML [9]) framework and distributed simulation of large
networks over Ethernet is provided along with the ability
to run real Linux applications on top of the simulated net-
work. This differs from our approach in two ways; firstly
that hard real-time framing constraints are not respected
(since a real-time operating system is not used), and sec-
ondly that the medium-access layer (MAC) protocols are
modeled in addition to the physical-layer (PHY). While for
802.11 networks this remains a reasonable approach, due
to the simplicity of the MAC and PHY specifications, for
the evolving 802.16e/m [6] and UMTS-LTE [7] air interface
specifications this is much less the case. Our approach relies
on a full real-time implementation of the MAC protocol and
accurate modeling of the PHY.

The paper is organized as follows: section 2 provides an
overview of the OpenAirInterface emulation architecture,
section 3 provides a description of how we make use of
PHY abstraction techniques and some concrete examples
for emerging air interface technologies. Finally in we present
some conclusions and directions of our ongoing work.

2. OPENAIRINTERFACE EMULATION AR-
CHITECTURE

The OpenAirInterface emulation environment can be con-
figured for real-time PC-based targets and user-space non-
real-time PC based targets. Both allow for virtualization
of network nodes within physical machines and distributed

90

deployment on wired Ethernet networks. Virtualization is
done within the same operating system instance (i.e. we do
not need to make use of virtualization tools such as UML,
although in some cases the use of such OS virtualization
tools can help for the development of layer 3 protocols) and
the Linux IP protocol stack is shared among nodes in the
same physical machine. Nodes in the network communi-
cate via direct-memory transfer when they are part of the
same physical machine and via multicast IP over Ethernet
when they are in different machines. The communication
between nodes allows for the exchange of transport data at
the PHY and MAC interface, the so-called transport chan-
nels in ETSI UMTS and LTE terminology, see [7]. Nodes
filter MAC-layer PDUs on reception based on radio measure-
ments which are locally simulated, in the sense that chan-
nels that are not destined for a particular receiving node are
dropped. The presence of a particular channel is potentially
used, however, in the calculation of interference in the PHY
abstraction entity discussed in section 3.

The real-time version of the emulator is designed to repre-
sent the behavior of the wireless access technology in a real
network setting while obeying the temporal frame param-
eters of the air-interface. It makes use of the open-source
real-time operating system extension to Linux, RTAI [2] to
guarantee hard real-time behavior. With virtualization of
the protocol stack, many instances (on the order of 30 on
a 2GHz Quad-core Xeon) can reside in the same physical
machine. A typical setup for a large-scale emulation would
consists of several PCs in a cluster network each housing tens
of virtual nodes. At Eurecom, 8 Quad-core Xeon servers are
used to this end. The layer 3 networking protocols reside in
the standard linux kernel or user-space and are interfaced
using a custom networking device driver. In a typical large-
scale emulation scenario a combination of real applications
and traffic generators (such as mgen [10] or iperf [11]) would
be used. This targets large-scale repeatable emulations on
a real protocol stack using real applications.

The non real-time version of the emulator runs in normal
Linux user-space and kernel-space and maintains true frame
times on average if the CPU processing power is sufficient
and the Ethernet network is fast enough. Execution is in
non-real time but with a true Linux networking device so
that higher-layer protocols (routing, mobility management,
etc.) can be integrated into the emulation if needed. It
should be mentioned that although the user-space emulation
is non-real-time, in the sense that radio frame timing is not
guaranteed, real applications can still be executed on the
user-space emulator. The user-space mode is particularly
useful in debugging a network deployment prior to large-
scale simulations or when used with real OpenAirInterface
radio equipment (see [1]). Additionally, it is a necessary
prototyping step during testing of upgrades to the proto-
col stack since standard GNU-Linux debugging tools can be
used.

2.1 OpenAirInterface Example Protocol Stack
OpenAirInterface[1] provides a complete wireless protocol

stack and radio hardware. It is an open-source hardware and
software initiative for collaborative innovation in the area of
digital radio communications funded primarily from pub-
lic sources. OpenAirInterface implements the PHY, MAC,
RLC(Radio Link Control), RRC(Radio Resource Control)
layers as well as providing a IPv4/IPv6/MPLS network de-

MAC Scheduling Unit

Radio Resource Control
(RRC)

RLC-AMRLC-TM RLC-UM

MAC BCCH/CCCH
Signaling

Physical Layer
(PHY)

PDCP
Config

RLC
Config

MAC
Config

Unacknowledged
Radio Bearers

Acknowledged
Radio Bearers

BCCH
Logical
Channels

Signalling
Radio
Bearers

PDCP

CCCH
SACCH, UL-ALLOC

LCHAN
Config

Non Access-Stratum Driver
(networking device interface)

Figure 1: OpenAirInterface Protocol Stack

vice interface under Linux. In addition to the protocol emu-
lation environments described here which do not make use of
radio hardware, fully-functional real-time two-way RF hard-
ware (5 MHz channels at 1.9 GHz) is provided and has been
made available to partner institutions. The initiative now
targets 4th generation wireless systems (UMTS Long-term-
evolution (LTE), 802.16e/m) and rapidly-deployable MESH
networks using similar, yet simplified, radio interface tech-
nologies. The OpenAirInteface example protocol stack is
depicted in Figure 1 and comprises C-language implemen-
tations of the protocol stack and the PHY abstraction unit
each corresponding to a particular node in the network. The
development currently targets generic Linux PC-based hard-
ware. Embedded FPGA-based system-on-chip (SoC) tar-
gets are in the implementation phase.

The protocol suite allows for mesh or cellular network
topologies. The linux network device provides IP and MPLS
(based on Linux-MPLS [12]) interconnection and permits
quality-of-service (QoS) classification (packet filtering) of IP
and MPLS traffic on layer 2 resources.

3. PHY ABSTRACTION
PHY abstraction is a procedure done at the receiver of

each node in order to firstly compute the error statistics
of the received packets before delivery to the MAC, and
secondly to generate measurement information for radio re-
source management algorithms (scheduling, call-admission,
adaptive coding and modulation, power control, etc.). Sub-
band signal strength indicators are computed every trans-
mission frame (sub-frame in LTE terminology) based on the
RF topology and pre-defined propagation models. The func-
tion of the abstraction module can be system dependent (i.e.
based on precomputed probability of error simulations for
specific modulation and coding formats) or generic based
on semi-analytical formulas. As in the 802.16m method-
ology described in [13], the output of the radio simulation
is random PDU loss indicators for each transport channel
block traversing the PHY/MAC interface.

In each radio frame (sub-frame), the PHY Abstraction

91

Layer 2/3 Protocol Stack
(Instance Ninst)

MAC/PHY Interface

MAC
SDUs

PHY MeasurementsPHY
SDUs

openair2

PHY emul

Configuration
(RF Topology)

MAC/PHY Interface

PHY Abstraction

Multicast PDU transport

Layer 2/3 Protocol Stack
(Instance 1)

MAC/PHY Interface

MAC
SDUs

PHY MeasurementsPHY
SDUs

Emulation
Medium

Figure 2: PHY Abstraction Module

unit analyzes the set of received SDUs from the emulation
medium and determines those which are sources of infor-
mation and those which represent interference. The tar-
get PHY SDUs to be received are those programmed by
the MAC as in the case when operating with a true PHY.
The interferers, however, are naturally present with the true
PHY (i.e. in the signal itself) and thus their impact must be
simulated in the abstraction unit. Since a particular node
in the network is not aware of all sources of interference a
priori, this is done by adding a physical resource description
to each transport block in the emulation medium which is
not present in the real PHY. With this additional informa-
tion both accurate signal and interference powers can be
simulated.

A secondary task of the PHY abstraction unit is to pro-
vide the stimulus on the measurement interface for the Layer
2 protocol stack. In system simulations this is required for
validation of the Layer 2 mechanisms related to adaptive
resource control (modulation and coding adaptation) and
wideband resource scheduling which are typically both func-
tions of the MAC-layer scheduling algorithm. Eventually,
these measurements also make their way up to Layer 3 pro-
tocols which are responsible for connection management and
admission control procedures.

The environment of the PHY abstraction unit is shown in
Figure 2. It takes input from the emulation medium (Ether-
net or direct memory transfer) corresponding to the MAC-
layer SDUs from corresponding nodes in the network. These
SDUs correspond to transport blocks for different transport
channels to be encoded by PHY or just decoded by PHY. It
also receives information from an RF topology server regard-
ing slowly-varying propagation parameters (mobility, path
loss/shadowing models, multipath intensity profiles, etc.).
The other end implements the PHY/MAC interface in or-
der to interconnect with the true layer 2 protocol stack.

4. A CONCRETE EXAMPLE OF PHY AB-
STRACTION (MIMO/OFDMA)

Consider the following example for PHY abstraction at
node j in the network. This targets a wideband multi-
carrier multiple-input multiple-output system, for example
OFDMA or single-carrier FDMA as in UMTS-LTE [7]. Let
RSSIi,j [n] be the average received strength in frame (sub-
frame) n between node i and node j. Its’ temporal variation
represents mobility of the node or the environment around
it. This can be generated locally in each node based on a
model for mobility or can be signaled by a topology server

dynamically. As in the 802.16m simulation methodology
[13] the goal of the PHY abstraction entity is to simulate
the block error rate process (BLER) of each transport block
of a particular received resource. Evaluation of the BLER
boils down to the evaluation of a function of the statistics
of the received signal and interference vectors at node j.

Let
q

RSSIi,j [n]Hi,j [n, k] be the spatial channel matrix of

dimension M(i)×M(j), with M(i) being the number of an-
tennas for node i in frequency band k for the signal from
node i to j in frame (sub-frame) n. Also let

KI,i,j,m[n, k] = σ2+ (1)

X
i′ 6=i,i′ 6=j

M(i′)−1X
m=0

p
RSSIi′,j [n]hi′,j [n, m, k]hi′,j [n, m, k]∗,

be the second-order statistical description (co-variance ma-
trix) of the received vector, where hi′,j [n, m, k] is the spatial
channel column-vector for transmit antenna m in band k
corresponding to interferer i′. In a system like UMTS-LTE
the frequency index would correspond to a resource block
which is a group of contiguous OFDM sub-carriers repre-
senting the smallest entity which can be allocated by layer-2
scheduling procedures.

The random variables Hi,j [n, k] and hi′,j [n, m, k] depend
on the space/time/frequency description of the propagation
environment, more specifically a second-order description of
the power-delay profile (PDP), the Ricean factor which re-
lates the energy of direct path and the reflected paths, the
antenna correlation, and the mobility (see [14] for details on
these subjects). As is common in the literature and radio
channel simulators, these are usually modeled using Gaus-
sian deviates each frame (sub-frame) based on previously
generated channels and modifications to the propagation en-
vironment.

4.1 Characterization of the BLER
Obtaining an accurate description of the BLER as a func-

tion of
q

RSSIi,j [n]Hi,j [n, k] and KI,i,j,m[n, k] is the key is-

sue in PHY abstraction. The description is strongly depen-
dent on the coding and multiple-access techniques. Here we
outline a few cases which highlight the key issues in system
simulation of emerging air interface technologies.

Consider first the simplest form of transmission where
feedback information on return channels is not used (e.g.
BCH in LTE[7]). This is typically the case on broadcast
channels or basic signaling channels.The first issue is to
define a particular receiver structure (bit-interleaving met-
ric, minimum-mean squared-error receiver, etc.) for which
wideband signal-to-interference-and-noise ratio (SINR) ex-
pressions (similar to those considered in 802.16m[13] can be
derived from the above second-order interference descrip-
tion. These are then used for BLER lookup based on tabu-
lated performance of a particular coded-modulation scheme.
This consists of running a series of computer simulations
of BLER vs. SINR curves for the given average SINR.
The difficulty in this approach is that SINR is a vector
which possibly characterized by a significant number of de-
grees of freedom and thus the offline procedure could be
very time-consuming. Another alternative would be the
use of PHY-agnostic information-theoretic bounds based on
information-outage probabilities under the assumption of ei-
ther Gaussian codebooks or finite QAM constellations (see

92

for example [16]. In the first case, reasonably simple ana-
lytical formulas can be used, in the second tabulated pre-
computed data must be generated. A third PHY-agnostic
possibility would be to use finite block-length error-rate ex-
pressions (upper and lower bounds) based on random coding
experiments. This is the most challenging approach from a
research perspective. For example, under the assumption of
Gaussian transmit signals and a particular receiver struc-
ture (e.g. MMSE which is optimal for Gaussian statistics)
a model for achievable BLER (on each transport block sent
by PHY to MAC) could be bounded as

Pe

„q
RSSIi,j [n]Hi,j [n, k]

ff
{KI,i,j,m[n, k]}

«
(2)

≤ Kimpl,i,j2
−NTB(Ri,j(n)−RMAC,i,j(n))

where Kimpl,i,j is an SINR-dependent implementation degra-
dation factor, RMAC,i,j(n) is the allocated code rate in bits
per dimension by the MAC layer scheduler in frame (sub-
frame) n and

Ri,j(n) =
1

|Ai,j(n)|
X

f∈Ai,j(n)

log2 (1 + SINRi,j [n, f])

where Ai,j(n) is the set of frequency resources allocated
in frame (sub-frame) n and SINRi,j [n, f] is the SINR of
the chosen receiver structure in frame (sub-frame) n and
frequency-band f .

With HARQ-based schemes, block errors at a particular
time also depend on past values of the signal and interference
components. Here additional protocol information from the
MAC signaling channel header are required, but well-known
semi-analytical models can be used to describe the BLER on
a particular transport block as a function of the round index
of the HARQ protocol and the current and past SINR val-
ues. The can be used for both repetition coding with chase
combining (type I HARQ) or Incremental redundancy (type
II HARQ). Again this can be done using either tabulated
BLER performance curves for the coded-modulation scheme
under test or information-theoretic PHY-agnostic formulas.
In the latter case, equivalent formulas to those described in
the previous section can be applied (see [15] for details).

When precoding is performed based on channel state feed-
back at the transmitting end, be it linear or non-linear, ad-
ditional PHY layer information must be transported in the
emulation process along with MAC information, namely the
linear/non-linear spatial filtering description at the sending
nodes. This is required to compute the received SINR at
the nodes which now depends, in addition to the channel,
on the spatial filtering done at the transmitter. Once this
information is incorporated into the SINR characterization,
the methods described above can be employed for PHY ab-
straction.

5. CONCLUSIONS
We described the The OpenAirInterface wireless network

emulator, a tool with the dual objective of performing pro-
tocol and application performance evaluation, in addition to
real-time layer 2/3 protocol implementation validation. A
brief overview of the current example protocol implementa-
tions was also provided. These closely resemble the speci-
fications for evolving UMTS-LTE and 802.16e/m networks
with the additional possibility for creating mesh network

topologies. In principle, any layer 2 protocol suite could
be implemented or adapted to use our methodology. We
also briefly described some novel ideas pertaining to physi-
cal layer (PHY) abstraction procedures which can be used
in wireless network emulation. Our current work focuses
on demonstrating the scalability of these techniques in real-
time emulation of wireless networks comprising hundreds
of nodes distributed on a PC cluster with a focus on effi-
cient and accurate PHY abstraction methods. The target
experimentation includes layer 2 scheduling algorithm devel-
opment, layer 3 mobility and handover protocols as well as
advanced radio resource management strategies for 4th gen-
eration cellular networks and rapidly-deployable mesh net-
works for public-safety applications.

6. REFERENCES
[1] OpenAirInterface, www.openairinterface.org.

[2] Real-Time Application Interface, www.rtai.org.

[3] Daniel Mahrenholz and Svilen Ivano, “Real-Time
Network Emulation with ns-2,” Eighth IEEE
International Symposium on Distributed Simulation
and Real-Time Applications (DS-RT’04), Budapest,
Hungary, October 2004.

[4] D. Cavin, Y. Sasson, and A. Schiper, “On the
accuracy of MANET simulators,” Second ACM
international Workshop on Principles of Mobile
Computing, Toulouse, France, October 30 - 31, 2002.

[5] Thomas R. Henderson, Sumit Roy, Sally Floyd and
George F. Riley, “ns3-Project Goals, Workshop on
ns-2: the IP network simulator,” Pisa, Italy October
10, 2006.

[6] IEEE 802.16 Task Group m, “IEEE 802.16m System
Description Document”,see wirelessman.org/tgm.

[7] P. Lescuyer, T. Lucidarme, “Evolved Packet
System-The LTE and SAE Evolution of 3G UMTS,”
Wiley, 2008.

[8] D. Mahrenholz, S. Ivanov, ”Real-Time Network
Emulation with ns-2”, Proceedings of The 8-th IEEE
International Symposium on Distributed Simulation
and Real Time Applications, Budapest Hungary,
October 21-23, 2004.

[9] User-Mode Linux Kernel,
http://user-mode-linux.sourceforge.net/

[10] The Multi Generator,
http://pf.itd.nrl.navy.mil/mgen/mgen.html

[11] Iperf, http://sourceforge.net/projects/iperf.

[12] MPLS-Linux, http://mpls-linux.sourceforge.net/.

[13] Project 802.16m Evaluation Methodology Document
(EMD), 802.16 Task Group m, IEEE 2006, see
wirelessman.org/tgm.

[14] William C. Jakes, Editor (February 1, 1975).
Microwave Mobile Communications. New York: John
Wiley and Sons Inc.

[15] H. El Gamal, G. Caire, M.O. Damen,”The MIMO
ARQ Channel: Diversity Multiplexing Delay
Tradeoff,” IEEE Transactions on Information Theory,
vol. 52, no. 8, 3601-3621, 2006.

[16] R. Knopp and P.A. Humblet, “On Coding for
Block-Fading Channels”, IEEE Transactions on
Information Theory, vol. 46, no. 1, Jan. 2000, pp.
189-205.

93

