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Abstract—In this paper, we propose a framework to extend
semantic labeling of images to video shot sequences and achieve
efficient and semantic-aware spatiotemporal video segmentation.
This task faces two major challenges, namely the temporal vari-
ations within a video sequence which affect image segmentation
and labeling, and the computational cost of region labeling.
Guided by these limitations, we design a method where spatiotem-
poral segmentation and object labeling are coupled to achieve
semantic annotation of video shots. An internal graph structure
that describes both visual and semantic properties of image and
video regions is adopted. The process of spatiotemporal semantic
segmentation is subdivided in two stages: Firstly, the video shot is
split into small block of frames. Spatiotemporal regions (volumes)
are extracted and labeled individually within each block. Then,
we iteratively merge consecutive blocks by a matching procedure
which considers both semantic and visual properties. Results on
real video sequences show the potential of our approach.

I. INTRODUCTION

The development of video databases has impelled research
for structuring multimedia content. Traditionally, low-level
descriptions are provided by image and video segmentation
techniques. The best segmentation is achieved by the human
eye, performing simultaneously segmentation and recognition
of the object thanks to a strong prior knowledge about the
objects’ structures. To generate similar high-level descriptions,
a knowledge representation should be used in computer-based
systems. One of the challenges is to map efficiently the
low-level descriptions with the knowledge representation to
improve both segmentation and interpretation of the scene.

We propose to associate spatiotemporal segmentation and
semantic labeling techniques for joint segmentation and an-
notation of video shots. From one hand, semantic labeling
brings information from a domain of knowledge and enables
recognition of materials and concepts related to the objects.
From the other hand, spatiotemporal segmentation decomposes
a video shot into continuous volumes that are homogeneous
with respect to a set of features. These extracted volumes
represent an efficient medium to propagate semantic labels
inside the shot.

Various approaches have been proposed for segmenting
video shot into volumes. 3D approaches take as input the
whole set of frames and give coherent volumes optimizing a
global criterion [1], at the expense of an important computa-
tional cost. A few methods provide mid-level description of the
volumes. In [2], volumes are modeled by a gaussian mixture
model including color and position. Another example is given
in [3], where volumes are considered as small moving linear

patches. We have previously demonstrated that with a 2D+T
(time) method [4] we can obtain a good trade-off between
efficiency and accuracy of the extracted volumes. Recent
progress has been also observed for scene interpretation and
the labeling of image regions. In [5], an experimental platform
is described for semantic region annotation. Integration of
bottom-up and top-down approaches in [6] provides superior
results in image segmentation and object detection. Region
growing techniques have been adapted to group low-level
regions using their semantic description instead of their visual
features [7].

The integration of semantic information within the spa-
tiotemporal grouping process sets two major challenges.
Firstly, region labeling is obtained by computing visual fea-
tures and match them to the database, which induces an
important computational cost. Secondly, the relevance of the
semantic description depends also on the accuracy of visual
descriptors, whose extraction requires sufficient area of the
volumes. These considerations suggest that use of seman-
tic information during the early stages of the segmentation
algorithm would be highly inefficient and ineffective if not
misleading. Therefore, we add semantic information when
the segmentation has produced a relatively small number
of volumes. To this aim, we introduce a method to group
semantically spatiotemporal regions within video shots.

The paper is organized as follows: In section II we give
an overview of the strategy. Section III introduces the graph
representation used for video shots. Section IV and V details
the building steps of our approach: the labeling of temporal
volumes and its propagation to the whole shot, respectively.
Finally, results are illustrated in section VI and conclusions
are drawn in section VII.

II. OVERVIEW OF THE STRATEGY

The overall framework for the application is shown in
fig.1. The considered video sequences are restricted to single
shots, i.e. video data has been captured continuously from the
camera and there are no cuts. Because of occlusion, shad-
owing, viewpoint change or camera motion, object material
is prone to important spatial and temporal variations that
makes maintaining an object as a unique volume difficult. To
overcome the limits of the spatiotemporal stage, a video shot
is decomposed into a sequence of smaller Block of Frames
(BOF).
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Fig. 1. The proposed framework for semantic video segmentation.

Semantic video shot segmentation is then achieved by an
iterative procedure on the BOFs and operates in two steps,
labeling of volumes within the BOF and merging with the
previous BOF, which we will refer to as intra-BOF and inter-
BOF processing respectively. During intra-BOF processing,
spatiotemporal segmentation decomposes each BOF into a set
of volumes. The resulting 2D+T segmentation map is sampled
temporally to obtain several frame segmentation maps, each
one consisting of a number of non overlapping regions. These
regions are semantically labeled and the result is propagated
within the volumes. A semantic region growing algorithm is
further applied to group adjacent volumes with strong semantic
similarity. During inter-BOF processing, we perform joint
propagation and re-estimation of the semantic labels between
consecutive video segments. The volumes within each BOF are
matched by means of their semantic labels and visual features.
This allows to extend the volumes through the whole sequence
and not just within a short BOF. The semantic labels of the
matched volumes are re-evaluated and changes are propagated
within each segment. Finally both BOFs are merged and the
process is repeated on the next BOF.

III. GRAPH REPRESENTATION OF VIDEO SHOTS

Following MPEG-7 descriptions, one video shot is struc-
tured hierarchically in video segments. Firstly a shot is divided
into M Blocks of Frames (BOF) Bi (i ∈ [1,M ]), each one
composed of successive frames Ft, t ∈ [1, |Bi|]. Spatiotem-
poral segmentation decomposes each Bi into a set of video
regions (or volumes) SBi

. Each volume a ∈ SBi
is subdivided

temporally into frame regions Ra(t), Ft ∈ Bi. Finally, frame
segmentation at time t is defined as the union of frame regions
of all volumes intersecting frame Ft: St =

⋃
a∩Ft 6=∅ Ra(t).

The elements composing the BOF are represented in fig.2.
A video segment (image or video shot) can represent a

structured set of objects and is naturally described by an
Attributed Relational Graph (ARG) [8]. Formally, an ARG
is defined by spatiotemporal entities represented as a set of
vertices V and binary spatiotemporal relationships represented
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Fig. 2. Spatial and temporal decomposition of a BOF Bi.

as a set of edges E : ARG ≡ 〈V,E〉. Letting SBi
be a

segmentation of a BOF Bi, a volume a ∈ SBi is represented
in the graph by vertex va ∈ V , where va ≡ 〈a,Da,La〉. Da

is a set of low-level MPEG-7 visual descriptors for volume a,
while La is the fuzzy set of labels for that volume (defined
over the crisp set of concepts C) with membership function
µa:

La =
|C|∑
i=1

ci/µa(ci), ci ∈ C (1)

Two neighbor volumes a, b ∈ SBi are related by a graph
edge eab ≡ 〈(va, vb), sDab, s

L
ab〉. sDab is the visual similarity

of volumes a and b, calculated from their set of MPEG-7
descriptors Da and Db.. Several distance functions are used
for each descriptor, so we normalize those distances linearly
to the unit range and compute their visual similarity sDab by
their linear combination. sLab is a semantic similarity value
based on the fuzzy set of labels of the two volumes La and
Lb:

sLab = sup
ci∈C

(t(La,Lb)), a ∈ S, b ∈ Na (2)

where Na is the set of neighbor volumes of a and t is a t-norm
of two fuzzy sets. Intuitively, eq.2 states that the semantic
similarity sLab is the highest degree, implied by our knowledge,
that volumes a and b share the same concept.

IV. INTRA-BOF LABELING

To label a new BOF, we exploit the spatiotemporal seg-
mentation to build visual and semantic description efficiently,
using only a few frames. The following subsections present
the criterion used for selecting these frames, the extraction of
visual and semantic attributes of video regions and how those
attributes are used for merging operations of volumes within
the BOF.

A. Frame Selection

Once the segmentation masks are obtained for the whole
BOF, region descriptor extraction and labeling tasks are sub-
stantially reduced by selecting a set of frames within the video
segment. Choosing an important number of frames will lead
to a complete description of the BOF but will require more
time to process. On the contrary, using a single frame is
more efficient but important volumes may not receive labels.



We consider a set of frames T and its corresponding frame
segmentations ST = {St}, t ∈ T and measure the total span
of the intersected volumes. Given a fixed size for T we choose
the set Tsel that maximizes the span of the labeled volumes:

Tsel = argmax
T

∑
a∩ST 6=∅

|a| (3)

where |a| is the size of volume a. Compared with fixed
sampling, the criterion offers scalability for the extracted
descriptors in function of the desired total volume span for
the shot. Indeed the span increases with the number of frames
selected.

B. Video Region Description

In previous work [5] we have shown how extracted visual
descriptors can be matched to visual models of concepts.
This region labeling process is applied to the selected frames
(according to criteria discussed in section IV-A), resulting to
an initial fuzzy labeling of regions with a set of concepts.
The fuzzy set of labels La of a volume a is obtained by
gathering the contributions from each frame region using a
fuzzy aggregation operator :

µa(c) =

∑
t∈Tsel

A(Ra(t))µRa(t)(c)∑
t∈Tsel

A(Ra(t))
(4)

This operator weights the confidence degrees with the impor-
tance given to the frame regions. These weights A(Ra(t)),
are obtained by a measure of temporal consistency of frame
regions.

Besides the semantic labeling, volumes are also described
by low-level visual descriptors. Most MPEG-7 descriptors are
originally intended for frame regions, but can be extended to
volumes with the use of aggregation operators. For histogram-
based descriptors, common operators are mean, median and
intersection of bins. We select the mean operator since we
consider homogeneous short-length volumes. In addition to
descriptors, we also store the sizes and center of the volumes
and its spatiotemporal bounding box for fast localization.

C. Semantic Volume Growing

Spatiotemporal segmentation usually creates more volumes
than the actual number of objects present in the BOF. We ex-
amine how a variation of a traditional segmentation technique,
the Recursive Shortest Spanning Tree (RSST) can be used to
create more coherent volumes within a BOF. The idea is that
neighbor volumes, sharing the same concepts, as expressed
by the labels assigned to them, should be merged, since they
define a single object.

To this aim, we modify the RSST algorithm to operate on
the fuzzy sets of labels L of the volumes in a similar way as
if it worked on low-level features (such as color, texture) [7].
The modification of the traditional algorithm to its semantic
equivalent lies on the re-definition of the two criteria: (i) The
similarity between two neighbor volumes a and b (vertices va

and vb in the graph), based on which graph’s edges are sorted
and (ii) the termination criterion. For the calculation of the

semantic similarity between two vertices, we use sLab defined
in eq.2.

For one iteration of the semantic RSST, the process of
volume merging decomposes in the following steps: Firstly,
the edge eab that has the maximum semantic similarity sLab

is selected; vertices va and vb are merged. Vertex vb is
removed completely from the ARG, whereas va is updated
appropriately. This update procedure consists of two actions:

• Re-evaluation of the degrees of membership of the labels
in a weighted average fashion from the union of the two
volumes:

µa(c)← |a|µa(c) + |b|µb(c)
|a|+ |b|

(5)

• Re-adjustment of the ARG edges by removing edge
eab and re-evaluating the weights of the affected edges
incident to a or b.

This procedure terminates when the edge e∗ with maximum
semantic similarity in the ARG is lower than a threshold,
which is calculated in the beginning of the algorithm, based
on the histogram of all semantic similarity values of the set
of all edges E.

V. INTER-BOF PROCESSING

In the previous section we dealt with segmentation and
labeling of volumes within each single BOF. Here we examine
how to extend volumes over consecutive BOF and for this
purpose we develop techniques of visual and semantic volume
matching. Semantic grouping is first performed on volumes
with dominant concepts (i.e. concepts with high degree of
confidence), then concepts are propagated temporally and
spatially with the use of both semantic and visual similarity.

A. BOF Matching

We consider the merging of two successive BOF represented
by their ARGs G1 and G2. It is not worth computing all
volume matches between the two ARGs. As we consider
continuous sequences, semantic objects are coherent spatially
and temporally. In consequence, numerous matches can be
pruned by exploiting spatiotemporal location of the volumes.

We establish temporal connections between G1 and G2 by
selecting candidate matches from G1 to G2 and G2 to G1.
Let G be the merged graph of G1 and G2. At the beginning,
G = G1 ∪ G2. Given vertices va ∈ G1 and vb ∈ G2, va

is connected to vb in G if the bounding box of b intersects
a truncated pyramid that represents the possible locations for
a in the new BOF. The pyramid top base is defined by the
bounding box of a. The bottom base is enlarged by a factor
Ds = vmaxTmax where vmax is the maximum displacement
between two frames and Tmax is the height of the pyramid
along the temporal axis. The connections are established in
both forward and backward temporal directions. As a result, va

owns an edge list of candidate matches Ea = {eab|vb ∈ G2}.
A list Eb is created similarly for vb.

After creating the list of candidate matches, we match
volumes with reliable or dominant concepts. A concept c∗ ∈ C



va

vd

sD=0.9, c*=Ø

sD=0.8, c*=“foliage”

sD=0.3, c*=Øve

vb

vc

sD=0.5, c*=“foliage”

G1 G2

Fig. 3. Matching of dominant volumes. Dominant volumes are represented
with thick circles.

is considered dominant for a volume a ∈ G if the following
condition is satisfied:{

µa(c1) > Tdom

µa(c1) > Tsecµa(c2)
(6)

c1 and c2 are respectively the concepts with highest and
second highest degrees of membership. A dominant concept
has degree of memberships above Tdom and is more important
than all other concepts, with minimum ratio of Tsec.

The best match for one dominant volume may not be
dominant because its visual appearance changes during the
sequence. For this reason, we match either dominant volumes
that have sufficient visual similarity or one dominant volume
to any volume in case they have perfect visual match. The
criterion to match a dominant volume a to a volume b,
eab ∈ Ea, is based on both semantic and visual attributes.
Let c∗a and c∗b be the dominant concepts of La and Lb. If b
is dominant but c∗a 6= c∗b , then no matching is done. In case
c∗b is empty, then eab has to be the best visual match from
a, otherwise we compute the normalized rank of the visual
similarity sD in decreasing order, whose values do not depend
of the descriptors used. Formally the criterion is validated if:

rank
(
sDab

)
= 1 if c∗b = ∅{

c∗a = c∗b
|Ea|−rank(sDab)

|Ea|−1 > Ts

otherwise
(7)

Ts indicates the tolerance allowed on visual attributes. When
Ts is close to 1, only the best visual match is considered. If
Ts is set to 0.5, half of the matches are kept.

The aforementioned procedure is illustrated fig.3. In the ex-
ample, va is linked to vc as it shares the same concept “foliage”
and the visual similarity is the second best (sDac = 0.8). va is
also linked to vb since the similarity between a and b is the
best one (sDab = 0.9). vd is not matched even if it shares the
same dominant concept as they are visually different from va.
Indeed only dominant matches with good similarity are kept.

Since region and volume labeling are processes with a
certain degree of uncertainty, reliable semantic concepts do not
emerge from every volume, either due to the limited domain of
the knowledge base, the imperfections of the segmentation, or
the material itself. Therefore, we introduce volume matching
using low-level visual attributes, expecting the semantics of
these volumes to be recognized with more certainty in a sub-
sequent part of the sequence. To avoid propagating matching

errors and hamper the accuracy of the volumes, we only
consider the matches with the strongest similarities and we
are most confident in. Let e∗a and e∗b be the edges in lists Ea

and Eb which have maximum visual similarity. a and b are
matched and eab is a first best match, i.e. eab ≡ e∗a ≡ e∗b .

B. Update and Propagation of Labels

After the matching process, volumes are merged and their
semantic and visual properties are computed using the aggre-
gation operators, defined eq. 4. For this reason, new evidence
for semantic similarity can be found in the merged graph as
new dominant volumes are likely to be found. We do not
merge further these volumes at this stage, so as to keep the
accuracy of the visual description as they may correspond
to different materials belonging to the same concept. Instead
of this, the concepts of dominant volumes are propagated
in the merged graph G. Let a be a non-dominant volume,
va ∈ G; we define a set of candidate dominant concepts
Ca = {c ∈ C|µa(c) > Tc}. For a concept c ∈ Ca, we
compute the degrees of membership µ′a(c) resulting from the
aggregation of va and its neighbor vertices in G with dominant
concept c:

µ′a(c) =

∑
b∈Nc

a
|b|µb(c)∑

b∈Nc
a
|b|

(8)

where N c
a = a ∪ {b ∈ Na|c∗b = c} is the aforementioned

neighborhood and |b| is the current size of volume b. The
concept c∗ ∈ Ca, maximizing µ′a(c), is selected and all
degrees of membership of La and the size |a| are updated
by the aggregation of volumes in N c∗

a . This propagation is
performed in the whole graph G recursively. Let GD be the
subgraph of G containing only the dominant volumes of G
and their incident edges. Once non-dominant volumes in G are
processed, new dominant volumes may emerge in the subgraph
G′ = G−GD. The update procedure is repeated considering
G′ as the whole graph until no more dominant volumes are
found: GD = ∅. Consequently, degrees of membership of non-
dominant volumes tend to increase using the neighborhood
context, correcting the values from the initial labeling.

Fig.4 gives an example of the inter-BOF merging and prop-
agation of labels after that. The ideal semantic segmentation
would be composed of two objects with dominant concepts c1

and c2. Before merging, a few dominant volumes are detected
(v4, v9, v11) in the two BOFs. After merging (fig.4(b)) the
degrees of membership are re-evaluated according to eq. 5
and semantic weights are computed on the new edges. New
evidence for semantic similarity is found between volumes
(v3, v1) and (v3, v2), since v3 has been matched with dominant
volume v9. Thus, due to propagation of concept c1, v1 and v2

are linked to the dominant volume v3 and their degrees of
membership are increased according to eq. 8.

VI. EXPERIMENTAL RESULTS

We illustrate the potential of the method on a set of exam-
ples. The knowledge domain encompasses various elements
encountered in a natural scene, such as ”sea”, ”sky”, ”foliage”
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Fig. 4. Merging of two BOFs. (a) Matching between two BOF. (b)
Merging of a BOF and update of semantic labels. Ideal semantic segmentation
is represented by the dashed boxes. Matched volumes are marked with
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Tdom = 0.75 and Tsec = 1.25.

or ”person”. The proposed example sequences are composed
of 650 and 100 frames, respectively. The BOF duration in
the second sequence is |B| = 10 frames while for the first
sequence we increase the duration to |B| = 50 frames, to show
the behavior of the method at a larger scale while maintaining
reduced computational costs.

The first example shows two girls walking on the beach
(fig.5). Firstly, the girls are approaching the camera (BOF 1-
5). Then they are observed in a close-up view (BOF 6-10).
Finally the camera rotates quickly by 180 degrees to shoot
them backside. Relevant concepts ”person”, ”sky” and ”sea”
are detected within the shot. First we can see that the sky
area is recognized all along the sequence. Although its aspect
slightly changes at the end, it is still detected as dominant
in the labeling stage and thus merged as a single volume.
We can notice that isolated areas are also labeled ”sky”, as
their material is visually close to this concept (BOF 5, 13).
For the same reason, only part of the sea is identified at the
right. In contrast, the left part is not dominant, but is correctly
grouped by visual matching from BOF 3 to 10. After that,
the sea areas are detected easily being shot in front view. The
detection of ”person” is more challenging since the related
object includes different materials. In BOF 1 each silhouette
is identified correctly standing as a single volume. The left
girl’s area is propagated from BOF 3 to 10. After that point
it is completely occluded in BOF 11 and the concept is re-
detected within a new volume in BOF 13. For the girl on the
right the labeling is more uncertain as part of her suit and head
have been confused with the background area (BOF 5, 7, 11).
However, the upper part is still detected and propagated from
BOF 5 to 9 and from 10 to 12 while the view is changing.

The second example shows a woman talking in front of
her car (fig.6). The detected concepts include ”person” and
”foliage”. The head and the coat both belong to the ”person”
concept and can be viewed as a single object, but are still
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a) b) c) d) e) f)

Fig. 5. Video semantic segmentation. (a) Frames in various BOF. (b) Spa-
tiotemporal segmentation. (c) Semantic segmentation and inter-BOF matching.
Volumes are extended throughout the shot (note the consistency in coloring).
(d) Concept ”person”. (e) ”sea”. (f) ”sky”.

separated in the semantic segmentation (fig.6(c)), which is an
advantage as they are visually different. In BOF 4 only the coat
is recognized (fig.6(d)). The reason is that the head has been
partly confused with the background in the spatiotemporal
segmentation. In such case, the volume is not matched, as
its visual properties are different from the other volumes in
the previous and subsequent BOF. In the right part of the
sequence, the upper branches are well identified as ”foliage”
and are merged in a single volume from BOF 1 to 4 (fig.6(c)).
From BOF 6 to 8, the branches are occluded by the woman.
As a consequence the volumes are more fragmented and less
homogeneous, so they are not linked to the previous part of
the sequence. In BOF 10, the volume material in this area is
homogeneous and the branches are correctly identified again.

Foliage Person Sea Sky Overall
Ex.1 Acc x 0.74 0.87 0.96 0.89

Score x 0.62 0.65 0.78 0.71
Ex.2 Acc 0.81 0.86 x x 0.84

Score 0.55 0.64 x x 0.61

TABLE I
EVALUATION OF THE SEGMENTATION RESULTS.

Evaluation of the results for the above sequences is pre-
sented in table I. Each concept is associated to a semantic
object (ground truth). The accuracy measure (Acc) [9] relates
to the quality of the segmented volumes (fig.5-6(c)), unifying
precision and recall. The evaluation score [7] gives a further
measure of belief for the object labeling in every image.
Unsurprisingly concept “sky” obtains the best result for all
measures. For “foliage” sparse texture of the material and
fragmentation of the volumes result in a lower score of 0.55.
Concept “sea” has a higher detection score of 0.65, color and
texture being relatively stable. Concept “person” is detected
although some background can be included in the object
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Fig. 6. Video semantic segmentation. (a) Frames in various BOF. (b) Spa-
tiotemporal segmentation. (c) Semantic segmentation and inter-BOF matching.
(d) Concept ”person”. (e) ”foliage”.

(Acc = 0.74 for Ex.1). Finally, the overall detection scores
are 0.71 for Ex.1 and 0.61 for Ex.2.

We further analyze the effects of the BOF decomposition on
the efficiency of the approach. Fig.7 shows the repartition of
the overall running time for the sequence of the first example
(650 frames). The procedure is composed of four steps: (i)
spatiotemporal segmentation, (ii) visual descriptor extraction
and region labeling with the knowledg-assisted analysis system
(KAA [5]), (iii) the construction of the ARGs (including
the semantic RSST) and (iv) the inter-processing stage that
merges the BOFs. Processing frames independently (|B| = 1)
generates an important computational cost because of the
labeling of every image of the sequence. The impact on the
overall complexity is reduced with the spatiotemporal scheme
(|B| > 1) that allows temporal sampling of the frames. For the
evaluation, a single frame has been selected for each block,
so that running time decreases inversely with the BOF length.
Regarding the other components, we can notice that large
BOF sizes lead to increase the time required for producing
the spatiotemporal segmentation of the BOF. However, the
additional cost is largely compensated with the gain in the
region labeling stage. For the final merging stage, the running
time for different BOF sizes is comparable. Indeed, the step
is dominated by loading and updating the frame segmentation
maps of which number does not depend of the BOF size, while
the merging of the ARGs has lower complexity.

Overall, the gain with the proposed approach reaches a
factor up to 12 (|B| = 50). Thus, the analysis shows the
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Fig. 7. Repartition of the overall running time of the first example, in function
of the BOF length. Complexity is reduced when the BOF length increases.

benefit of the framework in terms of complexity, extending
single image annotation to continuous sequences efficiently.

VII. CONCLUSIONS

This paper presents a new approach for simultaneous seg-
mentation and labeling of video sequences. Spatiotemporal
segmentation is presented as an efficient solution to alleviate
the cost of region labeling, compensating semantic with visual
information when the former is missing. Our approach groups
volumes with relevant concepts together while maintaining
a spatiotemporal segmentation for the entire sequence. This
enables the segmented volumes to be annotated at a subsequent
point in the sequence. First experiments on real sequences
show that the application is promising, though enhancements
can still be achieved in the early spatiotemporal segmentation
and labeling stage. Further challenge will be to consider
structured objects instead of materials, leading towards scene
interpretation and detection of complex events.
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