
Visual-Similarity-Based Phishing Detection

Eric Medvet
DEEI

University of Trieste, Italy
emedvet@units.it

Engin Kirda
Eurecom, France

kirda@eurecom.fr

Christopher Kruegel
University of California, Santa

Barbara, USA
chris@cs.ucsb.edu

ABSTRACT
Phishing is a form of online fraud that aims to steal a user’s
sensitive information, such as online banking passwords or
credit card numbers. The victim is tricked into entering such
information on a web page that is crafted by the attacker
so that it mimics a legitimate page. Recent statistics about
the increasing number of phishing attacks suggest that this
security problem still deserves significant attention.

In this paper, we present a novel technique to visually
compare a suspected phishing page with the legitimate one.
The goal is to determine whether the two pages are suspi-
ciously similar. We identify and consider three page features
that play a key role in making a phishing page look simi-
lar to a legitimate one. These features are text pieces and
their style, images embedded in the page, and the overall
visual appearance of the page as rendered by the browser.
To verify the feasibility of our approach, we performed an
experimental evaluation using a dataset composed of 41 real-
world phishing pages, along with their corresponding legit-
imate targets. Our experimental results are satisfactory in
terms of false positives and false negatives.

Categories and Subject Descriptors
K.4.4 [Computers and Society]: Electronic Commerce—
Security ; I.7.5 [Document and Text processing]: Docu-

ment CaptureŰDocument analysis

Keywords
Anti-Phishing, Web document analysis, Security, Visual Sim-
ilarity

1. INTRODUCTION
Phishing is a form of online fraudulent activity in which

an attacker aims to steal a victim’s sensitive information,
such as an online banking password or a credit card number.
Victims are tricked into providing such information by a
combination of spoofing techniques and social engineering.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SecureComm 2008 September 22 - 25, 2008, Istanbul, Turkey
Copyright 2008 ACM ISBN # 978-1-60558-241-2 ...$5.00.

In practice, the victims often receive an email that tries to
convince them to visit a web page that has been prepared
by the attacker. This page mimics and spoofs a real service
such as an online banking web site. Legitimately looking web
forms are provided through which the attacker can harvest
and collect confidential and sensitive information.

Although tricking people to make financial profit is an old
idea, criminals have realized that social-engineering-based
attacks are simple to perform and highly effective over the
Internet. Hence, although highly publicized, phishing is still
an important security problem and many Internet users fall
victim to this fraud. Note that such attacks are not only
problematic for Internet users, but also for organizations
that provide financial services online. The reason is that
when users fall victim to phishers, the organization provid-
ing the online service often suffers an image loss as well as
financial damage.

In recent years, phishing attacks have gained attention
because their numbers and their sophistication have been
increasing. The Anti Phishing Work Group detected more
than 25,000 unique phishing URLs in December 2007 [1].
Also, creating a phishing site has become easier. “Do-it-
yourself” phishing kits [16] created by criminals can easily
be used by technically unsophisticated attackers. Moreover,
more sophisticated phishing attacks have emerged. For ex-
ample, [10] shows how attackers exploited an application-
level vulnerability to insert a phishing page into a legitimate
and trusted bank web site to steal banking credentials. The
most straightforward and widespread method to commit a
phishing attack, however, still consists of deploying a web
page that looks and behaves like the one the user is familiar
with.

In this paper, we present an effective approach to detect
phishing attempts by comparing the visual similarity be-
tween a suspected phishing page and the legitimate site that
is spoofed. When the two pages are “too” similar, a phishing
warning is raised. In our system, we consider three features
to determine page similarity: text pieces (including their
style-related features), images embedded in the page, and
the overall visual appearance of the page as seen by the user
(after the browser has rendered it). We quantify the similar-
ity between the target and the legitimate page by comparing
these features, computing a single similarity score.

We chose to perform a comparison based on page features
that are visually perceived. This is because phishing pages
mimic the look-and-feel of a legitimate site and aim to con-
vince the victims that the site they are visiting is the one
they are familiar with. Once trust is established based on

visual similarity, there is a higher chance that the victim will
provide her confidential information. Typically, a victim’s
visual attention focuses both on the global appearance of
the page and on salient details such as logos, buttons, and
labels. In fact, these observations are supported by both
common sense and literature [5].

The solution that we propose in this paper was inspired
by two previous, open-source, anti-phishing solutions: An-
tiPhish [7] and DOMAntiPhish [12]. AntiPhish is a browser
plugin that keeps track of sensitive information. Whenever a
user attempts to enter sensitive information on one site, and
this information has previously been associated with a dif-
ferent, trusted site, a warning is generated. This is effective
when a user inadvertently enters bank login information on a
phishing site. However, AntiPhish suffers from the problem
that legitimate reuse of credentials is also flagged as suspi-
cious. To address this usability problem, DOMAntiPhish
was proposed. For that approach, the authors compared
the Document Object Models (DOMs) of the pages under
analysis to determine whether the two pages are similar;
in case they are not, no warning is generated. The major
limitation of DOMAntiPhish is that the DOM tree is not
necessarily a reliable feature to establish similarity between
pages. In some cases, it is possible for the attacker to use
different DOM elements to create a similar look-and-feel and
appearance of a page. Furthermore, a phishing site that only
consists of images cannot be detected.

In this paper, we propose a novel comparison technique
that eliminates the shortcomings of AntiPhish and DOMAn-
tiPhish. Our solution can be used together with these tools,
but can also be integrated into any other anti-phishing sys-
tem that can provide a list of legitimate sites that can be
potential targets of phishing attempts.

We performed a real-world evaluation to verify the phish-
ing detection effectiveness of our approach. Our dataset
contained 41 real phishing pages, together with the corre-
sponding, legitimate pages. Our results, in terms of false
alarms and missed detection, are satisfactory. We observed
no false positives. Furthermore, only two phishing attempts,
which actually did not visually resemble the legitimate web
pages, were missed.

2. RELATED WORK
Phishing is an important security problem. Although

phishing is not new and, hence, should be well-known by
Internet users, many people are still tricked into providing
their confidential information on dubious web pages.

To counter the phishing threat, a number of anti-phishing
solutions have been proposed, both by industry and acade-
mia. A class of anti-phishing approaches aims to solve the
phishing problem at the email level. The key idea is that
when a phishing email does not reach its victims, they can-
not fall for the scam. This line of research is closely related
to anti-spam research. One reason for the abundance of
spam and phishing emails is the fact that the Simple Mail
Transport Protocol (SMTP) does not contain any authen-
tication mechanisms. The sender information in an email
message can easily be spoofed. To address this problem,
Microsoft and Yahoo have defined email authentication pro-
tocols (Sender ID [9] and DomainKeys [21]) that can be used
to verify whether a received email is authentic. Unfortu-
nately, however, these protocols are currently not employed
by the majority of Internet users.

Browser-integrated solutions to mitigate phishing attacks
are SpoofGuard [3, 17] and PwdHash [14, 13]. SpoofGuard
checks for phishing symptoms (such as obfuscated URLS)
in web pages. PwdHash, in comparison, creates domain-
specific passwords that are rendered useless if they are sub-
mitted to another domain (e.g., a password for www.online-
bank.com will be different when submitted to www.attacker.
com).

As discussed previously, AntiPhish [6, 7] is a system that
keeps track of where sensitive information is being submitted
to. Whenever sensitive information, which has been previ-
ously entered on one site, is transmitted to another site, a
warning is raised. This is a problem when a user wants to de-
liberately reuse information on multiple sites, since the sys-
tem will generate warnings for each site where data is reused.
A solution that addresses this limitation of AntiPhish is DO-
MAntiPhish [12]. More precisely, DOMAntiPhish leverages
a comparison between the DOM tree of the first page, where
the information was originally entered, and the second page,
where the information is reused. When the two pages are
found to be similar, a phishing attack is signaled. Otherwise,
the system assumes legitimate reuse of information. Unfor-
tunately, the system cannot cope with DOM obfuscation
attacks, where the attacker uses a different DOM to create
a similar page. Furthermore, DOMAntiPhish is ineffective
against phishing pages that use mostly images.

Dhamija et al. [4] proposed a solution that makes use of
a so-called dynamic security skin on the user’s browser, re-
quiring the user to actively verify the server identity. There
are two problems with this approach. First, users that are
victimized by phishing attacks are unsophisticated, and they
do not pay sufficient attention to the presented signs. Sec-
ond, in a later study [5], Dhamija et al. have shown that
more than 20% of the users do not take visual cues into
consideration at all. Also, visual deception attacks can fool
even the most sophisticated users.

The most popular and widely-deployed anti-phishing tech-
niques are based on the use of blacklists. These blacklists
store a set of phishing domains that the browser prevents
the user from visiting. Microsoft has recently integrated a
blacklist-based anti-phishing solution into its Internet Ex-
plorer (IE) 7 browser. Similar tools include Google Safe
Browsing [15] or the NetCraft tool bar [11].

The approach that is closest to our work was presented
in Liu et al.’s short paper [20]. The authors analyze and
compare legitimate and phishing web pages to define metrics
that can be used to detect a phishing page. They classify
a web page as a phishing page when its visual similarity
value is above a predefined threshold. The approach first
decomposes the web pages into salient blocks according to
“visual cues.” Then, the visual similarity between two web
pages is computed. A web page is considered a phishing page
if the similarity to the legitimate web page is higher than a
threshold. The main differences to our approach are the
following. First, we do not need an initial list of legitimate
pages. Instead, our system automatically selects the page to
compare against based on the site on which a certain piece
of information was initially entered. This allows our system
to perform fewer comparisons and warn more aggressively
about phishing pages. Second, we use a richer set of features
to perform the visual comparison computation and perform
our experimental evaluation on a larger dataset (the authors
of [20] used only 8 phishing pages).

3. OUR APPROACH
In the following subsection, we provide a high-level over-

view of how our system can be used to detect phishing pages.
Then, we discuss how we extract signatures from web pages,
and how we use these signatures to compare two pages to
determine their visual similarity.

3.1 Using the System
One possible application scenario for our system is to in-

tegrate the visual similarity detection scheme into the open-
source tool AntiPhish [7, 12]. AntiPhish tracks the sensitive
information of a user and generates warnings whenever the
user attempts to provide this information on a web site that
is considered to be untrusted. It works in a fashion similar
to a form-filler application. However, it not only remem-
bers what information (i.e., a 〈username, password〉 pair) a
user enters on a page, but it also stores where this informa-
tion is sent to. Whenever a tracked piece of information is
sent to a site that is not in the list of permitted web sites,
AntiPhish intercepts the operation and raises an alert. Al-
though simple, the approach is effective in preventing phish-
ing attacks. Unfortunately, when a user decides to reuse the
same 〈username, password〉 pair for accessing different online
services, too many undesired warnings (i.e., false positives)
are raised. By integrating the comparison technique into
the existing AntiPhish solution, we can prevent AntiPhish
from raising warnings for sites that are visually different.
The underlying assumption is that a phishing page aims
to mimic the appearance of the targeted, legitimate page.
Thus, when two pages are similar, and the user is about to
enter information associated with the first page on the sus-
picious, second page, an alert should be raised. When the
two pages are different, it is unlikely that the second page
tried to spoof the legitimate site, and thus, the information
can be transmitted without a warning.

Of course, our technique can also be used in other appli-
cation scenarios, as long as a baseline for the suspicious page
is available. That is, we need to know what the legitimate
page looks like so that we can compare against it. For exam-
ple, the approach could be part of a security solution that
works at the mail server level. Whenever a suspected phish-
ing email is found, the potential phishing URL is extracted
from the email. Then, the corresponding legitimate page is
obtained, using a search engine or, based on keywords, se-
lected among a predefined set of registered pages. Finally, a
comparison is initiated and, if the outcome is positive, the
email is blocked.

To compare a target page (i.e., suspected page) with a
legitimate page, four steps are required:

1. Retrieve the suspicious web page w.

2. Transform the web page into a signature S(w).

3. Compare S(w) with the stored signature S(ŵ) of the
supposed legitimate page ŵ (i.e., the page targeted by
the phishing page).

4. If the signatures are “too” similar, raise an alert.

Steps 2 and 3 represent the core of our technique. We discuss
these steps in detail in the next two subsections. The actual
implementation of Step 4 depends on the specific application
scenario in which the approach is used. For example, in
Antiphish, raising an alert implies that the submission of
sensitive data is canceled and a warning is displayed to the
user.

3.2 Signature Extraction
A signature S(w) of a web page w is a quantitative way

of capturing the information about the text and images that
compose this web page. More precisely, it is a set of features
that describe various aspects of a page. These features cover
(i) each visible text section with its visual attributes, (ii)
each visible image, and (iii) the overall visual look-and-feel
(i.e., the larger composed image) of the web page visible in
the viewport1, as follows.

Concerning visible text, we consider each visual piece of
text on the web page that corresponds to a leaf text node
in the HTML DOM tree and we extract, for each one: its
textual content, its foreground color, its background color,
its font size, the name of the corresponding font family, and
its position in the page (measured in pixel starting from the
upper left corner).

For each visible image of the web page, our technique
extracts: the value of the corresponding src attribute (i.e.,
the source address of the image), its area as the product
of width and height, in pixel, its color histograms, its 2D
Haar wavelet transformation, and its position in the page.
The 2D Haar wavelet transformation [18] is an efficient and
popular image analysis technique that, essentially, provides
low-resolution information about the original image.

Finally, we consider the overall image corresponding to
the viewport of the web page, as rendered by the user agent,
and we extract its color histograms and its 2D Haar wavelet
transformation.

3.3 Signature comparison
Once two signatures S(w) and S(ŵ) are available, we can

compute the similarity score between the corresponding web
pages w and ŵ. To this end, we start by comparing pairs
of elements from each page. Of course, elements are only
compared with matching types (e.g., text elements are only
compared with other text elements). That is, we compare all
pairs of text elements to obtain a similarity score st. Then,
we compare all image pairs to obtain a similarity score si.
Finally, the overall appearances of the two pages are used
to derive a similarity score so. Using these three scores, a
single similarity score s ∈ [0, 1] is derived that captures the
similarity between the pages w and ŵ.

Due to space constraints, we omit a detailed discussion on
the comparison of elements. For more details, the reader is
referred to [8]. In summary, a pair similarity index is out-
put by each pair comparison, which takes into account the
features of the pair elements specified in the previous sec-
tion. The text elements comparison involves computing the
Levenshtein distance between the two corresponding strings,
the 1-norm distance between the foreground and background
colors, and the Euclidean distance between the positions in
the page. Furthermore, we consider font families and sizes
too. The image elements comparison involves computing the
Levenshtein distance between the two corresponding src at-
tributes, the 1-norm distance between the color histograms
and the 2D Haar wavelet transformations, and the Euclidean
distance between the positions in the page. We also consider
image areas. The same strategy, except for the image areas
and page positions, is followed for the overall image.

1The viewport is the part of the web page that is visible in
the browser window.

Once we have obtained a pair similarity index for each
pair of elements, we store them in a similarity matrix: St

for text elements and Si for images—the overall image com-
parison outputs a single similarity score so, hence no matrix
is needed. For ease of reasoning, we discuss only the text el-
ements matrix St: the same information applies to Si. The
dimension of the matrix is n×m, where n is the number of
text elements on page w and m is the number of elements
on ŵ.

To obtain a similarity score s from a similarity matrix S

(st for the text matrix St and si for the image matrix Si),
we average the largest n elements of the similarity matrix,
which are selected using the following iterative, greedy algo-
rithm: (i) we select the largest element of the matrix; (ii) we
discard the column and the row of the selected element. We
repeat these steps until a number n of elements are selected
or the remaining matrix is composed of either no rows or
no columns. We set n = 10 for the text similarity matrix
and n = 5 for the image similarity matrix. In other words,
we extract the n most matching items (either among text
blocks or among images) between the two web pages under
comparison, avoiding to consider an item more than once.

We consider the average of the greatest n values in the
matrix instead of considering the whole matrix because we
wish to avoid the case in which the comparison outcome is
influenced mainly by many non-similar elements rather than
by few, very similar elements (which are typically the ones
that can visually lure the user). For example, consider a
phishing page in which there are very few images (e.g., the
logo and a couple of buttons) that are very similar to the
ones in the legitimate page. Also, imagine that there are
a large number of graphical elements, possibly small and
actually rendered outside of the viewport, which are not
present in the original page; if we would take the average
over all the matrix elements, the outcome would be biased
by the low similarity among the many dissimilar elements.
However, the user would be tricked by the few elements that
are very similar.

The final outcome s of a comparison between two signa-
tures is obtained as s = atst + aisi + aoso. When s is large,
the two pages are similar. A threshold t is used in order
to discriminate between the two cases: w and ŵ are consid-
ered similar if and only if s ≥ t, not similar otherwise. We
discuss how we determine suitable values for the coefficients
at, ai, ao as well as for the threshold t in Section 4.2.

4. EXPERIMENTAL EVALUATION
In this section, we discuss the experiments that we per-

formed to demonstrate the effectiveness of our system to
recognize similarities between phishing pages and their tar-
gets (i.e., the legitimate pages that are spoofed).

4.1 Dataset
First, we compiled a dataset that consists of negative and

positive pairs of web pages. For the positive pairs, we se-
lected pairs of real-world legitimate pages and corresponding
phishing pages. We obtained the phishing pages from the
PhishTank public archive (http://www.phishtank.com). For
each phishing page, we retrieved the corresponding legiti-
mate page by visiting the web site of the spoofed organiza-
tion immediately after the attack appeared on PhishTank.
To build the negative part of the dataset, we collected a

Levels fp nn FPR fn np FNR
All (0, 1 and 2) 0 140 0% 2 27 7.4%
Only 0 and 1 0 140 0% 0 20 0.0%
Only 0 0 140 0% 0 11 0.0%

Table 1: FPR and FNR for different datasets.

number of common web pages, unrelated to the legitimate
ones.

We partitioned the set of positive pairs into three subsets,
based on their visual similarity, as perceived by a human
viewer: Level 0 identifies pairs with a perfect or almost per-
fect visual match. Level 1 identifies pairs with some different
element or with some minor difference in the layout. Level 2
identifies pairs with noticeable differences.

We chose to partition positive pairs into different subsets
for the following reason. The majority of phishing pages ex-
actly mimic the appearance of the legitimate page. This is
not surprising, as the miscreants do not wish to raise suspi-
cion. However, there are also cases where visual differences
do exist. These differences may be simply due to the poor
skills of the attacker (e.g., mistakes in a text translated to a
foreign language). However, some differences may be volun-
tarily inserted, both at the source level or at the rendering
level. This could be done to evade anti-phishing systems,
while, at the same time, keeping the look-and-feel as close to
the original web page as possible. Note that similar evasion
techniques are sometimes used by spammers for image-based
spam [2, 19]. That is, although some randomized alterations
are applied to the original image, from the user’s point of
view, the image remains identical.

We also partitioned the set of negative pairs into two sub-
sets. One subset consists of banking web pages with a login
form; elements in the second subset have no such forms and
vary in size, layout, and content. We chose to include a
substantial portion of pages with a login form to make the
experiments more realistic and challenging.

The dataset was composed of 41 positive pairs (20 of
Level 0, 14 of Level 1, and 7 of Level 2). We had 161 negative
pairs (115 with and 46 without a login form).

4.2 Testing Methodology
Using our dataset, we built a training set by extracting

a small portion of pairs of pages. This subset was used to
tune the coefficients at, ai, ao and the threshold t used in
the computation of the final similarity score: we found the
optimal values by minimizing a function of FPR and FNR
on the training set using an implementation of the simplex
method. The training set was composed of 14 positive pairs
(9 of Level 0, and 5 of Level 1) and 21 negative pairs (15
with and 6 without a login form).

4.3 Results
We then evaluated our approach using the parameter val-

ues at, ai, ao and the threshold t computed as explained
above over the remaining part of the dataset. For this ex-
periment, the test set was composed of 27 positive pairs (11
of Level 0, 9 of Level 1, and 7 of Level 3) and 140 negative
pairs (100 with and 40 without a login form).

Table 1 summarizes the results of the tests. It can be
seen that our approach detects all phishing pages classified
as Level 0 and 1, while it fails to detect two out of seven
positive pairs of Level 2. Hence, we exhibit an overall false

negative rate (FNR) equal to 7.4%. We verified, by visual
inspection, that those two positive pairs were indeed difficult
to detect by our visual-similarity-based approach. Figure 1
shows screenshots of one of the two undetected pairs; note
that both the overall appearance and textual contents of the
pages are significantly different.

(a) Legitimate web page

(b) Phishing attempt - Level 2

Figure 1: One of the two missed positive pairs
(Level 2). Note that the phishing page is visually
significantly different from the legitimate one.

Also, Table 1 results show that our approach does not
raise any false positive on the 140 negative pairs, which re-
sults in a false positive rate (FPR) of 0%. This includes all
the negative pairs corresponding to pages containing a login
form.

We also computed FPR and FNR for the same three
dataset compositions for various values of the threshold t.
In Figure 2 FPR and FNR are plotted as functions of the
threshold t; FNR is shown for subsets of the test set includ-
ing and not including, respectively, positive pairs of Level 2.
One can see that there exists at least one threshold value
for which our approach exhibits perfect behavior when con-
sidering a dataset which does not contain Level 2 positive
pairs. Moreover, our approach is robust to certain variations
of t.

In general, the choice of t depends on the desired trade-off
between possible false positives and possible false negatives.
Hence, it depends on the context in which the proposed ap-
proach is supposed to be deployed. For example, if we im-
plement the comparison approach as part of the AntiPhish
tool, it may be preferable to select lower values for t. The
reason is that when using the visual comparison component
with AntiPhish, a large number of possible false positives
is already filtered out, since the comparison is invoked only

when a user’s known credentials are about to be transmitted
to an untrusted web site. Therefore, the comparison may be
relaxed towards accepting more false positives (warnings) in
favor of avoiding missed detections.

0.75 0.80 0.85 0.90 0.95 1.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

F
N

R
,
F
P

R

FPR

FNR

Figure 2: False positive/negative rates vs. t

Finally, we measured the average computation time for
comparing two pages. Note that such an operation involves
both the signature extraction and the signature compari-
son phase. In our experimental analysis, we focused on the
comparison phase. The extraction phase consists mainly of
retrieving information which, in practice, is already avail-
able to the browser that has rendered the page. Moreover,
the legitimate page signature is typically extracted once at
a previous point in time.

In our experiments, we found that it took about 3.8 sec-
onds for positive pairs and about 11.2 seconds for negative
pairs to be compared. These numbers were obtained on a
dual AMD Opteron 64 with 8GB RAM running a Linux OS.
Note that the comparison of two signature S(w) and S(ŵ),
as described in Section 3.3, requires a number of operations
in the order of m · m̂, where m and m̂ are the corresponding
number of tuples. Clearly, waiting for more than 10 seconds
for a single comparison is prohibitive. To address this prob-
lem, we implemented the following optimizations that result
in a considerable reduction of computational costs.

The key idea to improve performance is to execute the
comparison operations in an order such that the most ex-
pensive operations are executed last. In particular, during
the similarity index computation (either st, for the text sec-
tion, or si, for the images), we keep the n (with n = 10 for
the text part and n = 5 for the image part) similarity values
for the most similar pairs of tuples found so far. When eval-
uating a new pair of tuples, we can stop the evaluation once
we determine that this pair cannot exceed the similarity val-
ues of one of the top n pairs, even if all remaining features
comparisons yield perfect similarity.

For example, suppose that: (i) we are considering a pair
of images, (ii) we have computed the distance in terms of
positions on the page and image sizes, and (iii) the distances
are such that the corresponding matrix element will be lower
than the 5th greatest element of the matrix. In this case, we
do not need to compute, nor extract, the two Haar transfor-
mations or the Levenshtein distances.

A similar optimization is performed based on the out-
come of the overall image comparison. Once we determine
that, after looking at the score for the overall appearance,

two pages cannot exceed the similarity threshold t, then we
do not need to compute any of the two similarity matrices
for the text and image elements. This results in impres-
sive speed-ups. A negative comparison between two pages
is produced in a few milliseconds.

5. CONCLUSION
In this paper, we presented an effective and novel ap-

proach to detect phishing attempts by comparing the visual
similarity between a suspicious page and the potential, legit-
imate target page. The proposed approach is inspired by two
previous open source anti-phishing solutions: the AntiPhish
browser plugin and its DOMAntiPhish extension. Our so-
lution addresses the shortcomings of these approaches and
aims to make these systems more effective.

When checking for visual similarity, we consider three
page features: text pieces, images embedded in the page,
and the overall visual appearance of the web page as ren-
dered by the browser. We consider features that are visually
perceived by users because, as reported in literature, victims
are typically convinced that they are visiting a legitimate
page by judging the look-and-feel of a web site.

We performed an experimental evaluation of our compar-
ison technique to assess its effectiveness in detecting phish-
ing pages. We used a dataset containing 41 real phishing
pages with their corresponding target legitimate pages. The
results, in terms of false alarms and missed detection, are
satisfactory. No false positives were raised and only two
phishing attempts (that actually did not resemble the legit-
imate web page) were not detected.

6. ACKNOWLEDGMENTS
This work has been supported by the Austrian Science

Foundation (FWF) under grant P-18764, the FIT-IT project
SECoverer, and by Secure Business Austria (SBA).

7. REFERENCES
[1] APWG. Phishing Activity Trends - Report for the

Month of December, 2007. Technical report, Anti
Phishing Working Group, Jan. 2008. Available at
http://www.antiphishing.org/reports/apwg_

report_dec_2007.pdf.

[2] H. Aradhye, G. Myers, and J. Herson. Image analysis
for efficient categorization of image-based spam e-mail.
Document Analysis and Recognition, 2005.
Proceedings. Eighth International Conference on,
2:914–918, 29 Aug.-1 Sept. 2005.

[3] N. Chou, R. Ledesma, Y. Teraguchi, D. Boneh, and
J. Mitchell. Client-side defense against web-based
identity theft. In 11th Annual Network and Distributed
System Security Symposium (NDSS ’04), San Diego,
2005.

[4] R. Dhamija and J. D. Tygar. The battle against
phishing: Dynamic security skins. In Proceedings of
the 2005 symposium on Usable privacy and security,
New York, NY, pages 77–88. ACM Press, 2005.

[5] R. Dhamija, J. D. Tygar, and M. Hearst. Why
Phishing Works. In Proceedings of the Conference on
Human Factors In Computing Systems (CHI) 2006,
Montreal, Canada. ACM Press, 2006.

[6] E. Kirda and C. Kruegel. Protecting Users Against
Phishing Attacks with AntiPhish. In COMPSAC ’05:

Proceedings of the 29th Annual International
Computer Software and Applications Conference
(COMPSAC’05) Volume 1, pages 517–524,
Washington, DC, USA, 2005. IEEE Computer Society.

[7] E. Kirda and C. Kruegel. Protecting Users against
Phishing Attacks. The Computer Journal, 2006.

[8] E. Medvet, E. Kirda, and C. Kruegel.
Visual-Similarity-Based Phishing Detection. Technical
Report, TR-iSecLab-0708-001, http://iseclab.org/
papers/visual-phishing-technical.pdf, 2008.

[9] Microsoft. Sender ID Home Page.
http://www.microsoft.com/mscorp/safety/

technologies/senderid/default.mspx, 2008.

[10] P. Mutton. Italian Bank’s XSS Opportunity Seized by
Fraudsters. Technical report, Netcraft, Jan. 2008.
Available at http://news.netcraft.com/archives/

2008/01/08/italian_banks_xss_opportunity_

seized_by_fraudsters.html.

[11] NetCraft. Netcraft anti-phishing tool bar.
http://toolbar.netcraft.com, 2007.

[12] A. Rosiello, E. Kirda, C. Kruegel, and F. Ferrandi. A
Layout-Similarity-Based Approach for Detecting
Phishing Pages. In IEEE International Conference on
Security and Privacy in Communication Networks
(SecureComm), 2007.

[13] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C.
Mitchell. A Browser Plug-In Solution to the Unique
Password Problem.
http://crypto.stanford.edu/PwdHash/, 2005.

[14] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C.
Mitchell. Stronger Password Authentication Using
Browser Extensions. In 14th Usenix Security
Symposium, 2005.

[15] F. Schneider, N. Provos, R. Moll, M. Chew, and
B. Rakowski. Phishing Protection Design
Documentation.
http://wiki.mozilla.org/Phishing_Protection:

_Design_Documentation, 2007.

[16] Sophos. Do-it-yourself phishing kits found on the
internet, reveals Sophos. Technical report, Sophos,
Aug. 2004. Available at
http://www.sophos.com/pressoffice/news/

articles/2004/08/sa_diyphishing.html.

[17] SpoofGuard. Client-side defense against web-based
identity theft.
http://crypto.stanford.edu/SpoofGuard/, 2005.

[18] R. Stankovic and B. Falkowski. The Haar wavelet
transform: its status and achievements. Computers
and Electrical Engineering, 29:25–44, 2003.

[19] Z. Wang, W. Josephson, Q. Lv, M. Charikar, and
K. Li. Filtering Image Spam with Near-Duplicate
Detection. Proceedings of CEAS 2007: Fourth
Conference on Email and Anti-Spam, Aug., 2007.

[20] L. Wenyin, G. Huang, L. Xiaoyue, Z. Min, and
X. Deng. Detection of phishing webpages based on
visual similarity. In 14th International Conference on
World Wide Web (WWW): Special Interest Tracks
and Posters, 2005.

[21] Yahoo. Yahoo! AntiSpam Resource Center.
http://antispam.yahoo.com/domainkeys, 2008.

