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Abstract— We address the source-channel coding problem
of a sensor observing a slowly time-varying Gaussian source
and communicating its information to a receiver through a
Gaussian channel. Due to the slowly time-varying characteristic
of the source, we consider that the sensor is capable of using
many channel dimensions per source symbol. Under an energy
constraint per source realisation, we derive a theoretical lower
bound on the MSE distortion as well as an analytical upper bound
based on a practical coding scheme involving a linear uniform
quantizer followed by an orthogonal modulation and a MAP
receiver. Other coding schemes coupled with an MMSE estimator
are also proposed and their performances are compared. An
extension to the case where the sensor has the capability of
encoding a sequence ofN source components is studied and
a general upper bound in that case is obtained.

I. I NTRODUCTION

We consider one sensor tracking a slowly time-varying
random sequence and sending its observations over a wireless
channel to a receiver. The source is represented by a Gaussian
random variableU , and the observations are assumed to be
noiseless. The sensor is in general a tiny device with strict
energy constraints. The communication channel between the
sender and the receiver is an additive white Gaussian noise
channel.
An important question is how to efficiently encode the random
source, and what performance can be achieved. The slowly
time-varying characteristic of the source has two main impacts
on the way the coding problem should be addressed : firstly,
the time between two observations is long, and the sensor will
not wait for a sequence of observations to encode it. Therefore,
the sensor will encode only one observation before sending it
through the channel. Secondly, for each source realisationthe
channel can be used a large number of times, hence, there is
no constraint on the dimensionality of the channel codebook.
The latter condition amounts to saying that very low-rate codes
should be used.
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Fig. 1. System model

The model is depicted in Fig. 1. The encoder maps one

realisation of the sourceU ∼ N (0, 1) into Xn where n is
the dimension of the channel input.Xn is then sent across the
channel corrupted by a white Gaussian noise sequenceZn, and
is received asYn. The receiver is a mapping function which
tries to construct an estimatêU of U given Yn. The fidelity
criterion that we wish to minimize is the MSE distortion
defined as

D , E[(U − Û)2], (1)

under the mean energy constraintE[||Xn||2] ≤ E. It is well-
known that the linear encoder (i.e.X =

√
EU ) achieves the

best performance under the mean energy constraint for the
special casen = 1 [1], [2], [3]. This case does not reflect
the case of low-bandwidth sources where the best we can do
is to bound the MSE distortion by deriving a lower and an
upper bound and trying to minimize the gap between these
two bounds.
Regardless of its achievability using practical coding schemes,
a lower bound is easily derived over all possible encoders
and decoders using classical information theory. For an upper
bound, we propose several achievable schemes based on sepa-
rated source-channel encoders combined with a MAP receiver
or an MMSE estimator. Note that an MMSE estimator is the
one which minimizes the MSE distortion, but, from a practical
point of view, it is too complex to implement. The separate
source-channel encoder is based on a quantizer followed by
a modulator. Here, the Gaussian source is quantized inb
bits which are mapped onto an appropriate modulation before
being transmitted over the channel. The distortion is caused
by the quantization process and the noisy channel. Increasing
the number of quantization bits per source component has the
effect of reducing the quantization error and simultanously
increasing the error induced by the channel ; decreasing it will
have the opposite effect. Thus, the number of quantization
bits has to be optimized as a function of the energy. Such
optimization can be found in the literature for example in [4]
and [5], where the authors try to bound the optimal number of
quantization bits that minimizes distortion ; the main difference
with our model remains in the power constraint they are
considering. The choice of the quantizer and the modulator
has a great impact on the upper bound and is discussed in the
third section.
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The paper is organised as follows. The theoretical lower
bound on the distortion is derived in section II. In section
III, we propose an achievable coding scheme and derive an
analytical upper bound on the distortion. Other achievable
coding schemes combined with an MMSE estimator are stu-
died in section IV. An extension to the sequence coding case
is analysed in section V and a more general upper bound
is derived. Section VI contains simulations and numerical
illustrations to the analytic results as well as comparisons and
discussions.

II. L OWER BOUND

Let us take first the more general case where the encoder
mapsN source componentsUN = (U1, . . . , UN ) into XnN =
(Xn

1 , . . . ,Xn
N ), and the decoder mapsYnN = (Yn

1 , . . . ,Yn
N )

into ÛN . Define the distortion asDN , 1
N E[||UN − ÛN ||2]

and the mean energy constraint as

1

N

N∑

i=1

E[||Xn
i ||] ≤ E. (2)

Clearly, it suffices to putN = 1 to return to our special model
stated above in the introduction section and depicted in Fig. 1.
Now, let us find a lower bound on the distortionDN over all
possible encoders and decoders satisfying (2). We have these
standard inequalities [6]

I(UN ; ÛN ) = h(UN ) − h(UN/ÛN )

= h(UN ) − h(UN − ÛN/ÛN )

≥ h(UN ) − h(UN − ÛN )

≥ N

2
log(2πe) −

N∑

i=1

h(Ui − Ûi)

≥ −
N∑

i=1

1

2
log(E[(Ui − Ûi)

2])

≥ N

2
log(

1

DN
),

and

I(UN ; ÛN ) ≤ I(XnN ,YnN )

= h(YnN ) − h(YnN/XnN )

≤
N∑

i=1

n∑

j=1

h(Yij) − h(ZnN )

≤
N∑

i=1

n∑

j=1

1

2
log(E[Y 2

ij ]) −
nN

2
log(σ2

z)

≤ nN

2
log(

∑N
i=1

∑n
j=1 E[Y 2

ij ]

nNσ2
z

)

=
nN

2
log(

E + nσ2
z

nσ2
z

).

From these inequalities, we obtain

DN ≥ 1

(1 + E
nσ2

z
)n

(3)

Note that this inequality holds for allN and especially when
N = 1. Therefore,

D = D1 ≥ 1

(1 + E
nσ2

z
)n

. (4)

The RHS of that inequality is a decreasing function ofn. Since
that latter number is unconstrained in our model specifications,
therefore

D ≥ lim
n→∞

1

(1 + E
nσ2

z
)n

= e−E/σ2
z . (5)

The RHS term in (5) constitutes a lower bound overD
and coincides withD(C) whereD(R) is the rate distortion
function of the sourceU , C = limn→∞ Cn, and Cn is the
capacity of then-dimensional channel defined by

Cn , max
p(xn):E[||Xn||2]≤E

I(Xn,Yn). (6)

III. A NALYTICAL UPPERBOUND

The performance of a linear encoding scheme that forward
the realisation of the source into the channel is suboptimal;
its resultant distortion [3]

D =
σ2

z

σ2
z + E

(7)

decreases linearly with the energyE while in the case of
very-low bandwidth sources, the lower bound is exponentially
decreasing inE. In order to minimize this gap, we propose
a separate source-channel coding scheme and derive an ana-
lytical upper bound on the minimal achievable distortion. As
presented in Fig. 2, the encoder is formed by a uniform linear
quantizer followed by an orthogonal modulator. The choice
of an orthogonal modulation is motivated by the fact that the
probability of correct detection approaches that of the regular
simplex constellation when the size of the modulation becomes
large [7, p. 381]. The optimality of the regular simplex is
proved in [8] and [9] for different energy constraints and
assumptions on apriori probabilities, although not those arising
in our model (i.e. average energy constraint and non-uniform
priors). However, it is also shown in [10] that, under an average
energy constraint, the regular simplex still optimizes theunion
bound even if its ’strong’ optimality does not hold.

U X S

Z

Y X̂MAP
receiver

Linear
quantizer

Orthogonal
Modulation

Fig. 2. The proposed coding scheme based on a linear quantizerfollowed
by an orthogonal modulation and a MAP receiver

The quantizer is a functionf : U → X , {x1, . . . xM} that
assigns a valuexi to eachu ∈ Ii for i = 1, . . . ,M , wherexi

and Ii are respectively the quantization levels and intervals.
The partition ofU is as follows :I1 =]−∞;∆[, IM = [∆;∞[,
and for i = 2, . . . ,M − 1,

Ii = [−∆ +
∆(i − 2)

2b−1 − 1
;−∆ +

∆(i − 1)

2b−1 − 1
[, (8)
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where ∆ = 2
√

b log 2, M = 2b and b ≥ 2 is an integer
representing the quantization bits per source component. The
quantization levels are chosen as follows :x1 = −∆, xM = ∆
and for i = 2, . . . ,M − 1, xi is the value in the middle
of Ii. This quantizer is easy to build and its corresponding
quantization distortion achieves the exponential rate of decay
of 2−2b(1+O(b)), whereO(b) is a function that goes to zero
when b → ∞. It is illustrated in Fig. 3. The outputX
of the quantizer is assigned to a signalS chosen from an
orthogonal modulation of sizeM that is sent through the
Gaussian channel.

x1
−∆ ∆

xM
I1

I2 I3 IM−2 IM−1

IMx2 x3 xM−2 xM−1 U

p(u)

Fig. 3. The linear quantizer

Given the received signal, a MAP receiver makes the deci-
sion on the signal that has been sent and decodessj given that
si has been transmitted according to a probability distribution
Pij , p(sj/si). Let pi =

∫
Ii

p(u) du for i = 1, . . . ,M , and

Q(t) ,
∫∞

t
1√
2π

e−u2/2 du ; the expression ofPij can be easily
found : if i 6= j

Pij = EA



(1 − Q(Tij −
√

E/σ2
z))

M∏

k=1
k 6=i,j

(1 − Q(Tkj))





and Pii = EA




M∏

k=1
k 6=i

(1 − Q(Tki +
√

E/σ2
z))





where Tij = A/σz − σz

E log(pi/pj), and A ∼ N (0, σ2
z).

Hence, the exact expression of the distortion is

D =

M∑

i,j=1

Pij

∫

Ii

(u − xj)
2p(u) du. (9)

In fact, we desire to bound the distortion in order to be able
to optimize the number of quantization bits given a certain
amount of energy. The following bound holds :

D = DQ(1 − Pe) + DePe (10)

< DQ + DePe (11)

whereDe is the MSE distortion given that an error decision
has been made,Pe is the probability of making an error and
DQ represents the quantization distortion. Using the inequality

Q(∆) < e−∆2/2
√

2π∆
, we can write

DQ = 2

∫ ∞

∆

(u − ∆)2p(u) du +
M−1∑

i=2

∫

Ii

(u − xi)
2p(u) du

<
2e−∆2/2

√
2π∆

+
∆2

(2b − 2)2
. (12)

Again, using the same upper bound on the functionQ(∆) and
the fact thatDe < 4∆2 when |u| ≤ ∆, we obtain

De < 4∆2 + 2

∫ ∞

∆

(u + ∆)2p(u) du

< 4∆2 +
2(4∆2 + 1)√

2π∆
e−∆2/2. (13)

The probability of error can be bounded by

Pe ≤ Mρe
[− E

2σ2
z
( ρ

ρ+1 )]
(14)

For the derivation, see the Appendix. Combining all these
bounds in (11),(12),(13) and (14), we obtain

D < 2−2b(1+O(b)) + 2
ρb(1+O

′
(b))−Eln(2)

2σ2
z

( ρ
ρ+1 )

(15)

where O
′
(b) is a function that goes to zero whenb → ∞.

This bound is a sum of two exponential terms : the first
represents the quantization distortion and is independantfrom
the energy while the second represents the distortion due to
the channel error. When we increase the amount of energy
E, the second term decreases and becomes less than the first
one ; in order to minimize the upper bound, the number of
quantization bits should be increased so that the two terms
will have the same decreasing behavior. Thus, whenE is
sufficiently large, optimizing the bound in (15) overρ and b
givesD < e−2bopt log(2), with bopt = ⌊ E

12σ2
z log(2)⌋ andρopt =

1. Thus, the upper bound approaches the valuee−E/(6σ2
z) for

largeE compared to the valuee−E/σ2
z of the lower bound.

IV. A N MMSE-BASED SCHEME

Since the MAP receiver is the decoder which minimizes the
probability of error and not the MSE distortion, it is interesting
to see the distortion gain that could be obtained by using an
MMSE estimator. To this end, we propose a scheme where the
range of the Gaussian source is partitioned intoM intervals
I1, . . . , IM defined as in the previous section ; each of the
intervals is mapped onto a signal chosen from a biorthogonal
modulation of sizeM : for i = 1, . . . ,M , the intervalsIi and
IM+1−i are assigned respectively to the two signalssi and
sM+1−i which belong to the same axis in the bi-orthogonal
constellation. Fori, j = 1, . . . ,M , let

Ji =

∫

Ii

up(u) du, Kij =

∫ ∞

∞

p(y/si)p(y/sj)∑M
k=1 pkp(y/sk)

dy.

Due to the symmetry in the construction of the encoder, we
have thatJj = −JM+1−j and Ki,j = Ki,M+1−j for all i =
1, . . . ,M , j = 1, . . . ,M/2 and j 6= i,M + 1 − i.
The receiver is an MMSE estimator which minimizes the mean
square error distortion. The estimate ofu is

û(y) = E[U/y] =

∑M
i=1 Jip(y/si)∑M
i=1 pip(y/si)

(16)
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The MSE distortion could be written as

D = E[(U − Û(Y))2] = 1 − E[Û2(Y)] (17)

= 1 −
M∑

i=1

M∑

j=1

JiJjKij (18)

= 1 +

M∑

i=1

J2
i Ki,M+1−i −

M∑

i=1

J2
i Ki,i. (19)

We have that

Ki,M+1−i =

∫ ∞

−∞

1
(2πσ2

z)M/4 e
−1

2σ2
z

PM/2
k=1 y2

ke−E/2σ2
z

∑M/2
k=1 pk(e

−
√

E
σ2

z
yk

+ e

√
E

σ2
z

yk
)

dy

< e−E/2σ2
z

∫ ∞

−∞

1
(2πσ2

z)M/4 e
−1

2σ2
z

PM/2
k=1 y2

k

∑M/2
k=1 2pk

dy

= e−E/2σ2
z ,

andKii = EY/si

[
p(y/si)∑M

k=1 pkp(y/sk)

]

whereY/si is a multivariate Gaussian of meansi and cova-
riance matrixσ2

zIM/2. Thus,

D < 1 + 2e−E/2σ2
z

M/2∑

i=1

J2
i

−2

M/2∑

i=1

J2
i EY/si



 e

√
E

σ2
z

yi

∑M/2
k=1 pk(e

−
√

E
σ2

z
yk

+ e

√
E

σ2
z

yk
)



 .(20)

Now, suppose that we use an orthogonal modulation instead
of the biorthogonal one ; fori = 1, . . . ,M , every intervalIi

is mapped into a signalsi. Doing similar calculations as for
the biorthogonal case, we obtain

D = 1 −
M∑

i=1

J2
i EY/si



e

√
E

σ2
z

yi − e

√
E

σ2
z

yM+1−i

∑M
k=1 pke

√
E

σ2
z

yk



 (21)

where Y = (Y1, . . . , YM )/si is a multivariate Gaussian of
meansi and covariance matrixσ2

zIM . We currently do not
have asymptotic expressions for (20) and (21) asE → ∞.

V. EXTENTION TO SEQUENCECODING

Due to the slowly time-varying characteristic of the source,
we have assumed that just one source component is available
to be encoded and then transmitted. We now extend to the case
where the sensor can wait until having a sequence of length
N of i.i.d. source realisations at the encoder input. Under the
mean energy constraint in (2), we are interested to see how
much the upper bound can be improved by coding a sequence
of N source components. Using the same linear quantizer
as in section III, every source component is quantized inb
representing bits. The quantizer is followed by an orthogonal
modulation of sizeMN = 2Nb that takes theNb bits available

at the input and maps them into anNb-dimensional signal of
fixed energy equal toNE. Performing MAP decoding, we
have that

DN < DQN + DeNPeN (22)

whereDQN represents the quantization error,DeN the MSE
distortion when a error decision has been made andPeN the
probability of making an error. Clearly, we haveDQN =

DQ1 = DQ, DeN ≤ De1 = De andPeN ≤ Mρ
Ne

[− NE
2σ2

z
( ρ

ρ+1 )]
.

Doing the same optimization procedure as in section III, we
obtain DN < e−2bNopt log(2) for large amount of energyE
with ρopt = 1 and

bNopt =

⌊
NE

4(N + 2)σ2
z log(2)

⌋
. (23)

Letting N → ∞, the upper bound approaches asymptotically
the valuee−E/2σ2

z and the gap with the lower bound is reduced
to 3dB.

VI. N UMERICAL RESULTS AND CONCLUSIONS

In all the numerical results, the distortion is plotted versus
the energy, and the variance of the channel noise is taken equal
to one. Fig. 4 shows the inefficiency of the linear encoder
compared with the theoretical upper and lower bounds. Note
that the curve representing the upper bound is obtained like
the following : for each value ofE, we find bopt, then we
calculate the upper bound overD using the terms in (12),(13)
and (27). Also the model studied in section III is simulated
for different number of quantization bits and compared to the
other curves. Fig. 5 and Fig. 6 show that the different types
of encoders and decoders studied in section III and IV have
comparable performance ; therefore, using a MAP decoder
instead of an MMSE estimator has practically no effects on
the MSE distortion especially whenb > 2. The analytical
upper bound on the distortionDN (eq.(22)) is plotted in Fig.
7 for several values ofN . This plot shows the improvement
that can be made to the upper bound, and consequently to the
performance of the system when we code sequences ; it shows
that even with small length sequences, significant gain can be
obtained.
As a conclusion, we have derived theoretical lower and upper
bounds on the distortion for very-low bandwidth sources.
The proposed source-channel coding schemes outperform the
linear coding performance and lead to an exponentially de-
creasing behavior of the distortion inE. Also, we have shown
that the difference in the performance between a MAP decoder
and an MMSE estimator is negligible. Finally, we proved
that the gap between the lower and the upper bound can be
significantly reduced by coding relatively short sequences.

APPENDIX

By analogy to what has been done in [11], we obtain for
the general case of unequal apriori probabilities that

Pei
≤ p

− ρ
ρ+1

i

∫

Y

p(y/xi)
1

1+ρ




∑

j 6=i

(pjp(y/xj))
1

1+ρ




ρ

dy,

(24)
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Fig. 4. Performances of the MAP-based scheme compared to the linear
encoder and the theoretical lower bound.
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Fig. 5. Comparison between the MAP and the MMSE based scheme.

ρ being any positive number andPei
representing the proba-

bility of error given thatxi bas been sent. Following the same
way of derivation as in [12, p. 65], (24) becomes

Pei
≤ p

− ρ
ρ+1

i e
− E

2σ2
z
( ρ
1+ρ )




∑

j 6=i

p
1

1+ρ

j




ρ

(25)

provided that0 ≤ ρ ≤ 1. Now Let V be a discrete random
variable that takes the value1/pi with probability pi for i =
1, . . . ,M . Using Jensen inequality, we have that

E[(V )
ρ

(ρ+1) ] ≤ (E[V ])
ρ

(ρ+1) = M
ρ

(ρ+1) (26)

for any 0 ≤ ρ ≤ 1. Thus,

Pe ≤ e
− E

2σ2
z
( ρ
1+ρ )

(
M∑

i=1

p
1

1+ρ

i

)ρ+1

(27)

= e
− E

2σ2
z
( ρ
1+ρ )

(
M∑

i=1

pi

(
1

pi

) ρ
1+ρ

)ρ+1

(28)

≤ Mρe
− E

2σ2
z
( ρ
1+ρ )

(29)
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