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Abstract—We address the source-channel coding problem realisation of the sourc& ~ AN(0,1) into X" wheren is
of a sensor observing a slowly time-varying Gaussian source the dimension of the channel inpd™ is then sent across the
and communicating its information to a receiver through a channel corrupted by a white Gaussian noise sequéhcand

Gaussian channel. Due to the slowly time-varying characteristic . ived a&™. Th . . ina functi hich
of the source, we consider that the sensor is capable of usingIS received asx -. [he receiver is a mapping function whic

many channel dimensions per source symbol. Under an energy tri€s to construct an estimaté of U given Y". The fidelity
constraint per source realisation, we derive a theoretical lower criterion that we wish to minimize is the MSE distortion
bound on the MSE distortion as well as an analytical upper bound defined as
based on a practical coding scheme involving a linear uniform

quantizer followed by an orthogonal modulation and a MAP

receiver. Other coding schemes coupled with an MMSE estimator 9 .
are also proposed and their performances are compared. An under the mean energy constraift| X" ||°] < E. It is well-
extension to the case where the sensor has the capability ofknown that the linear encoder (i.&C = \/EU) achieves the

encoding a sequence ofV source components is studied and pest performance under the mean energy constraint for the
a general upper bound in that case is obtained. special casex = 1 [1], [2], [3]. This case does not reflect
. INTRODUCTION the case of low-bandwidth sources where the best we can do

We consider one sensor tracking a slowly time-varyinié to bound the MSE distortion by deriving a lower and an

random sequence and sending its observations over a wgireld&P€r bound and trying to minimize the gap between these
channel to a receiver. The source is represented by a Gaus§#f bounds. _ . _ _ _

random variablel/, and the observations are assumed to t&fgardless of its achievability using practical codingesobs,
noiseless. The sensor is in general a tiny device with stri{/OWer bound is easily derived over all possible encoders
energy constraints. The communication channel between decoders using classical |n_format|on theory. For areupp
sender and the receiver is an additive white Gaussian noRNd, we propose several achievable schemes based on sepa:
channel. rated source-channel encoders combined with a MAP receiver
An important question is how to efficiently encode the randoff @1 MMSE estimator. Note that an MMSE estimator is the
source, and what performance can be achieved. The slo@f Which minimizes the MSE distortion, but, from a pradtica
time-varying characteristic of the source has two main ictga POINt Of View, it is too complex to implement. The separate
on the way the coding problem should be addressed : ﬁrsﬁgurce-channel encoder is based on a quantizer followed by

the time between two observations is long, and the sensbr | Medulator. Here, the Gaussian source is quantized in

not wait for a sequence of observations to encode it. TheefoPitS Which are mapped onto an appropriate modulation before
ging transmitted over the channel. The distortion is cause

the sensor will encode only one observation before sendingg T X ;
y the quantization process and the noisy channel. Incrgasi

through the channel. Secondly, for each source realisétion S °
channel can be used a large number of times, hence, therf'fsnumber of quantization bits per source component has the

no constraint on the dimensionality of the channel codebodif€ct Of reducing the quantization error and simultanpusl

The latter condition amounts to saying that very low-rateeso increasing the error induced by the channel ; decreasindlit w
should be used. have the opposite effect. Thus, the number of quantization

bits has to be optimized as a function of the energy. Such
! optimization can be found in the literature for example ih [4
and [5], where the authors try to bound the optimal number of
guantization bits that minimizes distortion ; the main eliéince
with our model remains in the power constraint they are
Fig. 1. System model considering. The choice of the quantizer and the modulator
has a great impact on the upper bound and is discussed in the
The model is depicted in Fig. 1. The encoder maps otigird section.

D2E[U - 1), (1)
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The paper is organised as follows. The theoretical low&lote that this inequality holds for alV and especially when
bound on the distortion is derived in section Il. In sectiov = 1. Therefore,

lll, we propose an achievable coding scheme and derive an 1

analytical upper bound on the distortion. Other achievable D =Dy > m “4)

coding schemes combined with an MMSE estimator are stu- noz

died in section IV. An extension to the sequence coding cakbe RHS of that inequality is a decreasing functiomoSince
is analysed in section V and a more general upper boutft latter number is unconstrained in our model specitioati
is derived. Section VI contains simulations and numerictherefore
illustrations to the analytic results as well as compassand

: _ —E/of
discussions. D> nh—>nolc A e , (5)
Il. LOWERBOUND The RHS term in (5) constitutes a lower bound ouer

Let us take first the more general case where the encoded coincides withD(C') where D(R) is the rate distortion
mapsN source components™ = (Uy,...,Uy) into X"V = function of the sourcd/, C' = lim, . Cy, and C,, is the
(X7,...,X%), and the decoder mapg™™ = (Y7,...,Y%) capacity of then-dimensional channel defined by
i 0N ; i ; A 1 N _{IN||2
into UY. Define the dlstortlon_a@N = FE[[[UY - UM% c, 8 max (X", Y"), ©6)
and the mean energy constraint as p(xm):E[||X"||2]<E

Il. ANALYTICAL UPPERBOUND

N

1 n

N ZEH\Xz— I <E. ) The performance of a linear encoding scheme that forward
i=1

the realisation of the source into the channel is suboptimal
Clearly, it suffices to pufV = 1 to return to our special model jts resultant distortion [3]

stated above in the introduction section and depicted inFig o2

Now, let us find a lower bound on the distortidy over all D == @)
possible encoders and decoders satisfying (2). We have thes ozt E

standard inequalities [6] decreases linearly with the enerdy while in the case of

very-low bandwidth sources, the lower bound is expondntial

(Y, UY) = h(UY) - h(UN/Uf) N decreasing inE. In order to minimize this gap, we propose
= n(UY) - nudy —uV/uh) a separate source-channel coding scheme and derive an ana-
> h(UN) - pUN —TY) lytical upper bound on the minimal achievable distortiors. A
N presented in Fig. 2, the encoder is formed by a uniform linear
> Elog(gm) _ Zh(Ui _ ﬁi) quantizer followed by an orthogonal modulator. The choice
2 i1 of an orthogonal modulation is motivated by the fact that the
N R probability of correct detection approaches that of theulag
> - Z 3 log(E[(U; — U:)%) simplex constellation when the size of the modulation bezom
i=1 large [7, p.381]. The optimality of the regular simplex is
N Elog(i) proved in [8] and [9] for different energy constraints and
- 2 Dy”’ assumptions on apriori probabilities, although not thogsrey
and in our model (i.e. average energy constraint and non-umifor
N priors). However, it is also shown in [10] that, under an ager
(uh;uh)y < (xmN,ymv) energy constraint, the regular simplex still optimizesuhén
— h(Y”N) _ h(Y"N/X”N) bound even if its 'strong’ optimality does not hold.
N n
< 33 h(vy) - h(z) ol i, S
i=1 j=1
N 9 nN 9
< Z Z B log(E[Y;]) — BN log(c?) ‘ _ _
i=1 j=1 Fig. 2. The proposed coding scheme based on a linear quafdlmved
N n 9 by an orthogonal modulation and a MAP receiver
< ﬂlog(zz':l 21 E[Yq])
-2 nNo? The quantizer is a functiofi : L/ — X = {x1,... 2} that
nN E +no? assigns a value; to eachu € I; for i =1,..., M, wherex;
= TIOg(W)' and I; are respectively the quantization levels and intervals.
. o - The partition of/ is as follows :I; =]—o0; A[, In; = [A; 0],
From these inequalities, we obtain and fori = 2,.... M —1,
1 , .
DN Z (1 + %)” (3) Iz = [7A + i(_ll _2i ; 7A + @,(_Zl _12 [a (8)

185



where A = 2y/blog2, M = 2* andb > 2 is an integer Again, using the same upper bound on the functig\) and
representing the quantization bits per source compondw. The fact thatD. < 4A% when |u| < A, we obtain
guantization levels are chosen as follows .= —A, z,; = A -

and fori = 2,....,M — 1, z; is the value in the middle D. < 4A2+2/ (1 + A)2p(u) du
of I;. This quantizer is easy to build and its corresponding A

guantization distortion achieves the exponential rateeufag 2(4A% + 1)€_A2/2

2
of 2-20(1+0M) "where O(b) is a function that goes to zero < 4AT+ V2rA (13)
when b — oo. It is illustrated in Fig. 3. The outputX
of the quantizer is assigned to a sigrlchosen from an The probability of error can be bounded by
orthogonal modulation of sizé/ that is sent through the LB (2]
Gaussian channel. P, < MPe 20270t (14)

For the derivation, see the Appendix. Combining all these
bounds in (11),(12),(13) and (14), we obtain

D < 9-26(1+0() +2pb(1+0’<b>>f’f;’;§>(,,%>

2 In—2: Iyx
I, —A @ T3 - - - -----— TM-2 M1 A Iy U
I Iy

(15)

where O’ (b) is a function that goes to zero whén— co.
This bound is a sum of two exponential terms : the first
represents the quantization distortion and is indepenfdamt
I- . . .
%he energy while the second represents the distortion due to
s; has been transmitted according to a probability distrdwuti the channel error. When we increase the amount of energy
a . E, the second term decreases and becomes less than the first
Pij £ p(sj/si). Letp; = [, p(u)du fori =1,..., M, and o d L h bound. th b
A% 1 w2 g - b i one; in order to minimize the upper bound, the number of
Q)= [~ F=e u, the expression aF;; can be easlly qgyantization bits should be increased so that the two terms

Fig. 3. The linear quantizer

Given the received signal, a MAP receiver makes the de
sion on the signal that has been sent and decedgien that

found : if i 7 5 will have the same decreasing behavior. Thus, wieris
Ny sufficiently large, optimizing the bound in (15) overand b
i —2bopt log(2 ; _ E _
P” — EA (1 _ Q(T” _ \/E/U?)) H (1 _ Q(Tkj)) g|VeSD <e g( ), with bopt = L12J§ log(Z)J andp;,pt =
=1 1. Thus, the upper bound approaches the valué/ (672) for
kg large E compared to the value /7= of the lower bound.
M
and P;=Ea |][(1-QTw+ VE/o?)) IV. AN MMSE-BASED SCHEME
k=1
e Since the MAP receiver is the decoder which minimizes the
where T;; = Ajo. — % log(pi/p;), and A ~ N(0,02%). probability of error and not the MSE distortion, it is intstiag
Hence, the exact expression of the distortion is to see the distortion gain that could be obtained by using an
M MMSE estimator. To this end, we propose a scheme where the
D= Z pij/ (u — 2;)*p(u) du. (9) range of the Gaussian source is partitioned iffointervals
= I; Ii,..., I, defined as in the previous section; each of the

. . L intervals is m n ignal ch n from iorth nal
In fact, we desire to bound the distortion in order to be ab!%te als is mapped onto a signal chosen from a biorthogona

D o ) . odulation of sizeM : fori =1,..., M, the intervals/; and
to optimize the number of quantization bits given a certalp - d Vel h . lsand
amount of energy. The following bound holds : M+1-; are assigned respectively o the two signalsan

sy+1—: Which belong to the same axis in the bi-orthogonal
D = Dg(1-P.)+D.P. (10) constellation. For,j =1,...,M, let

where D, is the MSE distortion given that an error decision o ook pep(y/sk)
has been made?. is the probability of making an error and

D, represents the quantization distortion. Using the inétyual Due to the symmetry in the construction of the encoder, we
2

Q(A) < e\;%ézy we can write have thatJj = —J]yprl,j and Ki;j = K M+1—j for all ¢ =

Ji = / up(u) du, K;; =
I

i

1,...,M,j=1,...,M/2andj # i, M + 1 —i.

I~ M—1 The receiver is an MMSE estimator which minimizes the mean
Do = 2/ (u— A)?p(u) du + Z / (u—z;)?p(u) du square error distortion. The estimatewfs
A =2 I;
M
—AZ%/2 2 ~ i—1 Jip(y /S
< % A 12) aly) = BUfy] = 2zt I2/s) g

JorA @ o S pip(y/si)
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The MSE distortion could be written as

D = E[(U-U(Y)?=1-EU*Y)] (@17
M M

= 1-) ) JiJiE; (18)
i=1 j=1

M M
= 1+ Z J2Ki v1-i — Z J2K; ;. (19)
i—1 i1

We have that

1 M/2 2
7 2=1 Yk ,—E/202

1 -
 Grozym7at
Kipmy1-i = 75 75 dy
—c0 M/2 o2 Yk o2 Yk
Dop—1 Pele 7= +e= )
— M/2 ¢
2”12 k:/1 vi

0o ée z
< e—B/20? / (27mg)M/;tw d
/29 d
—© k=1 “Pk

—E/202
e / Z’

and K;; = Ey/s7

p(y/si) ]
M pep(y/sk)

whereY /s; is a multivariate Gaussian of meap and cova-
riance matrixo2I,,/,. Thus,

M/2
D <1+2e7 BN 2

i=1

M/2 szyz
Z 2 e’

—2 2 JiEvys, M/2 —YEy, Py, 20)
= Y2 gy Y 4 T

at the input and maps them into &%-dimensional signal of
fixed energy equal taVE. Performing MAP decoding, we
have that

Dy < Dgn + DenPen (22)

where Doy represents the quantization errér, y the MSE
distortion when a error decision has been made Bng the
probability of making an error. Clearly, we hah\@;QN =
Do1 = Do, Dy < Doy = D, and Py < MZel 222 757))
Doing the same optimization procedure as in section lll, we
obtain Dy < e2tnert198(2) for large amount of energy
with pep: = 1 and

NE
bvopt = LL(N +2)02 log(?)J ' (23)
Letting N — 00, the upper bound approaches asymptotically
the valuee=®/27= and the gap with the lower bound is reduced

to 3dB.

VI. NUMERICAL RESULTS AND CONCLUSIONS

In all the numerical results, the distortion is plotted wers
the energy, and the variance of the channel noise is takeal equ
to one. Fig. 4 shows the inefficiency of the linear encoder
compared with the theoretical upper and lower bounds. Note
that the curve representing the upper bound is obtained like
the following : for each value of, we find b, then we
calculate the upper bound ovér using the terms in (12),(13)
and (27). Also the model studied in section Il is simulated
for different number of quantization bits and compared ® th
other curves. Fig. 5 and Fig. 6 show that the different types
of encoders and decoders studied in section Il and IV have
comparable performance; therefore, using a MAP decoder
instead of an MMSE estimator has practically no effects on

Now, suppose that we use an orthogonal modulation instetaeé MSE distortion especially wheh > 2. The analytical

of the biorthogonal one; foif = 1,..., M, every intervall;

upper bound on the distortioPy (eq.(22)) is plotted in Fig.

is mapped into a signal;. Doing similar calculations as for 7 for several values ofN. This plot shows the improvement

the biorthogonal case, we obtain

vE VE )
e o2 Yi _ o2 YM+1—i

M
2
D=1-) JEy/s, - o (21)
=1 Zk:l pre oz

that can be made to the upper bound, and consequently to the
performance of the system when we code sequences; it shows
that even with small length sequences, significant gain ean b
obtained.

As a conclusion, we have derived theoretical lower and upper

whereY = (Y3,...,Ya)/s; is a multivariate Gaussian of bounds on the distortion for very-low bandwidth sources.
means; and covariance matrix2I,,. We currently do not The proposed source-channel coding schemes outperform the

have asymptotic expressions for (20) and (21)Fas+ co.

V. EXTENTION TO SEQUENCECODING

linear coding performance and lead to an exponentially de-
creasing behavior of the distortion i. Also, we have shown
that the difference in the performance between a MAP decoder

Due to the slowly time-varying characteristic of the sourceand an MMSE estimator is negligible. Finally, we proved
we have assumed that just one source component is availahlg the gap between the lower and the upper bound can be
to be encoded and then transmitted. We now extend to the cgigificantly reduced by coding relatively short sequences

where the sensor can wait until having a sequence of length
N of i.i.d. source realisations at the encoder input. Under th

APPENDIX

mean energy constraint in (2), we are interested to see howBY analogy to what has been done in [11], we obtain for

of N source components. Using the same linear quantizer ) P
as in section lll, every source component is quantized in p,. gp:m/ p(y/z;) T Z(pjp(y/wj))ﬁ dy,
representing bits. The quantizer is followed by an orthagon Y i

modulation of sizelfy = 2P that takes theéVb bits available
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Fig. 4. Performances of the MAP-based scheme compared to thar linFig. 6. Comparison between the orthogonal and the biorthaigundulation
encoder and the theoretical lower bound. performances combined with the MMSE estimator.
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Fig. 5. Comparison between the MAP and the MMSE based scheme.Fig. 7. The lower bound compared to the upper bound corresngrtd

sequence coding of lengtN.
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