
Bounds on Optimal End-to-End Distortion of
MIMO Links

Jinhui Chen
Eurecom Institute

Sophia Antipolis, France

Dirk T. M. Slock
Eurecom Institute

Sophia Antipolis, France

Abstract— For transmitting a continuous-amplitude source,
quadratic distortion is the primary performance metric. Its lower
bound decreases with channel capacity which can be increased
by multiple antennas. In this paper, assuming the transmitter
perfectly knows the instantaneous channel rate by feedback from
the receiver and a white thermal noise source is transmitted
over a quasi-static Rayleigh fading AWGN channel, we give the
compact analytic expression of the tight lower bound on the
optimal end-to-end mean quadratic distortion at any SNR, in
terms of antenna numbers, the ratio of source-bandwidth to
channel-bandwidth (SCBR), the ratio of signal power to noise
power (SNR) and the source power. We analyze the expression
of the lower bound to obtain the SNR exponent and the SNR
coefficient at the asymptotically high SNR. Results indicate
that the optimal distortion does necessarily decrease with both
antenna numbers for any SCBR, the commutation between the
transmit antenna number and the receive antenna number can
affect the optimal distortion, and the frequency-selectivity can
benefit the optimal distortion.

I. INTRODUCTION

The end-to-end distortion is the primary performance metric
for continuous-amplitude (analog) source transmission. Shan-
non has pointed out that increasing channel capacity can
benefit the quadratic distortion (mean square error) in [1]. In
MIMO links, channel capacity can be increased by multiple
antennas [2]. Intuitively, the systems are supposed to profit on
end-to-end distortion by putting more antennas either at the
transmitter or at the receiver.

The existence of the SNR exponent of the optimal mean
quadratic distortion at the asymptotically high SNR has been
proposed and proved in [3]–[5]. In [6], considering source-
channel coding, Caire and Narayanan have given the upper
bound aub on the SNR exponent of mean quadratic distortion
under the assumption of no time interleaving. It is a function
of antenna numbers (M, N) and the ratio of source bandwidth
to channel bandwidth, Ws/Wc. They present that there exists
a tradeoff between the distortion SNR exponent upper-bound
aub and Ws/Wc, which looks like an interesting partner to the
tradeoff between the diversity order and the multiplexing gain
in digital transmission [7].

Their resulting formula shows that when Ws/Wc is enough
low, aub = MN , which is the same as the maximum diversity
order in [8], whereas when Ws/Wc is enough high, aub =
2min{M,N}Wc/Ws, which is unrelated to max{M, N}.
This conclusion makes us wonder how MIMO links can profit
by increasing max{M, N} in the high Ws/Wc regime.

Let us suppose at the asymptotically high SNR,

Dlb(ρ, η) ∼ c∗(ρ, η)ρ−aub(η) (1)

where η = Ws/Wc and ρ is the SNR per receive antenna.
We conjecture that in the case of large η (high SCBR),
by increasing max{M, N}, MIMO systems can profit on
the coefficient c∗(ρ, η) though not on the exponent aub(η).
Then, if we know the explicit expression of Dlb(ρ, η), we
would be able to clarify what the coefficient c∗(ρ, η) is and
thereby relate it to (M, N), which could demonstrate our
conjecture. Fortunately, on the basis of Shannon’s theory, we
find the compact analytic expression of Dlb(ρ, η) and thus
what c∗(ρ, η) and aub(η) are. The aub(η) derived by our
method is exactly the same as Caire and Narayanan have
claimed. And, the behavior of c∗(ρ, η) corresponds to our
conjecture. Therefore, in the high SNR regime, the coefficient
c∗ can be an evaluating measurement other than the exponent
aub.

II. SYSTEM MODEL AND EXISTING RESULTS

Consider a frequency-flat block-fading MIMO channel with
M inputs and N outputs represented by

y = Hx + n (2)

where x is an M -length column vector denoting transmitted
symbols, y is an N -length column vector denoting received
symbols, n is an N -length column vector denoting noises and
H is an N -by-M matrix denoting the channel. We assume all
elements in n are zero-mean i.i.d. complex random variables
with variance σ2

n and all elements in H are i.i.d. CN (0, 1).
In [3]–[5], it has been proposed and proved that there exists

an SNR exponent of the optimal quadratic distortion at the
asymptotically high SNR,

a = − lim
ρ→+∞

log D(ρ)
ρ

(3)

where D(ρ) is the optimal quadratic distortion and ρ is the
SNR per receive antenna.

In [6], by applying Varadhan integral lemma and the Wishart
probability density function (pdf), Caire and Narayanan have
derived the upper bound aub(η) on the optimal mean quadratic
distortion SNR exponent for analog source transmission over
a slowly varying fading MIMO channel,

aub(η) =
m∑

i=1

min
{

2
η
, 2i− 1 + |M −N |

}
, (4)



where m = min{M,N}, and η = Ws/Wc with Ws the
number of source samples per second and Wc the number of
channel uses per second. η is termed spectral efficiency in their
work. For avoiding confusion with other existing meanings for
the term spectral efficiency, e.g. bit/Hz/s, in our work, we call
it SCBR (the ratio of source bandwidth to channel bandwidth).
In the remainder, we shall show that we obtain the same upper
bound as (4) by an alternative derivation method, along with
other distortion-related results.

III. PRELIMINARIES

Lemma 1: Define a m-by-m Hankel matrix H(x) whose
(i, j)-th entry is in the form of ci+jx

min{a,i+j} where ci+j is
a non-zero constant, x, a ∈ R+ and 1 6 i, j 6 m. Then,

lim
x→0

log detH(x)
log x

=
m∑

i=1

min{a, 2i}. (5)

Proof: Omitted due to space limit.
Lemma 2: Define a m-by-m Hankel matrix H(x) whose

(i, j)-th entry is in the form of ci+jx
i+j where ci+j is a

non-zero constant, x ∈ R+ and 1 6 i, j 6 m. Then, each
elementary product from H(x) has the same power m(m+1).

Proof: Omitted due to space limit.
Lemma 3: Define a m-by-m Hankel matrix H whose (i, j)-

th entry is Γ(a + i + j − 1) where 1 6 i, j 6 m and a ∈ R.
Then the determinant

detH =
m∏

k=1

Γ(k)Γ(a + k). (6)

Proof: Omitted due to space limit.
Lemma 4: Define a m-by-m Hankel matrix H whose (i, j)-

th entry is Γ(a+i+j−1)Γ(b−i−j+1) where 1 6 i, j 6 m,
m > 2 and a, b ∈ R. Then the determinant

detH = Γ(a + 1)Γ(b− 1)Γm−1(a + b)

·
m∏

k=2

Γ(k)Γ(a + k)
Γ(b− 2k + 2)Γ(b− 2k + 1)

Γ(a + b− k + 1)Γ(b− k + 1)
.

(7)
Proof: Omitted due to space limit.

Lemma 5: Define a m-by-m Hankel matrix H(x) as fol-
lows. (i, j) is the entry index, 1 6 i, j 6 m. For a ∈ R+,
b+2 ∈ Z+, a−b ∈ [2, 2m], in the case where a−b is an even
number, the

(
a−b
2 , a−b

2

)
-th entry of H(x) is ca−bx

−a log x
while other entries are in the form of θi+jx

−min{a,b+i+j}

with θi+j a non-zero constant; in the case of odd num-
ber,

([
a−b
2

]
,
[

a−b
2

]
+ 1

)
-th and

([
a−b
2

]
+ 1,

[
a−b
2

])
-th entries

are θa−bx
−alogx while other entries are in the form of

θi+jx
−min{a,b+i+j}, where [x] rounds x to the nearest integer

towards zero; in other cases, all entries in H(x) are in the
form of θi+jx

−min{a,b+i+j}.
For the positive integer l =

[
a−b
2

]
, H(x) can be partitioned

as

H(x) =
(

A(x) B(x)
BT (x) C(x)

)
(8)

with the l-by-l submatrix A(x) and the (m − l)-by-(m − l)
submatrix C(x).

When x → +∞,

detA(x) ∼ θA(x)x−l(l+b+1), (9)

detC(x) ∼ θC · x−a(m−l). (10)

Then,

detH(x) ∼ θA(x)θCx−[l(l+b+1)+a(m−1)], (11)
Proof: Omitted due to space limit.

Lemma 6: Define

f(n) =
m∏

k=1

Γ(n−m− a + k)
Γ(n− k + 1)

, (12)

g(n) = nam
m∏

k=1

Γ(n−m− a + k)
Γ(n− k + 1)

,

0 < m 6 n, 0 < a 6 n−m + 1.

(13)

Then f(n) and g(n) are monotonically decreasing.
Proof: Omitted due to space limit.

IV. MAIN RESULTS

We assume that a white thermal noise source is to be
transmitted, and systems are working on “short” frames
due to strict time delay constraint, that is, time-interleaving
is impossible to be done and no time diversity can be
exploited. The transmitter is supposed to perfectly know the
instantaneous channel rate Rc which can be fed back by the
receiver as a real scalar.

Theorem 1 (Mean Quadratic Distortion Lower Bound):
The optimal mean quadratic distortion is tightly lower
bounded by

Dlb(ρ, η) =
Ps detG(ρ, η)∏m

k=1 Γ(n− k + 1)Γ(m− k + 1)
. (14)

with m = min{M,N}, n = max{M, N}, and G(ρ, η) a
m-by-m Hankel matrix whose (i, j)-th entry is

gij(ρ, η) =
( ρ

M

)−dij

Γ(dij)Ψ
(

dij , dij + 1− 2
η
;
M

ρ

)

(15)

where ρ is the signal-to-noise ratio per receiver antenna, η is
the ratio of source bandwidth to channel bandwidth (SCBR),
dij = i + j + n−m− 1, 1 ≤ i, j ≤ m, and Ψ(a, b; x) is the
Ψ function in [9, pp. 257, 261].

Proof:
Under the assumption that the transmitter only knows the

instantaneous channel rate Rc, the optimal covariance matrix
of the transmitted vector x at the transmitter is supposed to be
a para-identity matrix Pt

M IM , where Pt is the transmit power
constraint and IM is the M − by −M identity matrix. Thus,
given by [2], the mutual information per channel use is

I(x;y) = logdet(IN +
ρ

M
HH†) (18)

where ρ is the SNR per receive antenna, Pt/σ2
n.



Assume an AWGN channel of bandwidth Wc is used at
2Wc channel uses per second as a time-discrete channel [10,
pp. 248]. For the block-fading case, the block time-length is
supposed to be µ seconds. Hence, the channel rate (bit/block)
is

Rc = 2µWcI = 2µWc log det(IN +
ρ

M
HH†). (19)

Given by Shannon in [1], the source information rate
required by reproducing a white thermal noise source at the
receiver with the quadratic distortion d

Rs = Wslog
Ps

d
. (20)

In the scenario of no time interleaving to be done, µRs ≤
Rc. Hence, the lower bound on the quadratic distortion

dlb(ρ, η) = Ps det(IN +
ρ

M
HH†)−

2
η , (21)

with η the ratio of source bandwidth to channel bandwidth
(SCBR) of the source-channel encoder,

η , Ws/Wc. (22)

This lower bound is achievable according to [1].
Then, the tight lower bound on the mean quadratic distortion

with respect to H

Dlb(ρ, η) = PsEH [det(IN +
ρ

M
HH†)−

2
η ]. (23)

Invoking [9], [11], [12], this lower bound can be written in
the compact analytic form as Theorem 1 presents.

Theorem 2 (Distortion SNR Exponent Upper Bound):
At the asymptotically high SNR, there exists an optimal
distortion SNR exponent a∗(η) which is upper bounded by

aub(η) = − lim
ρ→+∞

log Dlb(ρ, η)
log ρ

=
m∑

i=1

min
{

2
η
, 2i− 1 + |M −N |

}
.

(24)

¤
Proof: Observe matrix entries gij(ρ, η) in (15). When ρ

is large, M/ρ is small. As dij +1− 2
η is a real number, we can

thus use results in [9, pp. 262] as Table I shows. Following
(15), when ρ is large,

gij(ρ, η) ∼ Aij(ρ, η)ρ−aij , (25)

where

lim
ρ→+∞

log Aij(ρ, η)
log ρ

= 0 (26)

and

aij = min
{

2
η
, dij

}
= min

{
2
η
, n−m + i + j − 1

}
. (27)

Consequently, at the asymptotically high SNR,

detG (ρ, η) ∼ A(ρ, η)ρ−aub(η), (28)

where

lim
ρ→+∞

log A(ρ, η)
log ρ

= 0. (29)

By Lemma 1,

aub(η) =
m∑

i=1

min
{

2
η
, 2i− 1 + |M −N |

}
. (30)

Theorem 3 (Distortion SNR Coefficient): Define the SNR
coefficient c∗(ρ, η) for the optimal end-to-end distortion at the
asymptotically high SNR as

Dlb(ρ, η) ∼ c∗(ρ, η)ρ−aub(η) (31)

where

lim
ρ→∞

log c∗(ρ, η)
log ρ

= 0. (32)

Define two functions κl(β, t) and κh(β, t) as (16) and (17) at
the bottom of this page, for β ∈ R+ and t ∈ {0,Z+}.

c∗(ρ, η) is given as follows,
1. For 2/η ∈ (0, n −m + 1), termed the high SCBR state,

the corresponding SNR coefficient is

c∗(η) = PsM
aub

κh( 2
η , m)∏m

k=1 Γ(n− k + 1)Γ(m− k + 1)
,

(33)
and monotonically decreases with n.

TABLE I
Ψ(a, c; x) FOR SMALL x

c Ψ
c > 1 x1−cΓ(c− 1)/Γ(a) + o

`
x1−c

´

c = 1 − [Γ(a)]−1 log x + o (| log x|)
c < 1 Γ(1− c)/Γ(a− c + 1) + o(1)

κl(β, t) =





Γ(n−m + 1)Γ(β−n+m−1)
Γ(β)

∏t
k=2 Γ(k)Γ(n−m + k)Γ(β−n+m−2k+2)Γ(β−n+m−2k+1)

Γ(β−k+1)Γ(β−n+m−k+1) t > 1,

Γ(n−m + 1)Γ(β−n+m−1)
Γ(β) t = 1,

1 t = 0.
(16)

κh(β, t) =

{∏t
k=1 Γ(k)Γ(n−m− β + k) t > 0,

1 t = 0.
(17)



2. For 2/η ∈ (n+m−1, +∞), termed the low SCBR state,
the corresponding SNR coefficient is

c∗(η) = PsM
aub

κl( 2
η ,m)∏m

k=1 Γ(n− k + 1)Γ(m− k + 1)
.

(34)
3. For 2/η ∈ [n−m + 1, n + m− 1], termed the moderate

SCBR state, in the case where 2/η − (n−m− 1) is not
an even number, the corresponding SNR coefficient is

c∗(ρ, η) = PsM
aub

κl( 2
η , l)κh( 2

η − 2l,m− l)∏m
k=1 Γ(n− k + 1)Γ(m− k + 1)

;

(35)
in the case where 2/η− (n−m− 1) is an even number,
the corresponding SNR coefficient is

c∗(ρ, η) = PsM
aub log(

ρ

M
)

·
κl( 2

η , l − 1)κh( 2
η − 2l,m− l)∏m

k=1 Γ(n− k + 1)Γ(m− k + 1)
,

(36)

where
2
η−(n−m+1)

2 < l ≤
2
η−(n−m−1)

2 , l ∈ Z+,
Proof: When 2/η ∈ (0, n −m + 1), dij − 2

η + 1 > 1.
Following (25), using Table I, (15) and (27), we get

Aij(ρ, η) = M
2
η Γ(dij − 2

η
) (37)

and
aij =

2
η
. (38)

By using Lemma 3, the coefficient in detG(ρ, η)

A(ρ, η) = M
2m
η κh

(
2
η
,m

)
. (39)

In this case,

aub(η) =
2m

η
. (40)

By Theorem 1,

c∗(η) = PsM
aub

κh( 2
η ,m)∏m

k=1 Γ(n− k + 1)Γ(m− k + 1)
, (41)

which monotonically decreases with n in view of Lemma 6,
no matter whether n is the transmit antenna number or the
receive antenna number. Therefore, Result 1. in Theorem 3 is
proved.

When 2/η ∈ (n + m− 1, +∞), dij − 2
η + 1 < 1. Thus,

Aij(ρ, η) = Mdij Γ(dij)
Γ

(
2
η − dij

)

Γ
(

2
η

) , (42)

and
aij = i + j + n−m− 1. (43)

By using Lemma 2 and 4,

A(ρ, η) = Mmnκl

(
2
η
,m

)
. (44)

In this case,
aub = mn, (45)

hence,

c∗(η) = PsM
aub

κl( 2
η ,m)∏m

k=1 Γ(n− k + 1)Γ(m− k + 1)
. (46)

Result 2. in Theorem 3 is thus proved.
When 2/η ∈ [n − m + 1, n + m − 1], define l =[ 2

η−(n−m−1)

2

]
∈ Z+ and G(ρ, η) can be partitioned as in

Lemma 5. In the case where 2/η − (n−m− 1) 6= 2l, using
Lemma 3, 4 and 5, we get

c∗(η) = PsM
aub

κl( 2
η , l)κh

(
2
η − 2l, m− l

)
∏m

k=1 Γ(n− k + 1)Γ(m− k + 1)
. (47)

In the case where 2/η− (n−m−1) = 2l, in view of Table I,

gl,l(ρ, η) =
( ρ

M

)− 2
η

log(
ρ

M
). (48)

Therefore, when ρ → +∞,

detA(ρ, η) ∼
( ρ

M

)−l(l+n−m)

log
( ρ

M

)
κl

(
2
η
, l − 1

)

(49)
where A(ρ, η) is the l-by-l submatrix of G(ρ, η) as in Lemma
5. In view of

detC(ρ, η) ∼
( ρ

M

)− 2(m−l)
η

κh

(
2
η
− 2l, m− l

)
(50)

where C(ρ, η) is the (m− l)-by-(m− l) submatrix of G(ρ, η),
using Lemma 5, we get

c∗(ρ, η) = PsM
aub log(

ρ

M
)

κl( 2
η , l − 1)κh( 2

η − 2l, m− l)∏m
k=1 Γ(n− k + 1)Γ(m− k + 1)

.

(51)
In this case,

aub(ρ) = l(l + n−m) +
2(m− l)

η
. (52)

So far, Result 3. of Theorem 3 is proved.

V. NUMERICAL ANALYSIS AND DISCUSSION

In Fig.1, we provide numerical and simulation results at
high SCBR and high SNR. c∗ denotes the SNR coefficient
and D∗

lb denotes the approximate lower bound on distortion,
D∗

lb = c∗ρ−aub , which actually is the highest order term in the
expression of Dlb. We also compare the approximate lower
bound with Monte Carlo simulations; the latter are carried out
by generating 10 000 realizations of H and evaluating (23).
As expected, the comparison shows an excellent agreement
between analysis and simulation.

The plot demonstrates that at high SCBR and high SNR,
when the number of antennas at one side is fixed and the
number of antennas at the other side increases, the optimal
distortion is monotonically decreasing. The monotonicity is
due to behaviors of the SNR exponent aub and the SNR
coefficient c∗. In the beginning, when min{M,N} increases,



Dlb is monotonically decreasing because aub is increasing and
SNR is pretty high, even though c∗ is increasing as well; then,
when max{M, N} increases, Dlb is decreasing because the
SNR coefficient c∗ is decreasing whereas the SNR exponent
aub keeps constant.

Although Theorem 2 implies that the commutation between
numbers of transmit antennas and receive antennas has no
effect on aub, it can affect the optimal distortion by affecting
the coefficient c∗ as shown by the expressions in Theorem 3.
As Fig.1(b) shows, between a couple of commutative antenna
allocation schemes (M 6= N ), the scheme whose number of
transmit antennas is the minimum between the two antenna
numbers suffers less distortion than the other. The fundamental
reason is that under certain total transmit power constraint,
average transmit power per transmit antenna is higher for the
scheme allocated less transmit antennas.

In the case of moderate or low SCBR, as Theorem 2 implies,
aub is monotonically increasing with both antenna numbers.
The optimal distortion is thus monotonically decreasing with
antenna numbers in the high SNR regime regardless of c∗’s
tendency.

In the case of transmission over a frequency-selective chan-
nel, following Lemma 3 in [13], when the length of block
approaches to infinity, T →∞,

Dlb(ρ) = PsE[det(I +
ρ

M
H̄H̄†)−

2
η ] (53)

where H̄ can be regarded as a frequency-flat channel matrix
of size Lmax{M,N} ×min{M, N} where L is the number
of channel taps. Therefore, regarding the foregoing analysis,
frequency selectivity always benefits the optimal end-to-end
distortion.

VI. CONCLUSION

In this paper, We have derived the compact analytic ex-
pression of the lower bound on the optimal end-to-end mean
quadratic distortion of MIMO links for a continuous white
thermal noise source. Stemming from it, we have derived the
upper bound on the optimal distortion SNR exponent and
the SNR coefficient for any SCBR. We have presented that
at the asymptotically high SNR, in the high SCBR state,
although the SNR exponent is not affected by max{M, N},
the coefficient is monotonically decreasing. It implies the
goodness of increasing max{M, N} for a MIMO system in the
high SCBR state. We also have presented that the commutation
between the transmit antenna number and the receive antenna
number can affect the achievable optimal distortion, which is
due to the difference between essences of transmission and
receiving, and the frequency selectivity can benefit the end-
to-end distortion.
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