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ABSTRACT

Nowadays data dissemination often happens in vehicular
sensor networks (VSN) and other mobile ad hoc networks
in military & surveillance scenarios. The performance of
data dissemination depends on many different parameters
including speed, motion pattern, node density, topology,
data rate, and transmission range. This multitude makes it
difficult to accurately evaluate and compare data gather-
ing protocols implemented in different simulation or test-
bed scenarios.

In this paper, we introduce Neighborhood Change Rate
(NCR), a unifying measurement for different motion pat-
terns used in epidemic dissemination, a contact-based data
dissemination. By its intrinsic property, the NCR meas-
urement is able to describe the spatial and temporal de-
pendencies and well characterize a dissemination / har-
vesting scenario. We illustrate our approach by applying
the NCR concept to MobEyes, a lightweight data gathering
protocol.

Wefurther analytically study the effective NCRfor Markov
type motion models, such as Real Track mobility model. A
closed-form expression has been derived. From this ana-
lytic solution, the NCR can be approximatedfrom the ini-
tial scenario settings, such as velocity range, transmission
range, and real maplstreet information. The closed-form
formula for NCR can be further employed to evaluate the
ED process. The mathematical relationship between the
dissemination index and the effective NCR is established
and it allows predicting the performance of the ED proc-
ess in realistic track motion scenarios. The experiment
results showed that the analytic expressions for the NCR
andfor the evaluation of the ED process closely match the
discrete-event simulations.

I. INTRODUCTION

Data dissemination occurs in the course of the useful life
of the data when the originator comes in contact with in-
tended destinations. Such contact-based data dissemination
is also known as "epidemic" dissemination (ED). In epi-
demic dissemination the origin node periodically transmits
the data (or metadata) to each current neighbor with a cer-
tain probability.

Studies in epidemic dissemination have shown that the
performance of data dissemination is closely affected by
node motion pattern and node density [1][2][3][4]. Al-
though node density is a rather straightforward measure to
define, node motion pattern is much more difi1cult to char-
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acterize. There are many motion patterns proposed and
each of them is composed of different parameters. So far
no unifying criteria are proposed to characterize motion
patterns and to evaluate the data dissemination process
uniformly.

In this paper, we introduce Neighborhood Change Rate
(NCR), a unifying measurement for different mobility
models used in epidemic dissemination. NCR is based on
the rate of a node entering and leaving a neighbor set. We
will illustrate how NCR has a significant influence on the
performance of data dissemination. Coupled with velocity
and density, NCR is shown to fully describe the data dis-
semination process. We illustrate our approach by apply-
ing the NCR concept to MobEyes [3], a lightweight data
gathering protocol.

We further analytically studied the effective NCR for
Markov type motion models, such as Real Track mobility
model. A closed-form expression has been derived. From
this analytic solution, the NCR can be approximated from
the initial scenario settings, such as velocity range, trans-
mission range, and real map/street information. The
closed-form formula for NCR can be further employed to
evaluate the ED process. The mathematical relationship
between the dissemination index and NCR is established
and it allows predicting the performance of the ED process
in realistic track motion scenarios. We conduct discrete-
event simulations and compare the experiment results with
the analytic results from the closed-form solutions ofNCR
and the ED process.

The rest of the paper is organized as follows. Section II
gives an overview of mobility models used in epidemic
dissemination. In Section III, we introduce the NCR and
its illustration by MobEyes simulations. Section IV de-
scribes the analytic study of NCR and its validation and
comparisons by discrete-event simulations, and we con-
clude the paper in Section V.

II. MOBILITY MODELS IN EPIDEMIC
DISSEMINATION

Mobility has a determining impact on epidemic dissemina-
tion due to longer term topology disconnection episodes.
Preliminary results, reported in [3], show that there is a
very strong dependence between event harvesting and mo-
tion pattern. For example, if we assume that vehicles move
in a random motion pattem known as Random WayPoint
model [5], the collection of nearly all events is one order
of magnitude faster than with realistic motion constrained
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by urban traffic consideration (the Track motion model
[6]). So studies on realistic mobility models and studies on
the impact of mobility pattern on data dissemination are
needed.

In the RWP model, a node randomly selects at each inter-
val a new direction [5]. Random Walk and Random Direc-
tion models provide more realism than RWP [7][8]. The
Obstacle mobility model proposed in [9] extends the RWP
model through the incorporation of obstacles using a Vo-
ronoi diagram of obstacle vertices. In the Manhattan mo-
bility model proposed in [10], the mobile node is allowed
to move along the horizontal or vertical streets. Some of
the above random models reflect the urban topology, but
none of them are inadequate to model motion correlation
among vehicles. Nodes in vehicle networks tend to form
"convoys".

To capture the most representative features of urban mo-
tion, we proposed a "track" group motion model based on
a Markov Chain approach [6]. The tracks are represented
by freeways and local streets. The group nodes must move
following the tracks. At each intersection, a group can be
split into multiple smaller groups; or may be merged into a
bigger group. The track model allows also individually
moving nodes as well as static nodes. The latest version is
called Real-Track (RT) mobility model which is tested
with real freeway/street maps from the US census bureau.
Similar work is done later by [11], which focuses on multi-
level human mobility heterogeneity in local community
though.

There are many motion models proposed and each of them
is composed of different parameters. So far no unifying
criteria are proposed to characterize motion patterns and to
evaluate the data dissemination process uniformly. That is
the motivation we introduce the NCR (Neighborhood
Change Rate) measurement which characterizes motion
patterns and allows us to predict the performance of an ED
process.

III. NCR

3.1 Factors Affecting the Efficiency of Data Dissemination

The efficiency of data dissemination can be briefly defined
as the total time needed to spread a given set of data to the
entire network. Similarly to virus spreading, the larger set
of vehicles a car meets per encounter point, the more effi-
cient is the data dissemination in VSN. But group motion
doesn't help the data dissemination. Indeed, the data dis-
semination efficiency can be increased if the cars met at
the encounter points do not follow a similar trajectory as
the data bearer. On the other hand, in epidemic dissemina-
tion each encounter point is an opportunity for nodes to
spread data to other nodes. The high frequency a car en-
countering other cars helps the data dissemination.

Therefore, the efficiency of data dissemination is depend-
ent on two major factors: 1) the number of vehicles with

different trajectories a car met per encounter-point; and 2)
the frequency a car encountering other cars. However, the
above two criteria are neither uncorrelated nor atomic. In
other words, they are both composed of, and potentially
share, a multitude of parameters, such as velocity, density,
node distribution pattem, or driving patterns, etc.

3.2 NCR Definition

NCR, Neighborhood Change Rate, is a comprehensive
measurement which combines the above two major affect-
ing factors together and provides a good evaluation of epi-
demic dissemination. Simply speaking, NCR is the rate of
change of nodes in one's transmission radius. Its definition
is as follows:

NCR'(t + At) l£14Nb'eave (At)]n+ £1Nb>ew(At)]
E[Deg'(t)]+ E[1 Nbnwew(At)]

Where At is the sampling interval which is equal to the
time needed for a node to travel the distance of its trans-
mission range; E# Nbnew(At)] is the expected number of
nodes entering node i's neighborhood during At ;
E[# Nbjeave (At)] is the expected number of neighbors

leaving node i's neighborhood during At; and Deg' (t) is
the nodal degree of node i at time t.

3.3 NCR Properties

From the above definition and description of NCR, we
easily know that NCR is a ratio with the property of
O<NCR<1 since the number of leaving nodes will never
bigger than the nodal degree ofthe node.

Another property is that NCR is independent of average
speed and average density in scenarios with uniformly dis-
tributed velocities and node positions. In NCR definition,
Ati is dependent of velocity vi, but if speed decay from the
average speed is negligible, At1 At2. In a scenario with
uniformly distributed velocities and node positions,
1 Nbnew/ leave (At1) 14 Nbnew/ leave (At2) and Deg' (Atl)
Deg' (At2). Thus, NCR will not change with average
speed. Average density is defined as the average number
of neighbors per node per covering area. In scenarios with
uniformly distributed velocities & positions and fixed
transmission range, density>. Deg' (t ) and density>.

densityavg , where density>vg is the average density
around node i and densityavg is the average density for the
whole scenario. As we normalizeNCR (t) with Deg' (t ), NCR

is independent of densityavg .

In practice NCR is not fixed except for idealized environ-
ments (e.g., Brownian motion, RWP, regular grids, etc).
In an urban environment, NRC evolves in time as the traf-
fic patter moves from off rush hour to traffic jams. Instead
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we use low, medium and high NCR to distinguish different
scenarios having different motion patterns, topology, street
layouts, radio range, and node distributions.

3.4 NCR Illustration by Simulations ofMobEyes

In order to illustrate the effect ofNCR, we have performed
a range of simulations on MobEyes [3] which is an effi-
cient lightweight support for proactive urban monitoring
based on the primary idea of exploiting vehicle mobility to
opportunistically diffuse summaries of sensed data. In
these simulations, we are interested in the diffusion latency
as a function of speed and the harvesting efficiency as a
function of time under different NCRs. We also perform
the cross comparisons among different motion patterns and
different topologies for similar NCR. In the simulations,
we applied the real-track (RT) model [6] on the urban map
topology (Westwood map) shown in Fig. 1. We evaluate
the performance by randomly choosing 10 harvesting
agents and repeat running 30 times to get a smooth curve.
The simulation parameters are shown in Table 1.

Table 1. Simulation Parameters.

Simulator NS-2.27
Simulation time 2000s
Simulation Area 2400m x2400m grid
Number ofNodes 100
Number of Agents 10
Number of Runs 30
Speed 5m/s-*25m/s
Radio Range 250m
Pause Time JOs

striction in the map topology (spatial dependencies). NCR
exactly catch the above motion features.
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Fig. 2. Diffusion latency as a function of speed.

To do the cross comparisons among different motion pat-
terns and different topologies for similar NCR, we chose
the steady-state Random Waypoint model on graphs [12]
as a comparing motion pattern and chose a simple triangle
topology with equal edge of 760m as a comparing topol-
ogy. Fig. 3 shows the simulation results which has been
normalized by the average density to remove the influence
of the density. From Fig. 3(a) and (b), we can see that the
performance of data dissemination is almost identical in
the scenarios with similar NCR, speed and density. For
example, in Fig. 3(b), although the harvesting processes
slightly differ during the simulation, they are completed at
roughly the same time. From Fig. 3(a), the latency is also
similar for all three cases, just a few seconds time differ-
ence. This well shows the significance of NCR, as it is
able to characterize the intrinsic properties of complex to-
pologies or motion pattems and feature the complex spatial
and temporal dependencies observed in realistic mobility
patterns.

40

35

Fig. 1. Westwood Map Topology.

As we mentioned in Section 3.3, we use low NCR, me-
dium NCR, and high NCR to feature different sets of mo-
tion pattems. Fig. 2 shows diffusion latency as a function
of velocity under different NCRs in the scenarios of map
topology with track motion pattern. As we expect, the la-
tency drops with the increase of speed. Moreover, the la-
tency is determined by the NCR feature for the same
speed. For example, when the speed is fixed as Sm/s, the
delay is 1250s for low NCR, but drops to 850s and 640s
for medium NCR and high NCR respectively. The per-
formance is improved as the NCR increases. As we nor-
malized the results with the density, the improvements
come from the particular motion characteristics other than
speed or density, such as group effect (temporal and spatial
dependencies) for the Track model, or the urban-grid re-
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(b) Harvesting efficiency.

Fig. 3. Cross comparison of different motion patterns and
topologies for similar NCR.

In summary, NCR is a unifying parameter, as it re-groups
mobility pattems and topology parameters. NCR is able to
describe spatial and temporal dependencies which are not
covered by speed or density. Coupled with the average
speed and the average density, NCR can well evaluate the
process of data dissemination.

IV. ANALYTIC STUDY OF NCR

The goal of the analytic study of NCR is to get a closed-
form expression for data dissemination under realistic mo-
tion pattern, such as real track model with map topology.

4.1 Definition ofNCReff
As mentioned in section 3.3, we can only get a "grade"
level of NCR. To get an analytic solution for NCR, we
need to re-define NCR and we call it as NCReff, i.e., effec-
tive NCR.

We first introduce the definition of Average In Range
Time E(IRT). IRT (In Range Time) is defined as the time
duration when a pair of nodes is within their mutual trans-
mission range. To simplify the problem, our assumption is
that in the initial node distribution we put nodes one by
one into an initially empty system. Then E(IRT) and NCRff
can be defined as follows:

N N Cij
Y' Y' Y Tk

E(IRT) Ni=j=1 k=1 (2)

i=l j=l '

N N

NCRett =l l
ef N N Ci,

Y, Y, Y Tk,
i=l j=l k=l

(3)

where N is total number of nodes in the system; C,,j is #
of changes from in range to out of range for pair (i, j); and
Tk is the kth In Range Time (IRT) for pair (i, j).

From Equation (2) and (3), we can get:

1
NCReff 1c (4)

E(IRT)

From the new definition (3), we briefly know that NCRefft
the effective NCR, is now an encountering frequency over
in range time.

4.2 General Approach to Get NCReff
Obviously, if we get E(IRT), we can easily obtain NCReff
by inversing the E(IRT). The general approaches of the
average link duration E(LD) [13][14][15] can help us to
get E(IRT). Indeed, E(IRT) and E(LD) are two different
views for the same measurement: E(IRT) is from the view

of pair in range, which composes a link; and E(LD) is from
the view of link, which means that a pair is in their trans-
mission range.

The major steps of obtaining NCReff are as follows: 1)
State space derivation for Markov motion models; 2) De-
rive probability transition matrix; 3) Derive separation
probability vector after k epochs; 4) Derive general expres-
sion of E(IRT) by studying relative movement between
two randomly moving nodes and conditional PDF (Prob-
ability Density Function) of separation distance; 5) Apply
the general expression of E(IRT) to different Markov mo-
bility models, and make approximations for each model to
get a closed-form expression for E(IRT); and finally 6)
inverse E(IRT) to get NCReff:

We briefly introduce the basic concept of each step here,
and the details can be obtained in [14] [13]. In Markov
motion models, such as track mobility model [6] or ran-
dom walk mobility model [7], the evolution of the separa-
tion distance between two nodes is a Markov process. The
probability density function (PDF) of Lm,+ is only depend-
ent on L1, where L11 is the separation distance between two
nodes at epoch m and Im is an instance of Lm. Thus, the
state space E = [ei, ..., ei, ...} in Markov motion models
can be determined by the separation distance between a
pair of nodes. The node separation distance is divided from
0 to r (i.e., radio range) into n bins of width £. Lm is in
state ei if (i-1)e < Im < ie.

The probability transition matrix A is then shown as fol-
lows:

a'l1 - L,n 1l,n+1

A= . . . . (5)
an1 . a, n an,n+l
0 *- 0 1

For Markov Chain models, transition probability aij in (5)
is derived from the conditional PDF of separation distance
fLrn+l Lrn(im+i/rn). The detailed formula is shown below:

jEI is

a1,j =P(e-+ ej) P(l,, E ejle,eIn
e) | JJEL+ Ln (Im+I Im)JL (Im)dlImdlm+I

(j-l)E bilE

(6)

Using the properties of Markov chain models, the separa-
tion probability vector after k epochs is:

P(k) = P(O) Ak (7)

where P(k) is the probability vector of the node separa-
tion distance at k epoch; A is the probability transition ma-
trix shown in (5); and P(O) is initial probability vector of
the node separation distance, and its formula is shown in
(8).

P(0)= [PI (°) p2(°).*.*. pi(°) ... Pn (°) Pn+ I (O) ] (8)
where pi(O) is the initial probability that the node separa-

tion distance is in state ei
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From [13], we know that the Probability Mass Function
(PMF) of the link duration or the in range time is p,n 1(k) -
pn+] (k-1) and E(IRT) can be calculated as (9).

n n
E(IRT) = Epi(O)]i (9)

i=l j=1

where pi(O) is from initial probability vector P(O); and Fij
is from Fundamental Matrix F.

The definition ofF is as follows:

F= (In-Q)1 (10)

where In is an n xn identity matrix; and Q is derived from
probability transition matrix A, and its definition is shown
in (1 1).

a=. ...a (11)

an 1 ** n,n_

where aij is transition probability from A.

From (4)-(1 1), we know the following relationship:

fL,,+ L,,, ('m+1 I) ai,j1 A Q F E(IRT) -> NCRff
(12)

NCReff is now determined by the conditional PDF of sepa-
ration distance fLi + l i(lm + I d) , which is normally deter-
mined by the fx(x), the PDF of relative movement between
two nodes from epoch m to m+1 [14] [15]. The relative
movement between two nodes usually depends on the mo-
bility model being used.

In summary, we have the following relationship:

fx(x) -* fL L('mI l 4a) -*a, A-A Q*F- E(IRT)- NCReff
(13)

So our job is to feature different Markov mobility models
to get thefx(x), make approximations for each model to get
a closed-form expression for E(IRT), and finally inverse
E(IRT) to get NCReff:

4.3 NCReft in Track Mobility Model

We are interested in the NCReff in the track mobility
model as we try to analytically study the data dissemina-
tion process under a realistic motion pattern where vehi-
cles are moving along streets in the real map.

[15] gives an approximation for E(LD) (i.e., E(IRT)) in
Random Walk (RW) model (shown in (14)) by applying
the above approach in Section 4.2 to RW mobility model,
a Markov mobility model.

E~~IRT~--v (2r - -V)_E(IRT)~ 2
'

(14)

where r is the radio range; v is the average speed, and

o-v is the variance of the velocity v.

The above approximation gives us a good hint which helps
us to study the NCReff in track model. To simplify the
problem for the track model with map topology, we as-
sume that 1) Streets/roads in map are randomly and uni-
formly distributed; 2) Group size is 1 and nodes are ran-
domly and uniformly distributed.

To catch the features of the track motion pattern and the
map topology, we give the following definitions:

P
Pwithin - (15)Ls
where Pwithin is the probability that node is within a road

but not in the intersections after one epoch (unit time); v
is the average speed; and Ls is the average road length in
the map. If Pwithin is greater than 1, we set it as 1. The cal-
culation of Ls is shown in (16).

TL
Ls - (16)

TI
where TL is total road length; and TI is total number of

roads. The Tiger/Line map data file from US Census Bu-
reau will help us to calculate (16).

We use R1tn to show the restriction of urban grid. Its defini-
tion is as follows:

A
RVtn=A ree (17)

Agrid
where R1tn is the ratio of urban grid restriction; Afree is 1/4

of free space area (i.e., whole field); and Agrid is the aver-

age grid area in the map. The calculation of Agrid is shown
in (18).

TA
Agrid = (18)

TG
where TA is total area of all urban grids; and TG is total
number of grids. The grid data is also from US Census
Bureau.

Then we can get fx(x), the PDF of relative movement
between two nodes in track model with map topology:

fx(x) (1- Pwithin)fx(X) + (Pwithin)(Rptn)fx(x) (19)

where fx (x) is the PDF of relative movement of two

nodes in RW mobility model.

The simple explanation of (19) is that with (l-Pwithin) prob-
ability, node is in the intersections after one epoch, which
relative movement is similar as in RW model because the
roads are assumed to have a random and uniform distribu-
tion, but with Pwithin probability, the relative movement of
two nodes will be restricted by the urban grid created by
street maps.
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Based on (13), (14) and (19), we can have our approxima-
tion formula for E(IRT) in the track model with map topol-
ogy:

E(IRT)1ctvt(12r - v)E(IRT)t '9 2 (20)
9(v)2 +o )

where r is the radio range; v- is the average speed; and
2~~~~~~~~~~~~~~~~~~~o2 is the variance of the velocity vt; and c1 is track co-

efficient which calculation is shown in (21).

ct = (1 -Pwithin ) + Pwithin Rptn (21)

We assume that in track model the range of group velocity
is [0, Vgmax] and the range of individual velocity is [0, Vi
max]- Since group velocity and individual velocity are two
independent random variables, the expectation and the
variance of Vt are as follows:

Vg max + Vi max
2 (22)t 2

2 2
2 gmax imaxcv2 + 'max+ (23)Vt 12 12

Thus, from (15)-(23) we get E(IRT), and by (4) we can get
the NCReff in the track model with the map topology
shown in (24).

9(v2 +0
NCR =1

c1v 1(12r-v1)CtV(2 -t)
(24)

4.4 Apply NCRff to Evaluate Epidemic Dissemination

Our basic goal of ED evaluation is to find how fast an in-
dex (or a file) spreads under a realistic and dynamic envi-
ronment. We assume that there are N nodes interested in
downloading the index. Let i denote the rate of rendezvous
(i.e., meeting) among those peers and ,u denote the rate of
departing the system (or content sharing area) respectively.
As stated above, the meeting rate can be analytically
driven [16] or empirically calculated [17]. We model this
by using a simple epidemic model used in [18]. Let I de-
note the number of infected peers (i.e., those who have the
index file). A single infected node meets other susceptible
nodes (i.e., nodes without an index) with rate 4(N-I). Since
I infected nodes are independently infecting others or leav-
ing the system, the total rate of infection and departure is
4(N-I)I and AI respectively. Since the rate of change solely
depends on the total meeting rate, we have the following
expression:

I)=L(N-I)I- I (25)

The above differential equation (25) is separable and can
be solved with the initial condition Io (i.e., the number of
sources at the beginning). Its solution is shown in (26).

()1 + (N - Io -p,UI )e-(AN-,u)t
Back to our systems with track motion pattem & map to-
pology, u = 0 here since we assume that no nodes will
leave the system during the simulation. By the definition
of NCReff in (3), we can easily know that the effective
NCR, the encountering frequency over in range time, is
proportional to A, the meeting rate among peers. Thus, we
have the following relationship:

A = Ci NCReff (27)
where c, is a coefficient between X and NCReff.

By (26), (27) and the fact u = 0, the dissemination index
I(t) in the track motion scenario with a map topology can
be derived by NCReff shown in (28):

I(t) -
N

1 + (N - I )e-(C,,NCReffN)t (28)

In summary, by (24) we get an approximation solution for
NCRet in the track motion scenarios with a map topology,
and by (28) we get a closed-form relationship between dis-
semination index and NCReff for data dissemination proc-
ess under realistic motion pattern, i.e., real track motion
model with map topology.

4.5 Experiment Validation and Comparisons

The discrete-event simulations on MobEyes are conducted
to validate and compare the analytic solutions in Section
4.3 and 4.4. In these simulations, we focus on the dissemi-
nation index (number of infected peers) as a function of
time under realistic scenarios running the real-track (RT)
model on the Westwood map topology shown in Fig. 1.
The simulation parameters are shown in Table 2.

Table 2. Simulation Parameters.
Simulator QualNet 3.7
Simulation time 1600S
Simulation Area 2400m x 2400m grid
Number ofNodes 300
# of Initial Source Io 1
# of Interested Peers N 300
Speed lOm/s-*30m/s
Radio Range 375m
Pause Time JOs

Fig. 4 shows the comparisons between analytic results and
simulation results for different max speeds of 1 Om/s,
20m/s and 30m/s. Analytic results perfectly match the
simulation results with high speed and at long simulation
time (shown in Fig. 4 (b) and (c)). Analytic results are
lower than the results obtained in the beginning of simula-
tions. The possible reason is that the analytic results are
based on an initial distribution of an unbounded free space,
which is not realizable in the simulation. The current simu-
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lation field is a bounded area of 2400mx2400m. Thus, the
differences of the initial distribution condition between
analytic solution and discrete-event simulation affect the
results in early stages. Fig. 4 (a) shows the worst match
among these three figures. The possible reason is that the
urban-grid restriction in scenarios with low speed is more
pronounced than other scenarios with higher speed, as
nodes in Fig. 4 (a) are more often trapped in urban grids.
But the restriction of urban-grid is not easy to be exactly
expressed by an analytic formula. But generally speaking,
the experiment results in Fig. 4(a), (b) and (c) showed that
the analytic expressions for NCR and for the evaluation of
ED process closely match the discrete-event simulations.
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(c) Max Speed = 30 m/s, c =0.05, NCRej= 3.63E-3, X = 1.81E-4
Fig. 4. Analytic Results vs. Simulation Results.

V. CONCLUSIONS

We propose NCR (Neighborhood Change Rate), a unify-
ing parameter which regroups mobility patterns and topol-

ogy parameters in epidemic dissemination. By its intrinsic
property, the NCR measurement is able to describe the
spatial and temporal dependencies and well characterize a
dissemination/harvesting scenario. The MobEyes simula-
tion results well illustrate the effect ofNCR.

We further analytically studied the effective NCR for
Markov type motion models, such as Real Track mobility
model. A closed-form expression has been derived. From
this analytic solution, the NCR can be approximated from
the initial scenario settings, such as velocity range, trans-
mission range, and real map/street information. The
closed-form formula for NCR is further employed to
evaluate the ED process. The mathematical relationship
between the dissemination index and the effective NCR is
established and it allows predicting the performance of the
ED process in realistic scenarios under track motion pat-
terns with map topology. The MobEyes experiment results
showed that the analytic expressions for NCR and for the
evaluation of the ED process closely match the discrete-
event simulations.
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