
SGNET: Implementation Insights
Corrado Leita, Marc Dacier

Institut Eurecom
2229 Route des Cretes
Sophia Antipolis, France

Email: {leita,dacier}@eurecom.fr

Abstract—We present in this paper SGNET, a distributed
framework to collect information on Internet attacks, with special
attention to self-propagating malware and code injections. This
framework is the result of our latest research work on the
so-called ScriptGen technology. It is characterized by several
unique characteristics that may allow it to provide in the future
an extremely interesting perspective on the Internet attacks. In
order to make it possible, we need to spread its observation
points as much as possible to obtain a complete view on the
different blocks of the IP space. We present here an overview
of the characteristics of its design with special focus on the
possibility to expand it and improve it with additional functional
blocks. The SGNET is in fact an open initiative, integrating
together tools produced by different research teams such as Argos
(VU Amsterdam), Nepenthes, Anubis (TU Wien) and VirusTotal
(Hispasec Sistemas). Everybody is welcome and encouraged to
participate to this initiative, by hosting observation points and/or
by extending this framework with additional modules.

I. INTRODUCTION

The Internet is populated by different varieties of network
activities aiming at scanning the IP space and to take control
of vulnerable systems for criminal purposes. The existence of
botnets, self-propagating worms, trojans, and different kinds
of scanning activities is well known. But there is no precise
and exhaustive information about the quantity and the variety
of these activities in the Internet. Many different projects
aim at addressing this deficiency, such as DShield [1], the
Internet Motion Sensor [2], the CAIDA project [3] or the
Leurré.com project [4]. All these projects take advantage of
different techniques and offer different perspectives over the
Internet network attacks. The efforts of collecting exhaustive
information on Internet attacks normally need to cope with two
major problems. First, the need to characterize the different
segments of the IP space; second, the challenge of retrieving
a significant characterization of the observed attacks.

Previous research [5], [6] showed how different network
blocks observe different varieties and quantities of attacks. In
order to obtain an exhaustive picture of the network attacks
spreading over the Internet it is thus necessary to achieve
a global observation perspective. This is only achievable by
installing a large number of observation points in different
locations of the IP space.

Honeypots [7] proved to be a valuable mean to collect in-
formation about network attacks. In order to retrieve sufficient
information about the observed network activities, honeypots
need to provide a high level of interaction with the attacking
sources. They need to drive the attacker into revealing his

intent by responding correctly to them: we showed in [8] how
incorrect replies to client requests may lead the attacking client
to abandon the conversation. Increasing the level of interaction
of a honeypot normally leads also to a sensible increase
in its resource and maintenance cost. This cost becomes
unacceptable when coupled with the previously identified need
of maximizing the coverage of the IP space.

We have conceived a novel honeypot deployment called
SGNET. SGNET addresses the previous problems taking ad-
vantage of a novel technology, ScriptGen [8], [9]. ScriptGen
allows to automatically generate approximations of the pro-
tocol behavior under the form of FSMs, and take advantage
of them to achieve very high levels of interaction with the
clients at a very low cost. Whenever the network interaction
falls outside the FSM knowledge (newly observed activity),
ScriptGen allows to take advantage of a real host to continue
the network interaction with the attacker. In that case, the
honeypot mainly acts as a proxy for the real host relying to it
all the received client requests and sending back the generated
responses to the attacking client. This allows to build samples
of network conversation for the new activity that are then used
to refine the current FSM knowledge (refer to [9] for an in-
depth explanation of the proxying algorithm).

The motivations and the architecture of the SGNET are
extensively detailed and validated in [10]. In [10] we ex-
tend our previous work on ScriptGen by embedding in the
learning phase information about code injection attacks and
by emulating the shellcode behavior, ultimately downloading
malware samples. We also take advantage of an experimental
deployment to validate the approach. This initial experiment
has evolved into an open deployment available to anybody
willing to join by hosting one of its honeypot sensors. We
provide here an overview of the design choices underneath
its implementation and the possibility of expansion of its
functional modules. We also provide information on the re-
quirements to join SGNET and on the consequent advantages.
A performance evaluation of the tool is left out of this work
for two main reasons. On the one hand, the few sensors
currently deployed do not generate yet any sensible load on
the system and it would thus be difficult to make assessments
in this direction. On the other hand, thanks to the scalability
properties of the system, we do not consider load as a critical
factor.



Sensor 1

GW
Sensor 2

Sensor 3

Sensor 4

Sample
Factory #1

Sample
Factory #2

Shellcode
Handler

Fig. 1. SGNET architecture

II. SGNET IMPLEMENTATION

Figure 1 shows the SGNET architecture as defined in [10].
SGNET is a distributed infrastructure, composed of different
components communicating through a TCP-based HTTP-like
protocol called Peiros. The Peiros protocol defines two types
of entities: clients and service providers. The service providers
offer different services to the requesting clients. The different
entities currently implemented in the SGNET architecture are
described in the following sections.

A. Sensors

The sensors are the observation points of the SGNET
architecture. The SGNET sensors are small daemons written in
python with small resource requirements that run over remote
machines hosted by different partners (see Section IV) in
different locations of the IP space. The sensors are responsible
for all the network interaction with the attacking clients. The
interaction is normally driven by the knowledge acquired by
ScriptGen and represented under the form of FSMs associated
to each TCP/UDP port. During this operation, the sensor
daemon interacts with clients using the normal socket API
and generating the answers taking advantage of the algorithm
defined in [8] and [9].

The normal operation of the sensors (normally called FSM-
driven operation) can be interrupted by the occurrence of one
of the two following conditions:

• The sensor faces a 0-day attack, that is a network attack
not belonging to the current FSM knowledge. In this
occasion the sensor is not able to handle autonomously
the activity, and relies on an external entity used as an
oracle (sample factory).

• The sensor identifies an FSM state marked as final stage
of a code injection attack. In this case, the sensor relies on
an external entity (shellcode handler) able to unpack and
understand the injected shellcode and provide information
about the required network interaction to emulate its
behavior.

In both cases the sensor network interaction is driven by
external entities acting as “oracles”. The sensor behaves as
a proxy relaying all the packets sent by the attacker to the
peiros entity and viceversa. When acting as a proxy, the sensor
fetches from the network the RAW IP packets (comprising the
IP and the TCP headers) and delivers them to the remote entity
over the Peiros protocol. The packets generated by the remote
entity are transferred back in the same way and injected on the
network by the sensor. The transition from FSM-driven mode
to RAW proxying is done by the sensors on a per-source basis
taking advantage of the Netfilter ipqueue libraries [11]. That
is, at a given moment a sensor is able to handle a source
A in FSM-driven mode, thus relying on the normal Socket
API, and a source B in RAW proxying mode. To accomplish
this, the sensor inspects the iptables incoming packet queue
and removes from the queue all the packets having B as a
source address. This prevents the kernel of the sensor host
from receiving packets belonging to a session handled by
another entity, and allows to independently handle different
states for multiple attacking sources hitting the sensor at the
same time.

An important aspect of the transition to RAW proxying
mode is the necessity to handle the replay of already estab-
lished TCP sessions. A rather common scenario in the sensor
operation is the case in which a 0-day activity is detected
in the middle of an established TCP session. For instance,
a TCP session starts a normal login attempt with the FSM-
driven FTP server and then continues performing an exploit
falling out of the FSM knowledge. In this case, the sensor
handles autonomously the first part of the TCP session (the
FTP login) and only in a second time (the new exploit) it
requires the intervention of a sample factory to carry on the
conversation. In order to retrieve information about the exploit
interaction, the sensor needs to initialize the sample factory by
replaying the first part of the TCP session, that is the login
attempt. This operation is non-trivial. For instance, the initial
sequence number chosen by the sensor host in the TCP 3-way-
handshake in the FSM-driven operation will be different from
that chosen by the sample factory in the successive replay.
The same will happen with the TCP timestamps when present.
In order to correctly reproduce the network conversation the
sensor needs thus to re-write the sequence numbers and the
timestamps of the packets in order to deliver packets with
correct TCP header information.

B. Service providers

In the previous section we introduced two main types
of Peiros service providers: sample factories and shellcode
handlers.

The sample factories are in charge of providing information
to the sensor about activities which do not fall yet into the FSM
knowledge. The sample factory mainly offers to the sensor
a real OS implementation taking advantage of virtualization
techniques. By proxying traffic towards these hosts, the sensors
generate new samples of protocol interaction. These samples



are used by the ScriptGen algorithm to learn new activities
incrementally refining the FSM knowledge.

The sample factories are implemented using a custom
version of the Argos high interaction honeypots [12]. Argos is
a virtualization system that takes advantage of memory tainting
to retrieve information about the presence and the nature
of code injection attacks. We modified Argos enabling its
interaction with a daemon implementing the Peiros interface.
When receiving a client request, the daemon instantiates a new
Argos process with the required parameters (VM profile, IP
address, gateway IP, DNS address,... ). This is done using two
different approaches. On the one hand, we modified an existing
DHCP daemon in order to dynamically configure the guest
OS when loading its memory snapshot. The DHCP-based
network configuration proved to be unfeasible on some OSs
(we experienced the problem on Microsoft Windows 2000).
When assigned an IP address, these OSs start to advertise their
new address for a period of 30 seconds during which all the
network daemons refuse to answer to incoming connections.
Such a delay is unacceptable, and required the development of
an alternate strategy. When the DHCP-based method fails, we
save different memory snapshots of the virtual host for each
required network configuration. Being a memory snapshot
of the size of approximately 50MB, we consider the space
requirement accepatble even for an order of magnitude of
thousands of different network configurations.

The shellcode handlers provide information about the nec-
essary network interaction to emulate the behavior of an
injected shellcode. To do so, the shellcode handler takes
advantage of the nepenthes [13] framework. We implemented
a nepenthes plugin, called module-peiros, to override the
standard nepenthes vulnerability modules and directly feed
nepenthes with shellcode samples. Module-peiros also takes
care of encapsulating and decapsulating the packets proxied
over the Peiros protocol.

The shellcode handlers and the sample factories are just
two examples of implementation of Peiros service providers.
The Peiros protocol has been designed to be as independent
as possible from the practical implementation of the service
providers. The Peiros protocol defines 4 capabilities:

• C1: capability to provide samples of protocol interaction.
• C2: capability to provide information about the position

of a shellcode.
• C3: capability to provide information about the behavior

of a shellcode.
• C4: capability to provide updates to the FSM knowledge.
It is clear from the previous description that the SGNET

sample factories provide capabilities C1+C2, while the shell-
code handlers provide the capability C3. The capability C4 is
assigned in the current implementation to the gateway entity,
extensively described in the next session.

C. Gateway

The SGNET gateway can be considered as a super-entity
acting both as a Peiros client and as a Peiros service provider.
The gateway acts as an aggregator and load balancer for the

other service providers: it maintains a list of all the active
service providers assigned to it and of their capabilities and
manages their service load. From the point of view of the
clients, the gateway is nothing else than a service provider
having as capabilities the union of the capabilities of the
entities under its management.

In the current SGNET architecture (Figure 1), the gateway
is an interface between the private farm of sample factories
and shellcode handlers (centrally maintained in Eurecom) and
the outside clients (the sensors deployed along the IP space).
It supervises sample factories with capabilities C1+C2 and
shellcode handlers with capabilities C3. So, from the point of
view of the clients, the gateway is a service provider offering
the capabilities C1+C2+C3. The whole architecture is flexible
to extensions of the initial setup. For instance, it would be
possible to deploy several installations of service providers in
different locations of the IP space and instruct the sensors to
choose the Peiros endpoint offering the best service in terms,
for instance, of network latency. This flexibility also allows the
system to scale, and cope with the growth of the deployment
that will probably impact the system load.

The gateway architecture is based on the publish/subscriber
design pattern: the network interaction generates a flow of
events, allowing to easily generate plugins subscribing to one
or more of these events. The gateway is thus easily extensible
to provide new features, such as sensor status logging (reacting
to misbehavior of one or more of the sensors).

The capability C4 is implemented taking advantage of this
architecture. The ScriptGen refinement engine is a gateway
plugin that reacts to the observation of a new sample produced
by the sample factories. The plugin tracks all the packets
exchanged between a sensor and the sample factory and takes
advantage of the information to refine the FSM knowledge.
The configuration of all the sensors of the architecture is
centralized for ease of maintenance. All the sensors subscribe
on startup to the C4 service (provided by the gateway plugin)
and receive the FSM knowledge corresponding to the profile
assigned to them by the configuration.

III. ACCESSING SGNET DATA

The main purpose of the SGNET deployment is to collect
information about the observed Internet attacks. This informa-
tion is stored under a variety of logs:

• Sensor logs. Information about the network interaction
(traversal of FSM, presence of code injections,...)

• Sensor dumps. Complete tcpdump trace of the network
interaction of the attackers with the sensors.

• Gateway logs. Information about the status of the sen-
sors (activity status, configuration) and about the FSM
refinement.

• Nepenthes logs. Information about the nature of the
shellcodes, on their network behavior, and downloaded
malware samples.

This sparse information is automatically collected and ag-
gregated, and stored in a relational database extending the



original Leurré.com [4] schema. The database collects infor-
mation ranging from the whole content of the observed packets
to different levels of aggregation, easing the analysis of the
collected data. We take advantage of a number of external
tools and information sources to enrich as much as possible
the collected information. We recall here for brevity two of
the most interesting ones:

• Malware behavior. We automatically submit the malware
samples to the Anubis sandbox [14] and store the re-
trieved behavioral information in the database.

• Malware AV signatures. We submit the malware samples
to VirusTotal (re-submitting on daily basis the samples
considered “most interesting”) to retrieve statistics about
the detection rate and thus have an estimate on the
“dangerousness” of a malware sample.

The log parsing scripts are easily extensible to include
additional sources of information, or to run daily checks and
generate alerts for interesting events.

IV. CONTRIBUTING TO THE SGNET
It should be clear that SGNET is an open architecture in

many ways. The whole SGNET core has been conceived to
make its expansion as easy and straightforward as possible by
the simple addition of new plugins. We already integrate the
information provided by many different tools, developed by
us and by other research teams. There is a lot of space for
expansion of the collected information through the integration
with other tools. We strongly encourage any research team
working in the domain to contribute to this framework and
improve the richness of the collected information.

In order to try to expand as much as possible our view
over the Internet, we ask to anybody willing to contribute
and access our complete dataset to install an SGNET sensor.
The sensor deployment procedure has been made as easy and
straightforward as possible, and requires a minimum hardware
cost. We have prepared a custom Linux distribution derived
from the Fedora Core 7 distribution. The installation and
configuration of the sensor host is completely automated and
requires a minimum configuration effort by the partner. As
we explained in this paper, the sensor daemon has very small
resource requirements: it can run on an old CPU (Pentium II)
with just 256MB of RAM and 1.5GB of free hard drive space.
For consistency among all the sensor platforms, we require
all the partners to provide 4 routable IPs to be assigned to
the sensor installation. There is no maintenance cost for the
partner: other than hardware interventions, we take care of the
installed sensors remotely, fetching the logs on regular basis,
installing security updates, and taking care of the integrity of
the system using tools such as tripwire.

On the other hand, the benefits for the partners are conspic-
uous. We provide complete access to the underlying database,
both through SSH login and through a PHP web interface.
The identity of the partners participating to the deployment is
protected by a Non-Disclosure Agreement that every partner
needs to sign. Except for the limited requirements of the
NDA, all the partners are welcome to take advantage of the

vast amount of data to carry on their research or validate the
observations made with other sources of data.

V. CONCLUSIONS

This paper presented SGNET, a tool that results from the
integration of several software tools aiming at observing and
collecting information about Internet attacks. The SGNET
deployment was designed to ease its extension and the in-
tegration with different sources of information. The amount
and the quality of the collected data is potentially extremely
significant, but requires a widespread deployment of sensors
along the IP space. We thus strongly invite any research or
industrial entity to take part to the deployment and actively
contribute to it.

ACKNOWLEDGMENT

The authors would like to thank Georg Wicherski for his
valuable contribution to the ideas and the implementation
of the architecture. This work was supported by the Resist
Network of Excellence (contract number 026764) and by the
RNTR ACES project (contract number ANR05RNRT00103).

REFERENCES

[1] DShield, “Distributed Intrusion Detection System, www.dshield.org,”
2007.

[2] M. Bailey, E. Cooke, F. Jahanian, J. Nazario, and D. Watson, “The
internet motion sensor: A distributed blackhole monitoring system,”
in 12th Annual Network and Distributed System Security Symposium
(NDSS), (San Diego), February 2005.

[3] Caida Project, “The UCSD Network Telescope, www.caida.org,” 2007.
[4] M. Dacier, F. Pouget, and H. Debar, “Leurre.com: On the advantages of

deploying a large scale distributed honeypot platform,” in Proceedings
of the E-Crime and Computer Conference 2005 (ECCE’05), (Monaco),
March 2005.

[5] M. Dacier, F. Pouget, and H. Debar, “Honeypots, a practical mean to
validate malicious fault assumptions,” in Proceedings of the 10th Pacific
Ream Dependable Computing Conference (PRDC04), (Tahiti), February
2004.

[6] E. Cooke, M. Bailey, Z. M. Mao, D. Watson, F. Jahanian, and
D. McPherson, “Toward understanding distributed blackhole placement,”
in WORM ’04: Proceedings of the 2004 ACM workshop on Rapid
malcode, (New York, NY, USA), pp. 54–64, ACM Press, 2004.

[7] L. Spitzner, Honeypots: Tracking Hackers. Boston: Addison-Welsey,
2002.

[8] C. Leita, K. Mermoud, and M. Dacier, “Scriptgen: an automated script
generation tool for honeyd,” in Proceedings of the 21st Annual Computer
Security Applications Conference, December 2005.

[9] C. Leita, M. Dacier, and F. Massicotte, “Automatic handling of proto-
col dependencies and reaction to 0-day attacks with ScriptGen based
honeypots,” in RAID 2006, 9th International Symposium on Recent
Advances in Intrusion Detection, September 20-22, 2006, Hamburg,
Germany - Also published as Lecture Notes in Computer Science Volume
4219/2006, Sep 2006.

[10] C. Leita and M. Dacier, “Sgnet: a worldwide deployable framework to
support the analysis of malware threat models,” in Proceedings of the
7th European Dependable Computing Conference (EDCC 2008), May
2008.

[11] H. Welte, “The Netfilter framework in Linux 2.4,” Proceedings of Linux
Kongress, 2000.

[12] G. Portokalidis, A. Slowinska, and H. Bos, “Argos: an emulator for
fingerprinting zero-day attacks,” Proc. ACM SIGOPS EUROSYS, 2006.

[13] P. Baecher, M. Koetter, T. Holz, M. Dornseif, and F. Freiling, “The
Nepenthes Platform: An Efficient Approach to Collect Malware,” Pro-
ceedings of the 9th International Symposium on Recent Advances in
Intrusion Detection (RAID), September 2006.

[14] U. Bayer, C. Kruegel, and E. Kirda, TTAnalyze: A Tool for Analyzing
Malware. PhD thesis, Master’s Thesis, Technical University of Vienna,
2005.


	Introduction
	SGNET implementation
	Sensors
	Service providers
	Gateway

	Accessing SGNET data
	Contributing to the SGNET
	Conclusions
	References

