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ABSTRACT

The available bandwidth of a path directly impacts the per-
formance of throughput sensitive applications, e.g., p2p con-
tent replication or podcasting. Several tools have been de-
vised to estimate the available bandwidth. The vast major-
ity of these tools follow either the Probe Rate Model (PRM)
or the Probe Gap Model (PGM).
Lao et al. [6] and Liu et al. [7] have identified biases in the
PGM approach that lead to consistent underestimations of
the available bandwidth. Those results were obtained under
the ideal assumption of stationary cross traffic.

In this note, we confirm the existence of these biases ex-
perimentally, i.e., for the case of non stationary cross traffic.
To do so, we compare one representative of the PRM family,
namely Pathload, and one representative of the PGM fam-
ily, namely Spruce, using long term (several day long) traces
collected on an example path.

We first propose a methodology to compare operational
results of two available bandwidth measurement tools. Based
on the sanitized data obtained using the previous method-
ology, we next show that the biases identified by previous
works are clearly observable on the long term, even with non
stationary cross traffic. We further uncover the formal link
that exists between the work by Liu et al. and the one by
Lao et al.
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1. INTRODUCTION
A question of great interest to applications is how much

bandwidth is available to them along an end-to-end Internet
path. The high variability of the available bandwidth over a
wide range of timescales makes the design of measurement
algorithms very challenging.

Several tools have been proposed to estimate the available
bandwidth [9]. The vast majority of these tools follow ei-
ther the Probe Rate Model (PRM) or the Probe Gap Model

(PGM). In the Probe Rate Model, a tool modulates its send-
ing rate as a function of the dispersion of packets observed at
the receiver. The highest possible rate for which dispersion
is minimum is used as an estimate of the available band-
width. Tools based on the Probe Gap Model (PGM) inject
pairs or trains of packets at a rate equal to the capacity of
the narrow link (the link with the minimum capacity along
a path, see Figure 1). Dispersion of the trains or pairs of
packets at the receiver side is used to infer the rate of the
cross traffic at the narrow link. The difference between the
cross traffic and the capacity of the narrow link is used as an
estimate of the available bandwidth of that path. This holds
only if the narrow link of a path is also the tight link (the
link with the minimum available bandwidth along a path,
see Figure 1), which is assumed to be the case in the Probe
Gap Model.

Figure 1: Example of an Internet path (the italic
indicates the used bandwidth): Link 1 is the narrow
link: The link with the smallest capacity (100Mbps).
Link 3 is the tight link: The link with the smallest
available bandwidth (10 Mbps).

A recent work by Lao et al. [7] has shed light on a bias of
PGM tools that tend to underestimate the available band-
width. This result is obtained for a two hop network and as-
suming a constant rate (hence stationary) fluid cross traffic.
The work by Liu et al. [6] addresses the problem of avail-
able bandwidth estimation in a general setting with multi-
hop paths and bursty (stochastic) cross traffic. However,
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they retain the stationarity assumption of [7] concerning the
cross traffic. This means that their focus is on the long term
average available bandwidth. In [6], two potential sources
of bias are identified for available bandwidth measurement
tools. First, considering the cross traffic as a constant rate
fluid can lead to underestimate the actual available band-
width. This bias is referred to as elastic since it can be mit-
igated by using large packet sizes and large packet trains.
Second, not taking into account the multi-hop nature of an
Internet path, i.e., the modeling of a path as a single hop
(the tight link) can also lead to underestimate the available
bandwidth. This issue affects PGM tools but not PRM tools
a priori. This second source of bias is non elastic in the
sense that it cannot be mitigated by altering the measure-
ment strategy.

In this note, we evaluate experimentally how the biases
predicted in [7] and [6] affect actual measurements, given
that the stationarity assumption upon which [7] and [6] are
based does not hold for day long observations of a path.
To do so, we picked one representative of the PRM family,
namely Pathload [1] and one representative of the PGM fam-
ily, namely Spruce [10]. In addition to checking the impact
of the result in [7], we address the problem of the comparison
of available bandwidth tools on several day long periods.

Our contributions are the following. We propose a method-
ology to pre-process samples obtained from available band-
width measurement tools and to infer the correlation that
exists between those measurements, be it linear or not and
be it on the short or on the long term. We demonstrate that
the results of Pathload and Spruce are in general highly cor-
related, though the type of correlation observed is non lin-
ear, which is in line with the results predicted by [6]. In
addition we show that the bias predicted in [7] corresponds
to the non elastic bias of [6] and that it is the elastic bias
that is dominant on our example path.

Figure 2: Time series of Pathload and Spruce. Top:
first trace. Middle: second trace. Bottom: last
trace

2. DATASET
We collected three long traces (12, 11 and 17 days) of

Pathload and Spruce maesurements between the University
of Oslo, Norway and the Public University of Navarra, Spain
in September and October 2006. Note that Pathload and
Spruce are active tools that need to be connected to the two
ends of a path to measure the available bandwidth, which
prevents the collection of large scale samples. This is why
we concentrate here on a single path but over a long pe-
riod of time. Traceroute between the two sites along with
information collected from the local administrators enabled
us to gain a fairly accurate view of the path that consists
of 18 hops. The core of the path consists of links in the
Geant network, which feature at least 2.5Gbits/s1 , while
there are apparently two bottleneck links at 100 Mbit/s in
between the probes and the access links of each University.
The capacity of the path, as measured by Pathrate [2], over
a week long period, is 100 Mbits/s, in line with the informa-
tion listed above. Note that PGM tools like Spruce require
knowledge of the capacity of the narrow link, in contrast to
PRM tools like Pathload. The load on the path, as measured
by Pathload varies between 10 and 30%, which is typical of
paths between well connected sites in the Internet [3].

Measurements were performed with the two tools running
alternatively, with a safe margin of 1 minute added between
any two measurements. On average, it takes 27 seconds for
Pathload to return a result and 11 seconds for Spruce. The
longer duration for Pathload directly follows from the iter-
ative convergence procedure used in the Probe Rate Model
as opposed to the Probe Gap Model that relies on the trans-
mission of a single (or a few) train of packets.

3. TOOL COMPARISON
Before proceeding with the actual comparison of the tools,

we cleaned the data. We first removed values larger than
the path capacity (a negligible number of samples). Sec-
ond, we discarded samples that are too far from the core
of the measurement distribution. This operation was per-
formed for each day and each night separately, as those peri-
ods visually exhibit different statistical characteristics. For
each such period, we dropped all values outside the region
[q̂0.25−1.5×IQ̂R, q̂0.75 +1.5×IQ̂R] where q̂0.25 and q̂0.75 are
the empirical 25th and 75th quartiles of the distribution and
IQ̂R = q̂0.75 − q̂0.25. The above data cleaning process leads
to a situation where some samples are missing. To enable
the comparison between tools, we averaged the values us-
ing jumping time windows of 3 minutes for both time series.
Third, we used wavelets to attenuate local random fluctu-
ations of the time series. We used the Haar Wavelets to
decompose the signal using 4 levels. We then discarded the
detailed signal at level 4 and reconstructed back the signal.
This denoising operation conserves over 99.5% of the energy
of the initial signal for all three traces. The noise removed
relates to the fact that available bandwidth estimation tools
estimate the available bandwidth over finite periods of time
and do not measure the long term average available band-
width [6]. The three traces before the denoising process are
presented in Figure 2. The resulting time series obtained
after the denoising phase are presented in Figure 3.

Visual inspection of Figure 3 reveals that (i) Spruce al-
most consitently returns estimates smaller than the ones of

1See http://www.geant.net.
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Figure 3: Denoised time series of Pathload and
Spruce. Top: first trace. Middle: second trace.
Bottom: last trace

Pathload, and (ii) there are periods the two tools are cor-
related. We used two metrics to evaluate correlation: the
Pearson correlation to assess a linear relationship between
the tools, and the Spearman2 correlation to assess a non-
linear correlation [4].

As correlation in the three traces apparently varies over
time, we computed the Pearson and Spearman correlation
over sliding windows of size W . We considered two values of
W , namely 200 and 1000 samples3. A sample correspond-
ing to 3 minutes, those two values roughly correspond to
10 hours and 50 hours respectively. Obviously, the smaller
W , the higher the variation in the time series of coefficients.
We first observed that the Pearson coefficient of correlation
is consistently low (below 0.4), irrespectively of W . This
clearly precludes the existence of any linear correlation be-
tween Pathload and Spruce. The use of the Spearman cor-
relation however revealed the existence of some non linear
correlation between the tools [8]. We plot in Figure 4 the
Spearman coefficients of correlation over time for each of the
three traces. Note that the trend observed when W = 1000
persists when considering W = 200. Our conclusion from
this study is that although both tools see the same network
events, as they often go up and down in a synchronized man-
ner, they cannot been used interchangeably to analyze the
dynamic of the available bandwidth in the network, as the
extent of their variation is different. We can also observe
that when the results are correlated, Spruce consistently re-
turns estimates smaller that the ones of Pathload. We in-
vestigate this issue in the next section.

2The Spearman correlation, also called the Rank correlation,
measures the correlation not between the initial samples,
but between the ranked version of the samples. If X =
(x1, x2, . . . xn) and Y = (y1, y2, . . . yn) are the two samples,
and Rank(X), Rank(Y ) the corresponding ranked samples,
the Spearman coefficient of correlation is computed as the
Pearson coefficient of correlation of Rank(X) and Rank(Y ).
3Note that choosing smaller values of W is possible though
values smaller than a few tens is questionable from a statis-
tical point of view.
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Figure 4: Spearman coefficient of correlation over
sliding windows of 200 and 1000 samples.

4. PATHLOAD-SPRUCE DISCREPANCY
References [7] and [6] both predict that PGM tools can

underestimate the available bandwidth of path. The authors
in [6] uncovered two sources of bias for available bandwidth
measurement tools: one elastic bias related to the burstiness
of the cross traffic and one non elastic bias related to the
multi-hop nature of an Internet path.

Let us first consider the non elastic bias. Spruce is affected
by non elastic bias as it relies on the simplifying assumption
that an Internet path can be modeled by a single hop, which
should be both the tight and the narrow link of the path.

While not stated explicitly in [7], the authors of this work
focus on the non elastic bias studied in [6] and precisely
identify, for a two hop network case, the cases where Spruce
underestimates the actual available bandwidth, as we will
show later in this section.

We adopt, in a first approximation, the two queue model
of [7] to model the Norway-Spain path. We believe that this
model is valid because of the characteristics of the path (see
Section 2) and the fact that the core links of the path we con-
sider are well provisioned and should with high probability
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be lightly loaded. As a consequence, those links should have
a negligible effect on the dispersion of the packet trains sent
by an available bandwidth measurement tool. Note that the
large scale study in [5] of the dispersion of packet trains at
every router along a large set of paths in the Internet sug-
gests that a significant fraction of the paths in the Internet
have less than three bottlenecks (see Figure 10(a) in [5]),
similarly to our example path.

We further assume that: (i) The capacity C of the two
links is equal to 100 Mbits/s (see Section 2); (ii) Traffic
is one hop persistent and not path persistent. The latter
assumption simply means that the majority of the traffic
flowing out of the first university does not reach the second
one. The tight link might be either the first or the second
link of the path. Using the results in [7], we obtained that
the bias of Spruce, i.e., the difference between the exact
value A of the available bandwidth and the value ASpruce

estimated by Spruce is given by Equation (1), where u1 and
u2 are the respective utilizations of the uplink and downlink
of the two universities:

A − ASpruce =



Cu2

1 if tight link=1st link
Cu1u2 if tight link=2nd link

(1)

Note that Equation (1) can equivalently be obtained using
the results in [6] using Equation (33) for the Spruce estima-
tor and Equation (7) to derive the fluid dispersion at the
output of the second hop. This formally proves that the
bias analyzed in [7] corresponds to the non elastic bias in
[6] for the case where the two links have the same capacity
(extension to the case where the two links do not have the
same capacity is possible).

To find an upper bound on the utilization u1 and u2 ,
we use Pathload. Indeed, Pathload should return accurate
available bandwidth estimates as (i) it is not prone to the
non-elastic bias since it does not make any assumption about
the path and (ii) it uses long enough packet trains (100 pack-
ets) to limit the effect of the elastic bias. In contrast, Spruce
uses packet pairs to uncover the available bandwidth and as
such, is extremely sensitive to the elastic bias (see [6]).

We use the 95 quantile of C−AP athload

C
as an estimate for

both u1 and u2. We do this so as to obtain conservative esti-
mates of the utilizations. For our three traces, we obtain the
following values : 9%, 8.8% and 11.3%. Overall, we obtain
that the bias of Equation (1) (for the two cases) is upper-
bounded by 0.81 Mbit/s, 0.77 Mbits/s and 1.28 Mbits/s.
Those values are up to one order of magnitude smaller than
the average difference between Pathload and Spruce mea-
surements observed in our three datasets (10.6, 11.2 and 6.9
Mbits/s respectively).

The above results indicate that Spruce is mostly affected
by some elastic bias. An implication of this result should be
that the difference between Pathload and Spruce should in-
crease with the intensity of the cross traffic, as we can expect
that the variance of the cross traffic be positively correlated
with its mean. This is indeed what we can see in Figure 3
where we observe that during the day time where the (cross)
traffic is higher, the discrepancy between Spruce and Paht-
load measurements increases. The elastic bias should thus
be a major cause of the non linearity in the correlation be-
tween Spruce and Pahtload observed in Section 3.

5. CONCLUSION
In this note, we have collected available bandwidth mea-

surements on an Internet path for long periods of time for
one PRM-based tool, Pathload and one PGM-based tool,
Spruce. We demonstrate that Spruce and Pathload mea-
surements are often correlated, though the type of correla-
tion that exists between them is non linear. We relate this
non linearity to the existence of a non elastic bias in Spruce
measurements that has been evidenced by [6] and [7], though
under some strong stationarity assumptions concerning the
cross traffic. We hope that our results will foster new re-
search in the area of available bandwidth estimation, and
especially the comparison of existing tools and the practical
use of those measurements.
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