CAPACITY PRE-LOG ACHIEVING SCHEMES FOR STATIONARY FREQUENCY-FLAT
MULTI-ANTENNA CHANNELS

Umer SALIM, Dirk SLOCK

Eurecom Institute , 2229 route des Crétes, B.P. 193,
06904 Sophia Antipolis Cedex, FRANCE
e-mai |l : {uner.salimdirk. sl ock}@urecom fr

ABSTRACT 1. INTRODUCTION

Information theoretic bounds for different types of chdsne
We analyze the Mutual Information of stationary Frequencyhave got utmost importance since the explosion of research
Flat MIMO Channels, that are hence characterized by a DoppteMIMO promised new dimensions for data communication.
spectrum. Absence of Channel State Information at TransSuch capacity bounds are very importantin the sense that the
mitter or Receiver (no CSIT/CSIR) is assumed. For peakgive the theoretical limits and motivate researchers tiexeh
power limited SISO frequency-flat channels with stationarythem in practical systems literally or asymptotically. Erea
Gaussian fading, it has been shown by Lapidoth [1] that agf capacity analysis for non-coherent (no CSIR and no CSIT)
high SNR, the capacity is determined by a pre-log factor thatading channels has received considerable attention gntec
is equal to the bandwidth of frequencies where the channgears since the usual assumption of perfect CSIR is not true
Doppler spectrum is zero (the complementary part of the Bwpp practical systems and channel realizations need to be est
bandwidth). mated for correct decoding of data.

In this paper, we give simple upper and lower bounds for Usually block fading models are assumed for obtaining
the capacity of MIMO channels. These bounds are very rec@pacity bounds in the no CSIR (non-coherent) case. In the
vealing about the multiplexing gain (pre-log factor) of fys- standard version of this model [2], the fading remains con-
tem. Then we extend Lapidoth’s result to MIMO channelsStant over blocks consisting @fsymbol periods, and changes
with the help of these bounds. In a general (block) stationindependently from block to block. Capacity bounds are ob-
ary setting, the absence of CSIR decreases the pre-log witht@ined by introducing training segments in an ad hoc fash-
factor equal to 1 minus the average number of parameters pn- For the standard block fading model, the capacity is
symbol period that parameterize the channel. This reductioshown [2], [3] to grow logarithmically with SNR. Later Liang
term is proportional to the Doppler bandwidth and the numand Veeravalli [4] allowed the fading to vary inside the tdoc
ber of transmit antennas. We introduce channel parameteM!ith & certain correlation matrix characterized by the rghk
zations that induce a split in the transmitted symbols betwe @nd showed for SISO channels that the capacity pre-log is

“learning” symbols (that carry loglog(SNR) informatiomya ~ (1—Q/T').

“data” symbols (that carry log(SNR) information). The pre- ~ Non-coherent capacity has also been analyzed with the

log factor is the proportion of “data” symbols. This decom-channel fading process being symbol-by-symbol stationary

position shows the optimality of certain training schemms f |0 this model, fading is not independent but time selective

practical SNR values. The optimal pre-log requires optimiz Without any block structure. Surprisingly, this model lsad

tion w.r.t. the number of active transmitting antennas, as ¥ery different capacity results: contrary to log(SNR) azipa

function of Doppler bandwidth. growth in block fading channels, here the capacity grows onl
double logarithmically with SNR at high SNR [5], [6], [7]
when the fading process is non-bandlimited, i.e. the chlanne
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studied the SISO case for this kind of fading processes show- Sometimes we will be working over a block 6f symbol

ing that capacity grows logarithmically with SNR and capac-times. In that case the joint description of (1) ov2symbol

ity pre-log is the Lebesgue measure of the frequencies whegpeeriods becomes

the spectral density of the fading process (Doppler spetru

has nulls. Y, =H,X,+2Z, . 3)
Chen and Veeravalli [8] introduce a block-stationary chan- i ) .

nel model that can encompass both the per-symbol stationalyfé @dopt the convention of representing the variablegfor

and block fading models. They obtain the SISO capacity preSyMbol block as underlined letters. Héfg and andZ, have

log for both cases. They argue that the log(SNR) regime rd€ngthsN x D, X, is of lengthM x D and

sults from the rank deficiency of the correlation matrix @ th Zy = blockdiag(Hyp+1, Hp+2, - Hyp+p), Where each

fading process (though bandlimited fading only leads t&ran Hrp+i represents the usual x M channel matrix.

deficiency over a block as the block length goes to infinity). ~ FOr the input power constraint, we typically choose to
We should emphasize that the fading processes of interedrk under the peak power constraint as normally commu-

to us in this paper are stationary and strictly bandlimited, ~nication systems are peak-power limited in practice. Thus

ones for which Lapidoth [1] established the capacity pg-lo POWer at all transmitting antennas can never excead?,

in SISO case. In section 2, we give the system model. Se¢be peak power, thus

tion 3 comes with our simple lower and upper bounds of non-

coherent capacity. In section 4, we give two capacity pge-lo

achieving schemes for SISO systems and section 5 is abml.l

MIMO extension of these two schemes. In section 6, ther

is characterization of optimal number of active transmgti

antennas in terms of Doppler bandwidth. Section 7 gives the

concluding remarks and references are given in the end. C(SNR)

PreLog= lm 1 0(SNR) -

X/X, < SNR . 4

ﬁroughoutthis papet,)” and(.)" will denote transpose and
ermitian transpose operators respectively.
The capacity pre-log is normally defined as

(®)

2. SYSTEM MODEL
We define a new capacity parameter which may help us bet-

We consider a MIMO fading channel whose tirhesutput  ter understand the asymptotic capacity reduction when CSIR

Y;. € CV is given by is not available. It is called Asymptotic Capacity Redutio
Y = Ho Xy + Z1 (1) Factor (ACRF) and is defined as

whereX;, € CM denotes the timé-channel input vector and ACRF — lim CNo-csir(SNR) ©6)

the fading matrixt,, € CN*M represents the timgfading SNR—oo  Cesir(SNR)

matrix andZ;, € CV denotes the additive gaussian noise vec- . . .
tor. HereC' denotes the complex field andi/ and N' repre- Thus the ACRF is the ratio of non-coherent capacity to coher-

sent the number of transmit and receive antennas resrigﬂctiveent capagity at very high values of SNR.

We assume that the zero-mean circularly complex Gaussian

noise is spatiotemporally white with spatial covariancerira 3. NON-COHERENT CAPACITY BOUNDS

I, which represents th®¥ x N identity matrix. The channel

fading proces$ H},} is assumed to be stationary, ergodic andFor our MIMO system in equation (1), the capacity can be
with finite second order moment, i.€2[||Hy||?] < co. We  calculated from the well-known expression

take the fading process to be strictly bandlimited, so it is a 1

non-regular stochastic process with limited Doppler speat C = lim —sup (XY™ (7
support. Moreover we impose the restriction that the suppor TN pxn

is of sizel/D for each channel entry, wher@ is an integer where the maximization is done over all input distributions

(extensions to a rationa? are possible). which satisfy the power constraint. The mutual information

is If we are working with SISO systems, our channel mode%n the above expression can be decomposed as follows
Yk = hpxr + 2k (2) I(le';Ylm') _ I(X;:n7th:n; Ydl:n, Ytl:n)

where everything is now complex scalar but channel fading

and noise have the same temporal properties as in MIMO = (X} Y™ VM) + I(X;™ Y, ™, Y, X ™) (8)

case.
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The subscripts andd denote “training” and “data” respec- (learning size) x loglog(SNR), hence its pre-log is zero.
tively, and superscript : n shows that the length of the For an upper bound ofy, we can just take the full CSIR as-
sequence ranges frointo n. Training and data here can sumption leading to a capacity growth with a pre-log equal
be time multiplexed (in which case also the outputs get timeo the data size. As a result we get for the overall capacity:
multiplexed) or superimposed or a combination of both. OrACRF <1 learning size .

training and data can more generally live in two complemen- - learning size + data size

tary subspaces. The term “training” here may be misleadCombininglower and upper bounds, we get equality for ACRF.
ing. Indeed, also the “training” symbols carry information ~ Finer Analysisof I;: a decomposition leads to

Nevertheless, apart from data transmission they also &ftlew n
channel to be estimated, with channel estimates that serve a I, = Z I(XL Y Yrimxrm, Xt 9)
a basis for the complementary “data” symbols. To diminish i=1

the confusion, we shall instead call these “training” sytabo
“learning” symbols. In suboptimal approaches, these legrn
symbols may get replaced by classical training symbols.

(this decomposition is not necessarily in time, it can also b
along a subspace basis). This sum term indicates that for the
detection of each of the data symbols in SISO or vea&igin
MIMO case, we can use the channel estimate from the learn-
3.1. Capacity Lower Bound ing part and all previously detected input symbols. Further
more the presence of all output symbols asserts the need to
do blind channel estimation to fully exploit the informatio
resent in that term as discussed in [9]. This indicatestthat
r‘get the actual capacity, and in particular the proper comsta
term at high SNR, one needs to perform semi-blind channel
f%stimation within the data subspace, since based on past in-
Oﬁhts and outputs and future outputs. The future output may
give important channel information, especially in the rault

. . f he ful i ple receive antenna case. In any case, whether the channel
Iz in equation (8) from the full CSIR case is at most SOMEstimate is based on the “learning” input and output only or

finite constant. Thus the pre-log 6f is that of the full CSIR -\ nather it is based on full semiblind information does not

case, but there is a reduction factor due to the presence (Q,ﬂange the pre-log factor, but only an additive constartién t

training which leads tg) . . asymptotic capacity. So, to summarize, in the no CSIR case,
raining size : S ) e .
ACRF =1- the input can be split into a “learning” subspace and its or-

training size 4+ data  size u " “ P
where the “size” should be interpreted as the number of dit'°gonal complement, the “data” subspace. The “learning

mensions of the corresponding subspace. To achieve the f@'°SPace is of minimal dimensions just to allow determinis-
CSIR pre-log in data part, the training length should be sufllc Identlflablllty_of the.channel anql hence correspo.ndd;)&)t
ficient to allow deterministic identifiability of the charpe regular” case in Lapidoth’s terminology and carries infor

meaning that if the channel is considered as a deterministl??ation Of_ the order of Iog[log(S_NR)]. The "data” ;ubspace
signal, it should be identifiable with zero error in the atzgen Is the main subspace for transmission of data and its reduced

of noise. Hence we get for the overall capacity: dimension represents the reduced pre-log factor.
learning size

For the lower bound on the capacity, we can consiigi"

as pure training sequence, so informatigrin equation (8)
goes to zero. But this known training sequence allows cha
nel estimation with finite estimation error covariance sat th
the effect of this channel estimation error, when the chlnn
estimate gets used in the data part (and no other informati
gets used for the estimation of the channel), is at worst fini
increase of the effective noise power. Hence the differefice

ACRE 2 1- learning size+ data size 4. SISO CAPACITY PRE-LOG ACHIEVING
SCHEMES
3.2. Capacity Upper Bound In this section, we give two schemes which show us the ca-

] _pacity limitin high SNR regime and even enable us to achieve
For the upper bound on the channel capacity, we cannot igne capacity pre-log.

nore the mutual information associated to learning pgrt.
Now, sinceX; andY; live in corresponding subspaces wherea
Yy lives in an orthognal subspade,= I(X}"; Y}, V,i") =
I(X}m™ v,5™). Now, as long as the the size of the learningAs Doppler spectrum is band-limited to 1/D, so we can down-
part is not more than the smallest possible size that allowsample with the integer downsampling factor D according to
channel identifiability, we are in the “regular”’ case of Lapi Nyquist's theorem. Thus we get a grid as shown in the fig-
doth [5] and the capacit}; grows with SNR at most as ure 1. Over the downsampled instants, we transmit learning

2.1. Sub Sampling Approach



Sub Sarplod e Gt even in the absence of CSIR. If they are pure training, mu-
@ | O tual information over this learning grid is zero, but if thae
data symbols, communication over the learning grid becomes
" IOIOIOI0X JOIOIOI0X IOIOX0) like communication over a non-bandlimited channel so there
is no growth with log(SNR) over this grid. Capacity growth
+—)D)— «+—-D—» with log[log(SNR)] for non-bandlimited case has been shown
in [5] and fading number (the constant term accompanying
log[log(SNR)] has been calculated in [10], [5] and [6].

Fig. 1. Subsampling Grid. At very high SNR, noise at the receiver can be neglected
and input output relation over this learning grid can be eepr
. . sented as
symbols (either low rate or known to the receiver) and rest y = ha (11)

are the data symbols. So there is one learning symbol after

each (D-1) data symbols. Thus over a block of D symbolswhere we have decided to drop the indices. This system can
we have D prediction problems, (D-1) of which are singular,pe divided into ‘norm system’ and ‘direction system’.

i.e. the prediction error will go to zero in the absence o&roi
and D-th prediction error is a white noise at sub-sampleal rat IJ” ‘At High SNR, After Neglecting Additive Noise ‘IogllHI
(1/D).

Y Y
0% = exp o nSh (F)df (10) _|X|—>—®—|Y|—> J— -—|og|><|—>®—loleI>

The above is the classical result for the prediction error
variance of a process in terms of its spectral descriptidrwere/
Swuin(f) represents the power spectral density of the discrete  Fig. 2. Multiplicative channel to Additive channel
time fading process and is equal to the fourier transforrhef t
autocorrelation function of the channel fading processgior If we represeny = |y| exp(j6,) where|y| denotes mag-
nally spectrum is bandlimited but when we downsample withlitude of complex outpuf andd, denotes its direction(phase)
the factor D (the learning grid), the spectrum becomes nor@nd same holds true farandh, then
bandlimited over the learning grid giving non-zero preidict

error. . . . _ normsystem: |y| = |h||z]
Channel estimates on learning grid may be obtained by ¥ =hz = direction system: 0, = 0, + 0,

causal linear prediction and for the data grid they can be ob-
tained by non-causal LMMSE Wiener filtering. Because of The norm system after taking logarithm converts into an
the presence of additive noise, prediction will not be pdrfe additive channel whose capacity is well known.

The error in channel estimation has its worst effect whes it i

white, so in this case it gets added up with the white noise al- log |y| = log |h| + log || (12)
ready present. This reduces the effective SNR at the raceive
and causes a shift in the curve of capacity versus SNR b%h

the slqpe of this curve remains unchanged corresponding ?ero when channel phase is uniformly distributed fremto
capacity pre-log. +7. Even in this case, it helps estimating the channel and

This subsampling approach makes causal estimates Ovﬁ ss this channel information to data grid. On the other hand

the learning grid and for data grid, channel estimate COIes0rm system is responsible for the log[log(SNR)] growth of

s_pondmg to each datg sympol is obtained by_ non-causal €Zhannel capacity over the learning grid. Because log(SKIR) i
tlmaFes over the learning grid and causal estimates over tqﬁe high snr capacity of additive noise channel but in themor
previously detected symbols. system we already have logarithm of the input which causes

the capacity to grow double logarithmically. So at very high
4.1.1. Capacity in Learning Grid SNR, per symbol capacity in learning part is

The mutual information of the direction system is finite
atever is the distribution of channel phase and is sfrictl

About these learning symbols in the grid, we don'’t specify

them to be perfectly known to receiver before transmission. Cy, =loglog (SNR) + x({h}) + o(SNR)  (13)
They may be learning symbols in the true sense that they

are known to the receiver before transmission or they may x({h})istermed fading numberin[5] andSN R) terms
be coming from a low rate stream which allows decodinggoes to zero as SNR goesdo.



4.1.2. Capacity in Data Grid Similarly Y, andz,, represent vectorized output and noise

We k that | . id h it it wih lik samples corresponding to the k-th block. But fading values
€ xnow that fearning grid may have [is capactty gro Kfor this block are represented as the diagonal elementsof th

!og[log(SNR)], but once de'tecte'd, these symbols act as_—tra.l matrix with zero off diagonal values
ing symbols for the data grid. Either way, whether learngg i
pure training or low rate stream, it will give capacity poegl
of zero. But channel estimates formed with the help of learn-
ing grid make possible the coherent detection of symbols at \We could make an arrangement so as to use one dimen-
data grid. Although there will be a penalty over the effec-sion for learning and rest of (D-1) dimensions as data. The

tive SNR, but growth rate will be with log(SNR) over the dataone dimensional subspace used by the learning should save it

hy, = Diaglhxp+1 hrpta - hipap]”

grid. So per symbol capacity over the data grid is projection orthogonal to the projection of (D-1) dimensibn
subspace used by data. If we put power constraint over input
Cp =1log (SNR) + o (14) vectorz, then we need to optimize the power between data

) ) and learning part but we put the constraint separately over
wherea is some constant which doesn’t depend upomyoth soz is also peak power contrained.

SNR.

p=[A, Ag [ & } (17)
4.1.3. Capacity For Sub Sampling Scheme La
Thus in a straightforward manner, over each grid of D Symbor’here‘élt arlgAd arel s_pe;;:lal Eat_rlces_ts uch that their projec-
times, (D-1) form data part and have capacity growth with ions are orthogonal, i.¢ A a] is unitary.
log(SNR) and 1 symbol forms learning grid. So capacity for P4, = Py (18)
this scheme can be characterized to be !

whereP, = A(ATA)# Af, and(.)# denotes Moore-Penrose

Csrso = (1 — l)[log (SNR) + o]+ pseudo-inverse. So the received signal is
D
1 y=hAz, +hAgz, + 2 (19)
—[loglog (SNR) + hP)]+o(SNR 15
D[ glog ( AR ( ) (15) Receiver can recover learning symbols as the subspacasspan
Thus for SISO systems by learning and data are orthogonal. Here again, the learn-
ing sub-space may have true training symbols or they may
PreLog = ACRFS'9 = (1 -1/D) (16)  be coming from a low rate stream. But the situation is same
as it was in the subsampled scheme. Continuously we have
4.2. Learning and Data Subspaces 1/D resource usage as a training or low rate data transmission

which gives us capacity pre-log of zero, but for the rest
1/D resource, channel estimates are available from the learn-

OntogonalData and Traring ing sub-space so communication becomes coherent for this
< o resource and we get capacity increase of log(SNR), and hence
Data Subspace capacity pre-log and ACRF both are equalte 1/D. There
is again reduction in effectiv€ N R because of noisy channel
000000000000 00 estimation causing shift in the capacity curve but leavhregy t
| ] | | D || o] capacity pre-log unharmed.
K‘.'1 & A For this scheme, channel estimation is purely causal. Chan-
P | l | nel estimate at each symbol instant is obtained by prewousl
h - received learning symbols and previously detected data sym
bols. Thus it differs from subsampling approach due to its
Fig. 3. Learning and Data Subspaces causal functionality.

We can vectorize our channel with D elements in each 5 MIMO CAPACITY PRE-LOG ACHIEVING
vector. Corresponding to this vector channel, input veator SCHEMES
may have D dimensioinal subspace.
In this section, we give the MIMO extensions to the schemes
T = [TkD+1 ThD42 - kaJrD]T we proposed for SISO case in the previous section.



5.1. Sub Sampling Approach number (the constant term accompanying log[log(SNR)] has
been calculated in [10], [5] and [6].

At very high SNR, noise at the receiver can be neglected
@ |55 Samped #0f Tx. Antennas = 3 o Deta Grid and input output relation over this learning grid can be eepr
sented as
e e oo D e e Y=HX (20)
0000000000000 eON0 O Like we did for SISO systems, this system can be divided

eccocoo0obecococooodbeooo into ‘norm system’ and ‘direction system’.

Y =Y|lY|l, X = X][|X]L.
000000 0C0O00O0 000 where we represetit as the unit norm vector of vectaér.
normsystem:  ||Y| = [[HX]|||X]|
Y=HX . ) il = el
= { directionsystem: Y = HX/||HX]||
<+M-> <+M-> <+M-> Again multiplicative channel of ‘norm system’ can be con-

verted into an additive noise channel by taking the logarith
of both sides of the above ‘norm system’ equation which gives
Fig. 4. MIMO Subsampling Grid. us

With the same reasoning as in the SISO case, as Doppler log [|Y|| = log ||HX]| 4 log || X]| (21)
spectrum is band-limited to 1/D for each channel entry, we | ke in SISO systems, this ‘norm system’ is responsi-
downsample with the integer downsampling factor D accordpe for double logarithmic growth of capacity. All degrees
ing to Nyquist's theorem. But as it was shown by Hassibigt freedom collapse in this case over learning grid and co-
[11], 'FO properly estimate theMIMO channel matrix, we neEdefficient of log[log(SNR)] is ‘1’ even for MIMO [5]. On the
learning length in symbol periods equal to the number o&ran gher hand, ‘direction system’ has zero capacity if thergisc
mit antennas. In fact in one symbol period, even with peryime channel coefficients are spatially i.i.d. (indeperiden
fectly known input data, only the projection of the channeligentically distributed). Even if they are not i.i.d., caig of

matrix on the input can be estimated, i.e. only one column Ofjirection system is finite and has no scaling with SNR. Hence
the channel matrix. Thus to estimate the whole channel Mé&ser symbols capacity in learning grid is

trix in a group of D transmissions, we need to transmit learn-
ing for M symbol times (corresponding to M columns in chan-

nel matrix). This points to a very important fact for MIMO Cr =loglog (SNR) + x({H}) + o(SNR) (22)
channels that MIMO case stays regular (non-zero prediction
error with infinite past) as long @& x Doppler BW > 1. x({H}) is the fading number for this matrix valued fading

Thus in the very beginning, there is a multiplicative reduc-process [5] an@(SN R?) terms goes to zero as SNR goes to
tion factor of(1 — M/ D) with the capacity as in a group of D ©0.
transmissions, M carry only the learning symbols. But these
transmissions allow us to make channel estimates. Channgl.2. Capacity in Data Grid
estimates on this learning grid may be obtained by causal lin . . . .
ear prediction and for the data grid they can be obtained by€arning grid may carry pure training or low rate stream, it
non-causal LMMSE Wiener filtering. In fact capacity decom-Will givé capacity pre-log of zero. But channel estimates
position done in section 3 shows us that this channel estima2Med with the help of learning grid make possible the coher

tion should be based upon all learning symbols and prewousENt détection of symbols at data grid. Thus full multiplexin
detected data symbols. gain of min(M, N) can be exploited in the data part. Al-

though there will be a penalty over the effective SNR, but
o _ _ growth rate will be withmin (M, N) log (SN R) over the data
5.1.1. Capacityin Learning Grid grid. So per symbol capacity over the data grid is

As explained above, communication over the learning grid o
behaves like communication over a non-bandlimited channel Cp =min(M,N)log (SNR) + o (23)

so there is no growth with log(SNR) over this grid. Capacity = where « is some constant which doesn’t depend upon
growth with log[log(SNR)] has been shown in [5] and fading SNR.



5.1.3. Capacity For MIMO Sub Sampling Scheme theseM x D dimensions available, we ugé x M dimen-

Combinina th linf . btainable in both thete sional subspace for learning which will enable us to have suf
ombining the mutualinformation obtainable in both therea ficiently accurate channel estimation because at recaiver f

ing part and data part, where learning part prevails M symb channel estimates can be obtained and restof (D —
times and data part for (D-M) symbol times over each grou@;) dimensional subspace will carry data

of D symbols, If we represent the channel coefficients for D-symbol block
inone long vector representediag, hence having dimension
M x N x D, it can be represented as MIMO auto-regressive

M .
Cmimo = (1 = ) [min(M, N)log (SNR) + al+ (AR) model of infinite order

M o .
5 lloglog (SNR) + x(H)] + o(SNR)  (24) h =3 Uiy i + e (31)
=1
Thus capacity pre-log for this MIMO system turns out to be

min(M, N)* (1~ M/D)andACRFM!M® = (1 - M/D).  The covariance matri of prediction error; will have its
ACREF clearly shows that Doppler bandwidth gets multipliedrank M x M.

by the number of antennas, causing greater capacity reducti  The )/ x M dimensional subspace used by learning will

as compared to SISO systems. be orthogonal ta\/ x (D — M) dimensional subspace used
by data. In case of no noise, it will allow perfect estima-
5.2. Learning and Data Subspaces tion of channel, but noise presence gives error in estimatio

But transmission over the data subspace behaves like coher-

For this approach, we consider a block of D symbol periodsgnt communication. Thus learning subspace will introduce a
Hence system model is the one represented in equation (3)-dﬁpcity reduction factodCRFMIMO — (1 — M/D) and

we break the input in ‘learning’ and ‘data’ then we will get the capacity pre-log ofiin(M, N) * (1 — M/ D)
X from the data subspace.
X =[4A; AJ { }t ] (25) We have seen in MIMO case thdC RFMIMO — (1 —
EL)

M/ D). Thus we remark that Doppler bandwidth gets multi-

where underlined letters show that we are working over ockPlied with the number of transmitting antennas causing more
of D-symbol period andi; and A, are special matrices such CaPcity reduction.
that their projections are orthogonal, i[el;  Ag4] is unitary.

The received signal can be expressed as 6. OPTIMAL NUMBER OF TX. ANTENNAS
Y=HAX, +HAX;+Z (26)  We have shown in the previous sections of this paper that op-
. timal pre-log for multiple-transmit and multiple-receia@a-
Ar=[In 0T @Iy Aa=[0 Ip-um]" ©Iu (27) MIMO PreLog = min(M,N)* (1 — M/D)  (32)
N—— ——
By B
‘ This pre-log expression indicates that sometimes it might b
Furthermore these can be expressed as sub-optimal to use all of the available transmitting antenn
Because learning length over which we obtain capacity scal-
Ci=B®Iny Cig=Bi®In (28)  ing like log[log(SNR)] is proportional to product of number

. . .. oftrasmit antennas (M) and Doppler’'s bandwidth (1/D).
Then at the receiver side, because of orthogonal projection If Doppler's bandwidth (1/D) is very small i.e. D is suf-

learning and data dimensions can be separated. ficiently larger than M and N, then pre-login(M, N)

—cty = f i (1 — M/D) shows that optimal number of transmit anten-
Yy =Gl =CGHAX +CZ (29) nas should benin(M, N) because it will reducé//D loss
v,=Cly =clma,x,+clz (30) factor tomin(M, N)/D.

But if Doppler's bandwidth is not very small i.e. D is
Input vectorX for D symbol times will have lengti/ x comparable to M and N and assumihfy < N pre-log fac-
D and will spanM x D dimensional subspace as we men-tor is M’ x (1 — M’/D), whereM’ denotes the number of
tioned in ourD-symbol model in equation (3). Now out of active transmitting antennas and’ < M. Now we can find



the optimal number of transmitting antennas to achieve this[4]
capacity pre-log by differentiating the pre-log w.ri/’, the
number of active transmitting antennas.
d ., , oM’

dM'M x(1-M'/D)=1 D (33) 5)
Just equating the above expression to zero and solving/for
gives us the result af/’ = %. So combining with the fact
thatM’ = min(M, N') also holds, we get the following result

D
Optimal Tx. Antennas = M' = min(M, N, E) (34) (6]

Remark 1: Intuitively the optimal input for a stationary
channel should be stationary. Apparently our approach with
learning and data grids seems block-stationary or cyclosta
tionary. But this input can be stationarized by introducing
uniform time offset over D-symbol block. (7]

Remark 2: We took Doppler bandwidth to b/ D. This
can be generalized to the rational caseppf. Vectorizing
the stationary channel over p will lead to a stationary vecto
process with matrix spectrum of rank g for SISO and infinite
order prediction error covariance matrix will also be ofkan

g.

(8]

7. CONCLUDING REMARKS
[9]
We have shown the capcity pre-log for SISO and MIMO chan-
nels. Moreover our presented two schemes help achieve this
pre-log in practical systems.

A striking observation is that the systems with trans-
mit antennas should be varyiig times more slowly as com-
pared to the systems with only one transmit antenna in ordé#0]
to have comparable capacity reduction in case of no CSIR.

We also characterize the optimal number of active trasmit-
ting antennas in terms of Doppler bandwidth of the channel
fading process to achieve optimal pre-log at high values Ofll]
SNR.

8. REFERENCES

[1] A. Lapidoth, “On the asymptotic capacity of stationary
gaussian fading channeldEEE Trans. on Information
Theory, vol. 51, pp. 437-446, February 2005.

[2] T. Marzetta and B. Hochwald, “Capacity of a mobile
multiple-antenna communications link in rayleigh flat
fading,” |EEE Trans. on Information Theory, vol. 45,
pp. 139-157, January 1999.

[3] L. Zheng and D. N. C. Tse, “Communication on the
grassmann manifold: A geometric approach to the non-
coherent multiple-antenna channdEEEE Trans. on In-
formation Theory, vol. 48, pp. 359-383, February 2002.

Y. Liang and V. V. Veeravalli, “Capacity of noncoherent
time-selective rayleigh-fading channels)EEE Trans.

on Information Theory, vol. 50, pp. 3095-3110, Decem-
ber 2004.

A. Lapidoth and S. Moser, “Capacity bounds via duality
with applications to multi-antenna systems on flat fading
channels,”IEEE Trans. on Information Theory, vol. 49,

pp. 2426—-2467, October 2003.

T. Koch and A. Lapidoth, “The fading number and de-
grees of freedom in non-coherent mimo fading chan-
nels: a peace pipeEEE International Symposium on
Information Theory, vol. 52, pp. 437-453, September
2005.

A. Lapidoth and S. Moser, “The fading number of
single-input multiple-output fading channels with mem-
ory,” IEEE Trans. on Information Theory, vol. 52, pp.
437-453, February 2006.

J. Chen and V. V. Veeravalli, “Capacity results for bleck
stationary gaussian fading channels|EEE Interna-
tional Symposium on Information Theory, vol. 50, pp.
3095-3110, July 2006.

M. Abdelkader and D. Slock, “Mutual information with-
out channel knowledge at the receive GPAWC 2003,
4th |EEE Wbrkshop on Signal processing advances in
wireless communications, June 15-18, 2003 - Rome,
Italy.

S. Moser, “The fading number of multiple-input
multiple-output fading channels with memoryfEEE
International Symposium on Information Theory, pp.
521-525, June 2007.

B. Hassibi and B. M. Hochwald, “How much training
is needed in multiple-antenna wireless links?|EEE
Transactions on Information Theory, vol. 49, pp. 2058—
2080, April 2003.



