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ABSTRACT

We analyze the Mutual Information of stationary Frequency-
Flat MIMO Channels, that are hence characterized by a Doppler
spectrum. Absence of Channel State Information at Trans-
mitter or Receiver (no CSIT/CSIR) is assumed. For peak-
power limited SISO frequency-flat channels with stationary
Gaussian fading, it has been shown by Lapidoth [1] that at
high SNR, the capacity is determined by a pre-log factor that
is equal to the bandwidth of frequencies where the channel
Doppler spectrum is zero (the complementary part of the Doppler
bandwidth).

In this paper, we give simple upper and lower bounds for
the capacity of MIMO channels. These bounds are very re-
vealing about the multiplexing gain (pre-log factor) of thesys-
tem. Then we extend Lapidoth’s result to MIMO channels
with the help of these bounds. In a general (block) station-
ary setting, the absence of CSIR decreases the pre-log with a
factor equal to 1 minus the average number of parameters per
symbol period that parameterize the channel. This reduction
term is proportional to the Doppler bandwidth and the num-
ber of transmit antennas. We introduce channel parameteri-
zations that induce a split in the transmitted symbols between
“learning” symbols (that carry loglog(SNR) information) and
“data” symbols (that carry log(SNR) information). The pre-
log factor is the proportion of “data” symbols. This decom-
position shows the optimality of certain training schemes for
practical SNR values. The optimal pre-log requires optimiza-
tion w.r.t. the number of active transmitting antennas, as a
function of Doppler bandwidth.
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1. INTRODUCTION

Information theoretic bounds for different types of channels
have got utmost importance since the explosion of research
in MIMO promised new dimensions for data communication.
Such capacity bounds are very important in the sense that they
give the theoretical limits and motivate researchers to achieve
them in practical systems literally or asymptotically. Thearea
of capacity analysis for non-coherent (no CSIR and no CSIT)
fading channels has received considerable attention in recent
years since the usual assumption of perfect CSIR is not true
in practical systems and channel realizations need to be esti-
mated for correct decoding of data.

Usually block fading models are assumed for obtaining
capacity bounds in the no CSIR (non-coherent) case. In the
standard version of this model [2], the fading remains con-
stant over blocks consisting ofT symbol periods, and changes
independently from block to block. Capacity bounds are ob-
tained by introducing training segments in an ad hoc fash-
ion. For the standard block fading model, the capacity is
shown [2], [3] to grow logarithmically with SNR. Later Liang
and Veeravalli [4] allowed the fading to vary inside the block
with a certain correlation matrix characterized by the rankQ
and showed for SISO channels that the capacity pre-log is
(1−Q/T ).

Non-coherent capacity has also been analyzed with the
channel fading process being symbol-by-symbol stationary.
In this model, fading is not independent but time selective
without any block structure. Surprisingly, this model leads to
very different capacity results: contrary to log(SNR) capacity
growth in block fading channels, here the capacity grows only
double logarithmically with SNR at high SNR [5], [6], [7]
when the fading process is non-bandlimited, i.e. the channel
prediction error is non-zero even if infinite past is known.

For symbol-by-symbol stationary Gaussian fading chan-
nels, if the Doppler spectrum is band-limited (limited sup-
port), then the fading process is called non-regular and the
prediction error given the infinite past is zero. Lapidoth [1]



studied the SISO case for this kind of fading processes show-
ing that capacity grows logarithmically with SNR and capac-
ity pre-log is the Lebesgue measure of the frequencies where
the spectral density of the fading process (Doppler spectrum)
has nulls.

Chen and Veeravalli [8] introduce a block-stationary chan-
nel model that can encompass both the per-symbol stationary
and block fading models. They obtain the SISO capacity pre-
log for both cases. They argue that the log(SNR) regime re-
sults from the rank deficiency of the correlation matrix of the
fading process (though bandlimited fading only leads to rank
deficiency over a block as the block length goes to infinity).

We should emphasize that the fading processes of interest
to us in this paper are stationary and strictly bandlimited,the
ones for which Lapidoth [1] established the capacity pre-log
in SISO case. In section 2, we give the system model. Sec-
tion 3 comes with our simple lower and upper bounds of non-
coherent capacity. In section 4, we give two capacity pre-log
achieving schemes for SISO systems and section 5 is about
MIMO extension of these two schemes. In section 6, there
is characterization of optimal number of active transmitting
antennas in terms of Doppler bandwidth. Section 7 gives the
concluding remarks and references are given in the end.

2. SYSTEM MODEL

We consider a MIMO fading channel whose time-k output
Yk ∈ CN is given by

Yk = HkXk + Zk (1)

whereXk ∈ CM denotes the time-k channel input vector and
the fading matrixHk ∈ CN×M represents the time-k fading
matrix andZk ∈ CN denotes the additive gaussian noise vec-
tor. HereC denotes the complex field and,M andN repre-
sent the number of transmit and receive antennas respectively.
We assume that the zero-mean circularly complex Gaussian
noise is spatiotemporally white with spatial covariance matrix
IN , which represents theN ×N identity matrix. The channel
fading process{Hk} is assumed to be stationary, ergodic and
with finite second order moment, i.e.E[||Hk||

2] < ∞. We
take the fading process to be strictly bandlimited, so it is a
non-regular stochastic process with limited Doppler spectrum
support. Moreover we impose the restriction that the support
is of size1/D for each channel entry, whereD is an integer
(extensions to a rationalD are possible).

If we are working with SISO systems, our channel model
is

yk = hkxk + zk (2)

where everything is now complex scalar but channel fading
and noise have the same temporal properties as in MIMO
case.

Sometimes we will be working over a block ofD symbol
times. In that case the joint description of (1) overD symbol
periods becomes

Y k = HkXk + Zk . (3)

We adopt the convention of representing the variables forD-
symbol block as underlined letters. HereY k and andZk have
lengthsN × D, Xk is of lengthM × D and
Hk = blockdiag(HkD+1, HkD+2, ...HkD+D), where each
HkD+i represents the usualN × M channel matrix.

For the input power constraint, we typically choose to
work under the peak power constraint as normally commu-
nication systems are peak-power limited in practice. Thus
power at all transmitting antennas can never exceedSNR,
the peak power, thus

X†
kXk ≤ SNR . (4)

Throughout this paper,(.)T and(.)† will denote transpose and
Hermitian transpose operators respectively.

The capacity pre-log is normally defined as

PreLog = lim
SNR→∞

C(SNR)

log(SNR)
. (5)

We define a new capacity parameter which may help us bet-
ter understand the asymptotic capacity reduction when CSIR
is not available. It is called Asymptotic Capacity Reduction
Factor (ACRF) and is defined as

ACRF = lim
SNR→∞

CNO−CSIR(SNR)

CCSIR(SNR)
. (6)

Thus the ACRF is the ratio of non-coherent capacity to coher-
ent capacity at very high values of SNR.

3. NON-COHERENT CAPACITY BOUNDS

For our MIMO system in equation (1), the capacity can be
calculated from the well-known expression

C = lim
n→∞

1

n
sup
pXn

I(X1:n; Y 1:n) (7)

where the maximization is done over all input distributions
which satisfy the power constraint. The mutual information
in the above expression can be decomposed as follows

I(X1:n; Y 1:n) = I(X1:n
d , X1:n

t ; Y 1:n
d , Y 1:n

t )

= I(X1:n
t ; Y 1:n

d , Y 1:n
t )

︸ ︷︷ ︸

I1

+ I(X1:n
d ; Y 1:n

d , Y 1:n
t |X1:n

t )
︸ ︷︷ ︸

I2

(8)



The subscriptst andd denote “training” and “data” respec-
tively, and superscript1 : n shows that the length of the
sequence ranges from1 to n. Training and data here can
be time multiplexed (in which case also the outputs get time
multiplexed) or superimposed or a combination of both. Or
training and data can more generally live in two complemen-
tary subspaces. The term “training” here may be mislead-
ing. Indeed, also the “training” symbols carry information.
Nevertheless, apart from data transmission they also allowthe
channel to be estimated, with channel estimates that serve as
a basis for the complementary “data” symbols. To diminish
the confusion, we shall instead call these “training” symbols
“learning” symbols. In suboptimal approaches, these learning
symbols may get replaced by classical training symbols.

3.1. Capacity Lower Bound

For the lower bound on the capacity, we can considerX1:n
t

as pure training sequence, so informationI1 in equation (8)
goes to zero. But this known training sequence allows chan-
nel estimation with finite estimation error covariance so that
the effect of this channel estimation error, when the channel
estimate gets used in the data part (and no other information
gets used for the estimation of the channel), is at worst a finite
increase of the effective noise power. Hence the differenceof
I2 in equation (8) from the full CSIR case is at most some
finite constant. Thus the pre-log ofI2 is that of the full CSIR
case, but there is a reduction factor due to the presence of
training which leads to

ACRF = 1 −
training size

training size + data size
where the “size” should be interpreted as the number of di-
mensions of the corresponding subspace. To achieve the full
CSIR pre-log in data part, the training length should be suf-
ficient to allow deterministic identifiability of the channel,
meaning that if the channel is considered as a deterministic
signal, it should be identifiable with zero error in the absence
of noise. Hence we get for the overall capacity:

ACRF ≥ 1 −
learning size

learning size + data size

3.2. Capacity Upper Bound

For the upper bound on the channel capacity, we cannot ig-
nore the mutual information associated to learning partX1:n

t .
Now, sinceXt andYt live in corresponding subspaces whereas
Yd lives in an orthognal subspace,I1 = I(X1:n

t ; Y 1:n
d , Y 1:n

t ) =
I(X1:n

t ; Y 1:n
t ). Now, as long as the the size of the learning

part is not more than the smallest possible size that allows
channel identifiability, we are in the “regular” case of Lapi-
doth [5] and the capacityI1 grows with SNR at most as

(learning size) × log log(SNR), hence its pre-log is zero.
For an upper bound onI2, we can just take the full CSIR as-
sumption leading to a capacity growth with a pre-log equal
to the data size. As a result we get for the overall capacity:

ACRF ≤ 1 −
learning size

learning size + data size
.

Combining lower and upper bounds, we get equality for ACRF.
Finer Analysis of I2: a decomposition leads to

I2 =
n∑

i=1

I(X i
d; Y

1:n
d , Y 1:n

t |X1:n
t , X1:i−1

d ) (9)

(this decomposition is not necessarily in time, it can also be
along a subspace basis). This sum term indicates that for the
detection of each of the data symbols in SISO or vectorXd in
MIMO case, we can use the channel estimate from the learn-
ing part and all previously detected input symbols. Further-
more the presence of all output symbols asserts the need to
do blind channel estimation to fully exploit the information
present in that term as discussed in [9]. This indicates thatto
get the actual capacity, and in particular the proper constant
term at high SNR, one needs to perform semi-blind channel
estimation within the data subspace, since based on past in-
puts and outputs and future outputs. The future output may
give important channel information, especially in the multi-
ple receive antenna case. In any case, whether the channel
estimate is based on the “learning” input and output only or
whether it is based on full semiblind information does not
change the pre-log factor, but only an additive constant in the
asymptotic capacity. So, to summarize, in the no CSIR case,
the input can be split into a “learning” subspace and its or-
thogonal complement, the “data” subspace. The “learning”
subspace is of minimal dimensions just to allow determinis-
tic identifiability of the channel and hence corresponds to the
“regular” case in Lapidoth’s terminology and carries infor-
mation of the order of log[log(SNR)]. The “data” subspace
is the main subspace for transmission of data and its reduced
dimension represents the reduced pre-log factor.

4. SISO CAPACITY PRE-LOG ACHIEVING
SCHEMES

In this section, we give two schemes which show us the ca-
pacity limit in high SNR regime and even enable us to achieve
the capacity pre-log.

4.1. Sub Sampling Approach

As Doppler spectrum is band-limited to 1/D, so we can down-
sample with the integer downsampling factor D according to
Nyquist’s theorem. Thus we get a grid as shown in the fig-
ure 1. Over the downsampled instants, we transmit learning



Fig. 1. Subsampling Grid.

symbols (either low rate or known to the receiver) and rest
are the data symbols. So there is one learning symbol after
each (D-1) data symbols. Thus over a block of D symbols,
we have D prediction problems, (D-1) of which are singular,
i.e. the prediction error will go to zero in the absence of noise
and D-th prediction error is a white noise at sub-sampled rate
(1/D).

σ2 = exp
R

1/2D

−1/2D
lnShh(f)df (10)

The above is the classical result for the prediction error
variance of a process in terms of its spectral description, where
Shh(f) represents the power spectral density of the discrete
time fading process and is equal to the fourier transform of the
autocorrelation function of the channel fading process. Origi-
nally spectrum is bandlimited but when we downsample with
the factor D (the learning grid), the spectrum becomes non-
bandlimited over the learning grid giving non-zero prediction
error.

Channel estimates on learning grid may be obtained by
causal linear prediction and for the data grid they can be ob-
tained by non-causal LMMSE Wiener filtering. Because of
the presence of additive noise, prediction will not be perfect.
The error in channel estimation has its worst effect when it is
white, so in this case it gets added up with the white noise al-
ready present. This reduces the effective SNR at the receiver
and causes a shift in the curve of capacity versus SNR but
the slope of this curve remains unchanged corresponding to
capacity pre-log.

This subsampling approach makes causal estimates over
the learning grid and for data grid, channel estimate corre-
sponding to each data symbol is obtained by non-causal es-
timates over the learning grid and causal estimates over the
previously detected symbols.

4.1.1. Capacity in Learning Grid

About these learning symbols in the grid, we don’t specify
them to be perfectly known to receiver before transmission.
They may be learning symbols in the true sense that they
are known to the receiver before transmission or they may
be coming from a low rate stream which allows decoding

even in the absence of CSIR. If they are pure training, mu-
tual information over this learning grid is zero, but if theyare
data symbols, communication over the learning grid becomes
like communication over a non-bandlimited channel so there
is no growth with log(SNR) over this grid. Capacity growth
with log[log(SNR)] for non-bandlimited case has been shown
in [5] and fading number (the constant term accompanying
log[log(SNR)] has been calculated in [10], [5] and [6].

At very high SNR, noise at the receiver can be neglected
and input output relation over this learning grid can be repre-
sented as

y = hx (11)

where we have decided to drop the indices. This system can
be divided into ‘norm system’ and ‘direction system’.

Fig. 2. Multiplicative channel to Additive channel

If we representy = |y| exp(jθy) where|y| denotes mag-
nitude of complex outputy andθy denotes its direction(phase)
and same holds true forx andh, then

y = hx ⇒

{
norm system: |y| = |h| |x|
direction system: θy = θh + θx

The norm system after taking logarithm converts into an
additive channel whose capacity is well known.

log |y| = log |h| + log |x| (12)

The mutual information of the direction system is finite
whatever is the distribution of channel phase and is strictly
zero when channel phase is uniformly distributed from−π to
+π. Even in this case, it helps estimating the channel and
pass this channel information to data grid. On the other hand
norm system is responsible for the log[log(SNR)] growth of
channel capacity over the learning grid. Because log(SNR) is
the high snr capacity of additive noise channel but in the norm
system we already have logarithm of the input which causes
the capacity to grow double logarithmically. So at very high
SNR, per symbol capacity in learning part is

CL = log log (SNR) + χ({h}) + o(SNR) (13)

χ({h}) is termed fading number in [5] ando(SNR) terms
goes to zero as SNR goes to∞.



4.1.2. Capacity in Data Grid

We know that learning grid may have its capacity growth like
log[log(SNR)], but once detected, these symbols act as train-
ing symbols for the data grid. Either way, whether learning is
pure training or low rate stream, it will give capacity pre-log
of zero. But channel estimates formed with the help of learn-
ing grid make possible the coherent detection of symbols at
data grid. Although there will be a penalty over the effec-
tive SNR, but growth rate will be with log(SNR) over the data
grid. So per symbol capacity over the data grid is

CD = log (SNR) + α (14)

whereα is some constant which doesn’t depend upon
SNR.

4.1.3. Capacity For Sub Sampling Scheme

Thus in a straightforward manner, over each grid of D symbol
times, (D-1) form data part and have capacity growth with
log(SNR) and 1 symbol forms learning grid. So capacity for
this scheme can be characterized to be

CSISO = (1 −
1

D
)[log (SNR) + α]+

1

D
[log log (SNR) + χ({h})] + o(SNR) (15)

Thus for SISO systems

PreLog = ACRFSISO = (1 − 1/D) (16)

4.2. Learning and Data Subspaces

Fig. 3. Learning and Data Subspaces

We can vectorize our channel with D elements in each
vector. Corresponding to this vector channel, input vectorX
may have D dimensioinal subspace.

xk = [xkD+1 xkD+2 ... xkD+D ]T

Similarly y
k

andzk represent vectorized output and noise
samples corresponding to the k-th block. But fading values
for this block are represented as the diagonal elements of the
matrix with zero off diagonal values

hk = Diag[hkD+1 hkD+2 ... hkD+D]T

We could make an arrangement so as to use one dimen-
sion for learning and rest of (D-1) dimensions as data. The
one dimensional subspace used by the learning should have its
projection orthogonal to the projection of (D-1) dimensional
subspace used by data. If we put power constraint over input
vectorx, then we need to optimize the power between data
and learning part but we put the constraint separately over
both sox is also peak power contrained.

x = [At Ad]

[
xt

xd

]

(17)

whereAt andAd are special matrices such that their projec-
tions are orthogonal, i.e.[At Ad] is unitary.

PAt = P⊥
Ad

(18)

wherePA = A(A†A)#A†, and(.)# denotes Moore-Penrose
pseudo-inverse. So the received signal is

y = hAtxt + hAdxd + z (19)

Receiver can recover learning symbols as the subspaces spanned
by learning and data are orthogonal. Here again, the learn-
ing sub-space may have true training symbols or they may
be coming from a low rate stream. But the situation is same
as it was in the subsampled scheme. Continuously we have
1/D resource usage as a training or low rate data transmission
which gives us capacity pre-log of zero, but for the rest1 −
1/D resource, channel estimates are available from the learn-
ing sub-space so communication becomes coherent for this
resource and we get capacity increase of log(SNR), and hence
capacity pre-log and ACRF both are equal to1− 1/D. There
is again reduction in effectiveSNR because of noisy channel
estimation causing shift in the capacity curve but leaving the
capacity pre-log unharmed.

For this scheme, channel estimation is purely causal. Chan-
nel estimate at each symbol instant is obtained by previously
received learning symbols and previously detected data sym-
bols. Thus it differs from subsampling approach due to its
causal functionality.

5. MIMO CAPACITY PRE-LOG ACHIEVING
SCHEMES

In this section, we give the MIMO extensions to the schemes
we proposed for SISO case in the previous section.



5.1. Sub Sampling Approach

Fig. 4. MIMO Subsampling Grid.

With the same reasoning as in the SISO case, as Doppler
spectrum is band-limited to 1/D for each channel entry, we
downsample with the integer downsampling factor D accord-
ing to Nyquist’s theorem. But as it was shown by Hassibi
[11], to properly estimate the MIMO channel matrix, we need
learning length in symbol periods equal to the number of trans-
mit antennas. In fact in one symbol period, even with per-
fectly known input data, only the projection of the channel
matrix on the input can be estimated, i.e. only one column of
the channel matrix. Thus to estimate the whole channel ma-
trix in a group of D transmissions, we need to transmit learn-
ing for M symbol times (corresponding to M columns in chan-
nel matrix). This points to a very important fact for MIMO
channels that MIMO case stays regular (non-zero prediction
error with infinite past) as long asM × DopplerBW ≥ 1.

Thus in the very beginning, there is a multiplicative reduc-
tion factor of(1−M/D) with the capacity as in a group of D
transmissions, M carry only the learning symbols. But these
transmissions allow us to make channel estimates. Channel
estimates on this learning grid may be obtained by causal lin-
ear prediction and for the data grid they can be obtained by
non-causal LMMSE Wiener filtering. In fact capacity decom-
position done in section 3 shows us that this channel estima-
tion should be based upon all learning symbols and previously
detected data symbols.

5.1.1. Capacity in Learning Grid

As explained above, communication over the learning grid
behaves like communication over a non-bandlimited channel
so there is no growth with log(SNR) over this grid. Capacity
growth with log[log(SNR)] has been shown in [5] and fading

number (the constant term accompanying log[log(SNR)] has
been calculated in [10], [5] and [6].

At very high SNR, noise at the receiver can be neglected
and input output relation over this learning grid can be repre-
sented as

Y = HX (20)

Like we did for SISO systems, this system can be divided
into ‘norm system’ and ‘direction system’.

Y = Y ||Y || , X = X||X ||.
where we representF as the unit norm vector of vectorF .

Y = HX ⇒

{
norm system: ||Y || = ||HX || ||X ||
direction system: Y = HX/||HX||

Again multiplicative channel of ‘norm system’ can be con-
verted into an additive noise channel by taking the logarithm
of both sides of the above ‘norm system’ equation which gives
us

log ||Y || = log ||HX|| + log ||X || (21)

Like in SISO systems, this ‘norm system’ is responsi-
ble for double logarithmic growth of capacity. All degrees
of freedom collapse in this case over learning grid and co-
efficient of log[log(SNR)] is ‘1’ even for MIMO [5]. On the
other hand, ‘direction system’ has zero capacity if the discrete
time channel coefficients are spatially i.i.d. (independent and
identically distributed). Even if they are not i.i.d., capacity of
direction system is finite and has no scaling with SNR. Hence
per symbols capacity in learning grid is

CL = log log (SNR) + χ({H}) + o(SNR) (22)

χ({H}) is the fading number for this matrix valued fading
process [5] ando(SNR) terms goes to zero as SNR goes to
∞.

5.1.2. Capacity in Data Grid

Learning grid may carry pure training or low rate stream, it
will give capacity pre-log of zero. But channel estimates
formed with the help of learning grid make possible the coher-
ent detection of symbols at data grid. Thus full multiplexing
gain of min(M, N) can be exploited in the data part. Al-
though there will be a penalty over the effective SNR, but
growth rate will be withmin(M, N) log (SNR) over the data
grid. So per symbol capacity over the data grid is

CD = min(M, N) log (SNR) + α (23)

where α is some constant which doesn’t depend upon
SNR.



5.1.3. Capacity For MIMO Sub Sampling Scheme

Combining the mutual information obtainable in both the learn-
ing part and data part, where learning part prevails M symbol
times and data part for (D-M) symbol times over each group
of D symbols,

CMIMO = (1 −
M

D
)[min(M, N) log (SNR) + α]+

M

D
[log log (SNR) + χ(H)] + o(SNR) (24)

Thus capacity pre-log for this MIMO system turns out to be
min(M, N)∗ (1−M/D) andACRFMIMO = (1−M/D).
ACRF clearly shows that Doppler bandwidth gets multiplied
by the number of antennas, causing greater capacity reduction
as compared to SISO systems.

5.2. Learning and Data Subspaces

For this approach, we consider a block of D symbol periods.
Hence system model is the one represented in equation (3). If
we break the input in ‘learning’ and ‘data’ then

X = [At Ad]

[
Xt

Xd

]

(25)

where underlined letters show that we are working over blocks
of D-symbol period andAt andAd are special matrices such
that their projections are orthogonal, i.e.[At Ad] is unitary.
The received signal can be expressed as

Y = HAtXt + HAdXd + Z (26)

The matricesAt andAd can further be expressed as

At = [IM 0]T
︸ ︷︷ ︸

Bt

⊗IM Ad = [0 ID−M ]T
︸ ︷︷ ︸

Bd

⊗IM (27)

Furthermore these can be expressed as

Ct = Bt ⊗ IN Cd = Bd ⊗ IN (28)

Then at the receiver side, because of orthogonal projections
learning and data dimensions can be separated.

Y t = C†
t Y = C†

t HAtXt + C†
t Z (29)

Y d = C†
dY = C†

dHAdXd + C†
dZ (30)

Input vectorX for D symbol times will have lengthM ×
D and will spanM × D dimensional subspace as we men-
tioned in ourD-symbol model in equation (3). Now out of

theseM × D dimensions available, we useM × M dimen-
sional subspace for learning which will enable us to have suf-
ficiently accurate channel estimation because at receiver from
Y t channel estimates can be obtained and rest ofM × (D −
M) dimensional subspace will carry data.

If we represent the channel coefficients for D-symbol block
in one long vector represented ashk′ , hence having dimension
M × N × D, it can be represented as MIMO auto-regressive
(AR) model of infinite order

hk′ =

∞∑

i=1

Uihk′−i + h̃k′ (31)

The covariance matrixR of prediction error̃hk′ will have its
rankM × M .

TheM × M dimensional subspace used by learning will
be orthogonal toM × (D − M) dimensional subspace used
by data. In case of no noise, it will allow perfect estima-
tion of channel, but noise presence gives error in estimation.
But transmission over the data subspace behaves like coher-
ent communication. Thus learning subspace will introduce a
capcity reduction factorACRFMIMO = (1 − M/D) and
we will get the capacity pre-log ofmin(M, N) ∗ (1−M/D)
from the data subspace.

We have seen in MIMO case thatACRFMIMO = (1 −
M/D). Thus we remark that Doppler bandwidth gets multi-
plied with the number of transmitting antennas causing more
capcity reduction.

6. OPTIMAL NUMBER OF TX. ANTENNAS

We have shown in the previous sections of this paper that op-
timal pre-log for multiple-transmit and multiple-receivean-
tenna system is given by the expression

MIMO PreLog = min(M, N) ∗ (1 − M/D) (32)

This pre-log expression indicates that sometimes it might be
sub-optimal to use all of the available transmitting antennas.
Because learning length over which we obtain capacity scal-
ing like log[log(SNR)] is proportional to product of number
of trasmit antennas (M) and Doppler’s bandwidth (1/D).

If Doppler’s bandwidth (1/D) is very small i.e. D is suf-
ficiently larger than M and N, then pre-logmin(M, N) ∗
(1 − M/D) shows that optimal number of transmit anten-
nas should bemin(M, N) because it will reduceM/D loss
factor tomin(M, N)/D.

But if Doppler’s bandwidth is not very small i.e. D is
comparable to M and N and assumingM < N pre-log fac-
tor is M ′ ∗ (1 − M ′/D), whereM ′ denotes the number of
active transmitting antennas andM ′ ≤ M . Now we can find



the optimal number of transmitting antennas to achieve this
capacity pre-log by differentiating the pre-log w.r.t.M ′, the
number of active transmitting antennas.

d

dM ′
M ′ ∗ (1 − M ′/D) = 1 −

2M ′

D
(33)

Just equating the above expression to zero and solving forM ′

gives us the result ofM ′ = D
2 . So combining with the fact

thatM ′ = min(M, N) also holds, we get the following result

Optimal Tx. Antennas = M ′ = min(M, N,
D

2
) (34)

Remark 1: Intuitively the optimal input for a stationary
channel should be stationary. Apparently our approach with
learning and data grids seems block-stationary or cyclosta-
tionary. But this input can be stationarized by introducinga
uniform time offset over D-symbol block.

Remark 2: We took Doppler bandwidth to be1/D. This
can be generalized to the rational case ofp/q. Vectorizing
the stationary channel over p will lead to a stationary vector
process with matrix spectrum of rank q for SISO and infinite
order prediction error covariance matrix will also be of rank
q.

7. CONCLUDING REMARKS

We have shown the capcity pre-log for SISO and MIMO chan-
nels. Moreover our presented two schemes help achieve this
pre-log in practical systems.

A striking observation is that the systems withM trans-
mit antennas should be varyingM times more slowly as com-
pared to the systems with only one transmit antenna in order
to have comparable capacity reduction in case of no CSIR.

We also characterize the optimal number of active trasmit-
ting antennas in terms of Doppler bandwidth of the channel
fading process to achieve optimal pre-log at high values of
SNR.
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