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Abstract— Within the extent of recent research activity in the
field of vehicular networking, notwithstanding the quantity of
simulative studies carried out on protocols performance, the
impact of vehicular mobility characterization has been often
overlooked. Realistic mobility models are seldom employed, and
when used, no comment is usually provided on the different
effects that such models have on the results with respect to
simpler mobility descriptions. In this paper, we address this
issue, and analyze the impact that various levels of details in
vehicular mobility modeling have on the simulation of networking
protocols.

I. INTRODUCTION

THE growing interest toward the possible applications
of wireless technologies to the vehicular environment

has recently led the networking research community to a
significant effort aimed at studying the suitability of both
existing and novel ad-hoc protocols to car-to-car and car-to-
road communication. Intrinsic difficulties in the conducting of
large-scale and extensive field trials of logistic, economic and
technological nature, make simulation the mean of choice in
the validation of networking protocols for vehicular networks,
and a common practice in the preliminary stages of real-world
technologies development.

However, quite surprisingly, most of the simulative ap-
proaches to the analysis of inter-vehicle communication tend
to pay small attention to vehicular mobility, thus neglecting the
most characterizing aspect of vehicular networks. As a matter
of fact, networking a vehicular environment is made especially
challenging by peculiar features of nodes mobility, such as the
high speed of cars, the strict constraints on nodes movement
patterns, the periodicity of dense and sparse network areas,
the clustering of users at intersections or in traffic jams. These
phenomena can only be captured with a limited level of realism
in the simulated cars movement, and their impacts on the
network performance cannot be ignored or assumed apriori,
but need to be studied to guarantee the network simulation
outcome to be reliable.
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The objective of this paper is thus to understand what degree
of interest the networking research community could have
toward different mobility models, each of which providing
an increasing level of detail in the vehicular movement de-
scription. To this extent, we recall in Section II some com-
mon mobility models employed in the vehicular networking
literature, and we define their level of realism using typical
traffic flow theory tests in Section III. In Section IV, the effect
of the adoption of different mobility models on inter-vehicle
communications metrics is studied. Finally, we wrap up our
analysis in Section V.

II. VEHICULAR MOBILITY MODELING IN NETWORKING

In this Section we briefly introduce the mobility models that
will be investigated in the remainder of the paper.
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Fig. 1. Vehicular traffic notation.

With reference to the vehicular traffic scenario depicted in
Fig. 1, we define as i the vehicle whose behavior is currently
under investigation. At a given time instant t, such vehicle is
at a position xi(t), and travels with a speed vi(t), meaning
that its instantaneous acceleration can be expressed as dvi(t)

dt
.

Index i+1 identifies the front vehicle with respect to i, which
is located at xi+1(t), and travels at velocity vi+1(t), at time t.
The front bumper to back bumper distance between i and i+1
is identified as ∆xi(t). Also, we denote input parameters for
the vehicular mobility descriptions with the following notation:

• a, b: acceleration, deceleration
• vmin, vmax: minimum, maximum (desired) speed
• ∆t, time step
• ∆xmin, minimum safety distance.

Stochastic models include all those mobility descriptions
which constrain random movements of nodes on a graph.



The graph represents a road topology, and the movement is
random in a sense that vehicles, individually or with group
dynamics, follow casual paths over the graph, usually traveling
at randomly chosen speed. Stochastic models are the simplest
vehicular mobility descriptions used in vehicular networking
research, as they do not consider any vehicular traffic theory
result.

The City Section mobility model [1] constrains the move-
ment of nodes on a grid graph, and limits their speed to fixed
constant values depending on the edge they are traveling on.
The movement patterns are determined by running a shortest
path algorithm to a destination randomly selected among the
vertices of the grid. An extension is provided by the Constant
Speed Motion (CSM) [2] model, which also considers a pause
time Tp at intersections. The Manhattan and Freeway mobility
models [3], [4] add some speed management to the previous
scheme, according to the following set of rules:

vi(t + ∆t) = vi(t) + η a ∆t;
IF vi(t) < vmin THEN vi(t) = vmin ;
IF vi(t) > vmax THEN vi(t) = vmax;
IF ∆xi(t) ≤ ∆xmin THEN vi(t) = vi+1(t) - a/2;

where η is a random variable uniformly distributed in [−1, 1].
These models thus add some bounded randomness in the
velocity update, and from the fourth rule above, impose speed
limitations to avoid overlapping of vehicles.

Traffic stream models look at vehicular mobility from a
macroscopic point of view, treating it as a hydrodynamic phe-
nomenon, and relate the three fundamental variables of veloc-
ity (measurable in km/h), density (measurable in vehicles/km),
and flow (measurable in vehicles/h). These models are rarely
used in network simulation, as they cannot capture a per-
node behavior. However, the Fluid Traffic Model (FTM) [5]
can be seen as an hybrid model, adopting a traffic stream
approach on a microscopic level. As a matter of fact, FTM
describes the speed as a monotonically decreasing function of
the vehicular density, forcing a lower bound on speed when
the traffic congestion reaches a critical state, by means of the
following equation

vi(t + ∆t) = max

[

vmin, vmax

(

1 −
n/l

kjam

)]

(1)

where kjam is the vehicular density for which a traffic jam is
detected, n is the number of cars on the same road and l is
the length of the road segment itself. Since n/l is the current
vehicular density of the road, cars traveling on very crowded
streets are forced to slow down, possibly to the minimum
speed, while when less congested roads are encountered, the
speed of cars is increased towards the maximum speed value.
Notice that a road can be divided into segments, in each of
which the vehicular density is computed independently.

Car-following models describe the behavior of each driver
in relation to the vehicle ahead. As they consider each car as an
independent entity, they fall into the category of microscopic
level descriptions.

In [6], the author employs a car-following model for single-

lane, bi-directional straight road movement, from Krauß [7].
The model takes four input variables (vmax, a, b, as defined
before, and the noise η that introduces stochastic behavior in
the model), and is built up by the following set of equations

vs
i (t + ∆t) = vi+1(t) +

∆xi(t) − vi+1(t)τ

(vi(t) + vi+1(t)) /2b + τ
(2)

vd
i (t + ∆t) = min [vmax, vi(t) + a∆t, vs

i (t + ∆t)] (3)

vi(t + ∆t) = max
[

0, vd
i (t + ∆t) − ε a ∆t η

]

(4)

(2) computes the speed of vehicle i required to maintain a
safety distance from its leading vehicle. The reaction time
of the driver is represented by the time τ . (3) determines
the desired new speed of vehicle i, which is equal to the
current speed plus the increment determined by the uniform
acceleration, upper bounded by the maximum safe speeds.
(4) determines the actual speed of the following vehicle by
adding some randomness using the measure of a maximum
percentage ε of the highest achievable speed increment a∆t (η
is a random variable uniformly distributed in [0, 1]). The same
model is also used within the Simulation of Urban Mobility
(SUMO) project [8], which is developing an open source traffic
simulation package.

In [9], we proposed a vehicular mobility simulator for
VANETs, called VanetMobiSim [10], which employs a car-
following model from Treiber et al. [11] called Intelligent
Driver Model (IDM). This model characterizes drivers be-
havior through the instantaneous acceleration of vehicles,
computed through the following equations

dvi(t)

dt
= a

[

1 −
(

vi(t)

vmax

)4

−
(

δ

∆xi(t)

)2
]

(5)

δ = ∆xmin +

[

vi(t)T +
vi(t) (vi+1(t) − vi(t))

2
√

ab

]

(6)

where T is the safe time headway. In (5), δ is the so called
“desired dynamical distance”, computed as shown in (6). The
result of these formulae is the instantaneous acceleration of the
car, divided into a desired acceleration [1−(vi(t)/vmax)

4
] on a

free road, and a deceleration induced by the preceding vehicle
(δ/∆xi(t))

2.

Also in [9], we introduced two extensions of the IDM
model, called IDM with Intersection Management (IDM-IM)
and IDM with Lane Changes (IDM-LC). Both borrow the car-
to-car interaction description of the IDM model and provide
intersection handling capabilities to vehicles driven by the
IDM. The two models can manage crossroads regulated by
both stop signs and traffic lights. The IDM-LC is also able to
model lane changes according to a game theoretical approach.
We refer the interested reader to the paper for a detailed
description of these models. The same car-following model
is adopted in [12], but without considering lane changes and
intersection management.



TABLE I

MOBILITY MODELS PARAMETERS SETTING

Scenario Model Type Parameters

vmin vmax a b T ∆xmin τ ε kmax Tp

[m/s] [m/s] [m/s2] [m/s2] [s] [m] [s] [car/km] [s]

Freeway stochastic 5 40 1.0 - - - - - - -

Highway FTM traffic stream 5 40 - - - - - - 0.1 -

IDM car-following 20 40 1.0 2.5 1.5 1.0 - - - -

Krauß car-following 20 40 1.0 2.5 - - 1.0 0.6 - -

CSM stochastic 5 15 - - - - - - - [0,30]

Urban FTM traffic stream 1 20 - - - - - - 0.125 -

IDM car-following 10 15 0.6 0.9 0.5 1.0 - - - -

IDM-IM car-following 10 15 0.6 0.9 0.5 1.0 - - - -
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Fig. 2. Evolution of speed and headway time for the first 20 vehicles belonging to a queue of cars meeting a slow vehicle ahead. At time t = 60s, the slow
vehicle starts accelerating.

III. REALISM OF VEHICULAR MOBILITY MODELS

In order to understand the level of realism of the aforemen-
tioned models, we tested their capability to reproduce well
known traffic phenomena. We consider two environments for
our tests. In a highway one, we can verify how the mobility
models react to controlled stimuli and thus their realism in
terms of vehicle-to-vehicle interactions. In an urban scenario,
we can study the behavior of the mobility models in presence
of a complex road infrastructure where cars movements are
constrained by rules in presence of intersections. In both cases,
we analyze at least one representative model for each of
the typologies discussed above, according to the scheme and
parameters depicted in Table I. Due to space limitations, we
cannot provide a in-depth discussion of the models calibration,
and invite the interested reader to refer to the models’ refer-
ences for details. We just stress out that the selected parameters
fit real-world values and that we calibrated them according
to the respective scenarios (e.g., higher speed, acceleration
and safe time headway in the highway case than in the urban
scenario).

Firstly, we tested the reaction of the models to a mild
perturbation. We recorded the behavior of a flow of cars

traveling on a single-lane road and encountering a slow vehicle
ahead. A real-world behavior would force the vehicles to slow
down (each with different dynamics, as the first vehicle brakes
the hardest, while the following experience progressively
smoother decelerations) and form a queue when the obstacle
becomes visible. Then, as the obstacle is removed, cars start
accelerating again, and propagate the speed increase through
the queue. This is what can be observed in Fig. 2, at least for
the IDM and Krauß models (even though on different time
spans, because of the differences in the models’ settings). On
the other hand, when following the Freeway model, vehicles
slow down suddenly in presence of the obstacle, and after
it is removed, do not accelerate back to full speed due to
the model’s lack of desired speed. The FTM model, with the
addition of the rule

IF vi(t) > vi+1(t) THEN vi(t) = vi+1(t);

in order to prevent vehicles from overtaking the obstacle, only
generates a very rough reproduction of the correct behavior.
We can notice from Fig. 2(b) that vehicles abruptly stop one
after the other (vertical lines in the first part of the plot) in
presence of the obstacle. Once the impediment is removed,
all vehicles begin a growing speed evolution, with periodic
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Fig. 3. Speed waves generated by the IDM model in presence of severe
traffic congestions on the highway scenario.
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Fig. 4. Average speed profile of vehicular out-flow (top figure) and in-flow
(bottom figure) in presence of an intersection.

speed increment and decrements, due to the movement of cars
between subsequent road slots where the vehicular density is
computed independently.

Traffic congestion is also known to produce typical slow-
speed waves, which move backwards with respect to the
direction of vehicular motion as time progresses. In Fig. 3,
we were able to recreate this effect using the IDM model,
and got a slightly less accurate result with the Krauß models.
The FTM and Freeway models however failed to generate this
phenomenon.

We finally tested the accuracy of different typologies of
models in presence of an intersection. Since this can be
considered as the basic building block for any city road
topology, the urban scenario models were employed for those
tests (see Table I). Fig. 4 shows the average speed of vehicles
leaving and approaching the intersection obtained with differ-
ent mobility models. The stochastic (CSM) and traffic stream
(FTM) models completely ignore the intersection and produce
constant speed curves in both cases. The IDM correctly
reproduces the behavior of cars leaving the intersection with
a constant acceleration, but it is far from reality in the in-flow
case, as the speed increases as we get nearer to the crossroads.
The reason is that IDM neglects flows on the intersection roads
as well, and vehicles travel as in presence of free road. The
IDM-IM model, here used together with a traffic light model,
is the only description to generate realistic curves, with a

TABLE II

SIMULATION PARAMETERS SETTING

Network Simulator ns-2 2.29
Simulation duration 23 runs of 100s each
Simulation area 1000 x 1000 m2

Number of vehicles 200
Propagation model Shadowing model (α 3.3dB, σε 1.0)
Transmission rate Rate adaptation based on AARF
Transmission range 200m at 1Mbps
MAC Protocol IEEE 802.11 DCF
Routing protocol DYMO (Hellodymo interval 1s)
Data traffic single s/d pair, CBR at 5kbps

progressive deceleration as soon as the intersection has come
into driver’s sight.

These tests clearly showed that car-following models are
able to accurately represent real world vehicular traffic dy-
namics on a straight road scenario, whereas models involving
lower levels of detail fail to describe the same conditions,
mainly because of an insufficient description of the car-to-
car interaction when determining vehicles behavior. We also
proved that car-following models, in turn, fall short from the
goal of realism when flows on different roads have to interact.
This is the case of intersections, where an ad-hoc management
is required in order to obtain faithful reproduction of the
real-world behavior of vehicle mobility. Further proofs of the
realism of the IDM-IM model has been obtained by the fact
that it is has been recently validated against a well known
commercial traffic simulator.

A final aspect, which has to be considered to achieve
a complete realism in modeling vehicular mobility in an
urban environment, involves activity planning, i.e. the way
cars choose their destinations and the routes to reach them.
The standard approach in vehicular networking literature is
to randomly pick destinations and then use a shortest path
algorithm to compute the route to them. In fact, this can lead
to very unpredictable behaviors. As an example, we show in
Fig. 5 the average vehicular density in a city section obtained
with the IDM-IM model. Intersections are regulated by traffic
lights and two different activity planning strategies are used.
In Fig. 5(a), we used the random technique described before,
while in Fig. 5(b), we used an activity matrix to regulate the
transitions between different sets of origin/destination points,
and a route selection algorithm that weights streets speed limits
in the path cost computation. In the former case, the lack of
realistic activity planning brings to a very heavy traffic on one
slow and short road section that belongs to most of the shortest
paths of the road topology. This behavior has a limited chance
to occur in the real world. On the other hand, when an activity
planning is considered, vehicles tend to choose the fast and
possibly longer roads of the topology. Accordingly, most traffic
is found on the main intersections, while the short and minor
roads are not overloaded and no traffic jam is encountered.
It is clear that the second solution models more realistically
vehicles movement in the urban environment under study.
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Fig. 5. Vehicular density in an urban scenario obtained with the IDM-IM model.

IV. EFFECT OF MOBILITY ON NETWORKING METRICS

The obvious question at this point is: given the proved
superior realism of some vehicular mobility models over the
others, does using such realistic models instead of a simpler
ones really affect network simulations ?

In order to answer, we simulated vehicular mobility in a
city section and examined the impact of the different urban
scenario models (plus the Random Waypoint Model (RWM),
included as a benchmark) on the performance of an ad-
hoc routing protocol. The meaningful simulation settings1 are
reported in Table II, whereas the models settings are again
those in Table I.

Our analysis is twofold. First, we perform a spatial analysis
and illustrate the diversity behind the variance on the spatial
domain. Secondly, we move to a temporal analysis in order
to depict diversities in the time domain. Note that we chose
to avoid a mean-value study, where results are averaged over
space and time for each scenario. Although being the standard
procedure in the vehicular networking performance evaluation
literature, this approach does not lead to a sufficiently deep
analysis. It indeed neglects the nature of vehicular mobil-
ity, which never reaches a stationary state, but continuously
evolves over time and space.

We considered two significant metrics for MANETs routing
that are mostly influenced by mobility:

• Packet Delivery Ratio (PDR) – the ratio between the
number of packets delivered to the receiver and the
number of packets sent by the source.

• Hop Count – the number of hops over relay nodes that a
packet undergoes before being correctly delivered to the
destination.

In the spatial analysis, we are want to observe the evolution
of routing metrics as a function of the number of hops2.

In a mean-value analysis, the Hop Count resulted to be on
average the same for all mobility models, a fact which could
misleads us to conclude that mobility models do not affect
network metrics. We can instead see in Fig. 7 that such a

1In the rest of the paper, we will dub a source/destination pair as a s/d pair.
2Although not being a very precise way to evaluate the distance between a

s/d pair, the Hop Count provides an estimate of the length of the path between
them.
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Fig. 7. PDR distribution over Hop Count, with random mobility (top figure)
and activity-based mobility (bottom figure).

conclusion would be wrong. The figure depicts the PDR as a
function of the Hop Count, averaged over 23 simulation runs,
and shows an evident diversity of shapes: the resulting average
value might yet be similar, but the distribution of the PDR
over the Hop Count changes significantly with the different
mobility models. And it is precisely this diversity that reflects
the intrinsic characteristics of the different mobility models in
a way that cannot be shown by a mean-value analysis.

As an example, the FTM model with random trips has a
strong multi-hop behavior, an effect that comes from a more
uniform distribution of cars than in other scenarios. However,
when we look at the activity-based case, this multi-hop behav-
ior is reduced, as strong accumulation points are generated in
urban bottlenecks. Similarly, the IDM-IM scenario has a multi-
hop behavior similar to RWM for the random trip case, but
comes much closer to the FLUID scenario for activity-based
trips. Finally, all scenarios have better multi-hop characteristics
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Fig. 6. PDR versus time, for different configurations

than the RWM, although RWM maintains a more uniform
distribution of nodes. Again, one of the justification behind
this effect is the difference between having a sampled uniform
distribution, and moving in similar patterns.

In the spatial analysis, we managed to depict the intrinsic
characteristic of different mobility scenarios. However, it is
not possible to directly observe the different mobility patterns
followed by nodes, as this also depends of another aspect:
time.

In Fig. 6(a) or Fig. 6(b), we randomly chose a s/d pair
and depicted the evolution over time of the related PDR when
different mobility models are employed. Similar conclusions
can be reached from the analysis on the delay and hop count.
Indeed, the FTM model shows a stable path unlike most of the
other models, a behavior that is maintained also in activity-
based trips. And by comparing those results with Fig. 7, FTM
seems able to maintain more stable multi-hop paths than other
models.

Fig. 6(a) and Fig. 6(b) also depict the drastic effects of
vehicular mobility during time, as models are subject to peaks
of PDR at some time instants, whereas the rest of the time no
path may be established. It is an all-or-nothing situation, where
packets may only be routed with high probability at some
particular time instants at which the patterns are beneficial
to the s/d pair communication. This pattern is usually called
the encounter mobility pattern, a frequent pattern in urban
environments. Indeed, due to the high dynamics of urban
mobility models, a path cannot be kept for long, but nodes are
expected to meet in accumulation points, such as intersections
or on preferred paths, where the network configuration reaches
a good PDR for short time instants. In order to show that this
effect does not depend of the choice of the s/d pair, we provide
in Fig. 6(c) the evolution with time of the PDR for different
s/d pairs. Although there is a large variance of the PDR, the
peak effect can be clearly observed in all the curves.

Concluding, we can state that different mobility models
have a noticeable impact on networking metrics, and since
some models proved to be more realistic than others during
the extensive tests conducted in Section III, they should be
used to produce reliable results.

V. CONCLUSIONS

In this paper, we discussed different vehicular mobility mod-
els in terms of their analytical description and verified their
realism, in both highway and urban scenarios, by testing their
capability to reproduce well known phenomena of vehicular
traffic. We then verified the impact that mobility models have
on the performance of a network routing protocol, showing
that diverse descriptions produce different results in the spatial
domain (as a function of the hop count) and in the temporal
domain (as a function of time). Based on this study, it is
our advice that only realistic models, such as car-following
models with intersection management capabilities, be used for
simulation studies of vehicular networks.
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