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Abstract— In this work, we study fundamental limitation to the  In [4], a simplified Ziv-Zakai bound for the time-delay es-
performance of time-delay estimation schemes of IR-UWB signals. timation problem, without taking into account the impact of

We are specially interested in deriving lower bound on the mean the radio channel on the received signal, was introduced as
square error (MSE). As UWB systems are expected to operate - . ’
extension of the work in [5].

at low signal-to-noise ratio (SNR) (80211.15.4 low-power low rate - ; . . .
standard), the improved Ziv-Zakai lower bound (1ZZLB) [1] is  The paper is organized as follows, in section Il we introdiinee
then more suited to characterize the lower bound on the MSE, system model, in section Il we derive the 1ZZLB for the case

lthan tT)e Cfgmefﬁé’:\g |<1Wef bound I('(IET'Il_wB)'dwe ?Xpressbthef& the of single and multiple frame observation. Numerical resatte
ower bound on of maximum likelihood estimator based on : : i ; ;

L ; . iven in tion IV an ncluding remarks in tion V.
perfect knowledge of the 2nd order statistics of the received sl give sectio and concluding remarks in sectio

by mean of the 1ZZLB.
y II. SYSTEM MODEL

Let s(t) = \/%’p(t) be the transmitted IR-UWB single-
|. INTRODUCTION pulse one-shot signal, witf,, been the pulse energy(t) is
] ] ] ) ] the transmitted pulse of duratidh), with fOTp p(t)%dt = 1, and
An ultra-wideband (UWB) signaling scheme is defined ag, _ 1,7 the signal bandwidth. Propagation studies for IR-
any wireless technology that occupies a bandwidth of mMQigyg signals have shown that they undergo dense multipath
than 500 MHZ_and/or has_frac’_uonal_bandmdth greater thapnvironment producing large number of resolvable paths [2]
20%. The fractional bandwidth is defined as A typical model for the impulse response of a multipath ctednn
ffrac = 2(fH - fL)/(fH + fL)! where fH and fL are is given by
respectively the upper and lower frequency-ditddB.
UWB technology employs pulses of very short durationsi(s) L
with very low spectral densities. It is resistant to channel h(t) = Zhia(t_”) @)
multipath and has very good time-domain resolution all@wvin =1
for location and tracking applications, and is relativetyyt Wherer; is thei — ¢h path delay %ndbi is random variable
complexity and low-cost. Due to low power density, duty eycimodeling signal attenuation at, >-,”, E[|h[*] = 1.
transmission, and dense UWB multipath channel [2], very fidde received signal during an observation period of dumatio

synchronization is required for reliable transmission. Ty can then be written as
In this paper, we address the performance limitation of time (1) = y(t — 00) + n(t)t € [0o, 00 + Ty, @
delay estimation schemes of UWB signals. Its well known that n(t)t € [0, 0o] U (0o + Tu, TY]

the CRLB applies only to unbiased estimates and yields tight ] . .

bounds only for large signal-to-noise ratios (SNR). As Uwi/herefy is the time delay parameter to be estimatéglthe
systems are expected to operate at low SNR, CRLB repres&ﬂ@”na delay spread,(t) is complex Gaussian noise process
a very optimistic (from engineering point of view) perfomez With zero mean and power spectral density, and

limit. This motivates our choice to use the IZZLB[1] rathbah 5 L
the CRLB to address the time-delay estimation performaoce f y(t) = s(t)xh(t) = T—p Z hip(t — ;) 3)
UWSB signals. P =1

The first application of the I1ZZLB in time-delay estimationsince each random variable modeling the signal attenuation
for UWB signals has been introduced in [3] for the case @f 3 combination of many significant random variables, we
independent channel paths. In this work, we extend thisysty$odely as non-stationary circular complex Gaussian process.
to the case of correlated channel paths. The autocorrelation function af is given as
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I11. L OWERBOUND ON MEAN SQUARE ESTIMATION hypotheses. The two hypotheses becomes then

ERROR _ [y Hn@) telo, Ty
r(t) Hy (10)
o n(t) te [Ty o+Ti
A. The Improved Ziv-Zakai Lower Bound
rt) { y(t—x)+nt) telz, v+Ty H, (11)
The Ziv-Zakai formulation of the lower bound is based on the n(t) telo, z]

probability of deciding correctly between two possibleued |, his cases, projecting the signal in term of its covaréanc
() and (9_4— x) of the signal delay99. The derivation of th_ls matrix on each observation intervdd( 7] and [z, « +
bound relies on result from detection theory [6]. An optima} 1y |eads to singularities in the log-likelihood ratio furasti

detection scheme which minimizes the probability of errgfsr this reason, we will use Fourier basis, common to the two
performs a likelihood ratio test between the two hypotrmi;izhypotheses to obtain our sufficient statistics.

delays. On the other hand, a suboptimal procedure will be to

apply, first, some estimation procedure to estimate theydkgla

of the received signal then decide between the two hypathesil) Case of z > Tj: External Bound: The two observation
by comparingd with 6 + z/2 (the arithmetic mean of and intervals are disjoints, the received signal over eachrobtien
9 + z). By comparing the performance the two schemes, offéerval is projected on a corresponding Fourier basis isnie

obtains the improved Ziv-Zakai lower bound (1ZZLB) [1] on N T,
mean square error of the delay estimate r(t) = ZR}w} (t) ; R} = / r(t)i(t)dt  (12)
— 0
N Tf—Td Tf—Td—.’I,‘ P (9 e_i_x) =1
E — 21 > fa\LvTh) 1 2wt

[(6o —60)°] _/0 xdaz/o T, T, df (5) i) = ﬁe T forte [0, Ty (13)
Where P;(0,0 + x) denotes the probability of error of the N o+Ty
likelihood ratio test when deciding betweérand 6 + z. r(t) = Zwaf(t) i R? = / r(t)? (t)dt(14)
In cases wheré; (6, 0+z) is independent ofy, the expression i=1 z
in (5) becomes G2(1) —\/%6‘% fortele, z+Ty  (15)

(6) Where N = 2W, Ty, andj = v/—1.

Let R' = [Ri,...,R\]T, R*=[R},...,R%]" and

R=[R'T RT|".
B. Single-frame observation UnderHl, .R is zero mean circular complex Gausgian process
with covariance matrix; K, whose elements are given by

. Tr=Ta T _Ty— 2
E[(6o — 60)°] Z/ I%Pd(m)dl’
0 ;= 4d

The received signal during the observation interial 7]
(Ty >> Ty) is given by

1plt
r(t) = { y(t —0o) +n(t) € b, O+ T4 ) BIR: R, ‘Hl]Td 7,

n(t) te [0, 90] U [90 + Ty, Tf] —E [Tid/ / T(t)T(u)Twil (t)wi’r (w)dtdu
We assume that the receiver has perfect information about N 0 1 0 T, T, itk
a degenerate kernel of the second order statishig$t, u) = 705i,k+ T Ky(t,u)e — Ta  dtdu(16)
characterized by a finite number of eigenmodes.d.et 0 and ¢ ]{} 0
6> = x denote the two hypothesized delays €]0, T — T). E[R;RY|H)]| = 7°5k 7
When the distance between the two hypothesized delays is E[R'R¥|H\] = 0 (18)

greater than the duration of the signal, the two hypotheses
can be rewritten to obtain a symmetric-hypothesis detecti®imilarly, underH,, R is zero mean circular complex Gaussian
problem. process with covariance matrix/, whose elements are given

by
_ Ju®)+n) tel0, Ty
r@® = { n(t) te [z, z+ Ty i (8)
y(t — ) +n(t) t€r, z+Ty ‘ 2 ot

r(t) = Hy, (9 E[R?R*'|H,)

o = {0 e > © S o
For = < Ty, the two hypothesis are no more symmetric.  — © [TT]/I /I r(t —a)r(u —2)'; ()¢ (u)didu
The observation interval could be reduced to cover only the No 1 [Ta T _j2mGit—ku)
region where the signal is present under at least one of the tw =~ = 75i,k + ) ), Ky(t,u)e Ta  dtdu (19)

E[R;R,|Hz] = %&,k (20)

lWe assume that the detection error probability is indepenalieéy which L
is the case fofl’y >> Ty E[RIR}'|H:) =0 (21)



The log-likelihood ratio function is defined as

_ P(RIH1)\ _
L(z) = IH{P(R|H2)} =R'Q,R (22
Where Q, = 1K;'— oK;! (23)

The two hypothe5|s are then compared according to the dBCISI
rule: L(z) 2 £ 0. As the two hypotheses are symmetric, th&u(z) =

resulting blnary detection error probability is
Py(z) = P(Z > 0|H; is correcy
WhereZ = R'Q,R.

(24)

The two hypothesis are then compared according to the dacisi
rule

H»>
L(z) 20
Hy

The resulting probability of detection error is

(32)

1 . .
2[P(Z > 0|H; is correc}+P(Z < 0|Hs is correc}]
(33)

WhereZ = R'Q.R

Multiframe observation

Z is an indefinite quadratic form on complex Gaussian random

variables. In appendix A, we give a general technique
decomposeZ and derive its distribution.
2) Caseof z < Ty: Internal Bound: The observation interval

toln this case, the transmitted signal is repeated aV¥er
frames. In order to compare fairly with the single frame
scheme, the transmitted signal energy over each frame is

is reduced to cover only the region where the signal is pteselivided over Ny. The receiver signal during the observation

under at least one of the two hypotheses; So the receivedlsignterval [0,
during the interval0, = + Ty] is projected on a Fourier basis,

N¢Ty] is then

common to the two hypotheses, as follows r(t) = Ym(t —b0) +n(t) , t € [mTy, mTy+ Ty
n(t) , elsewhere
N
(34)
Rii(t 25
; hi(t) (25) Where
x+Ty
R; = / r(t);(t)dt (26)
e ym(t) = NfT Zhlp m=0...N;—1 (35)
Yi(t) = J==e "« are elements of the Fourier basis

defined in the interval0, = + Ty], N = 2Wy(x + Ty).

1) Internal Bound: The received signal during the observa-

R; are circular complex Gaussian variables with zero medign interval

Under H; their covariance matrix is given as

K. (i,k) = E[R;R}|H\]
z+Ty z+Td
- [HTd/ (L (w)didu
No Td Ta _i2n(it—ku)
—0; _ K, (t, =+Ta  dtd
5 ’k+x+T,j/0 y(t,u)e a i

27)

Similarly, under hypothesi¢is, R; have a covariance matrix
given as

. N,
2K (i, k) = BIR R} o] = 285 +
x+Tg x+Tq _ j2w(it—ku)
1‘+Td/ / Kyt —z,u—x)e =¥ dtdu
_ J2mx(i—k)

_ Nogpe T /Td TdK (t, -2 Gtd
T g Tk x+ Ty we "

_ j2ma(i—k)
= e =tTa K,(i,k) (28)

resultant log-likelihood ratio function is then

P(RIH1)\ _
L(x) In {P(RHQ)} = R'Q.R— D, (29)
Where Q, = K;'— oK ! (30)
D, = [Indet(1K,)—Indet( 2K,)] =0 (31)

U,an:_ol[me, mNy +x +Ty4] is now projected oV, Fourier
basis as follows

Nf—l N
r(t) = Y D RMP() (36)
m=0 i=1
me+;E+Td
rro= P00 (D)t 37)
mNy
1 _ j2mit
() = ————e 7T € [mTs, mTr+x+T,
Pi(t) NeEv [mTy, mTy d)
(38)
Following the same processing as in sec.(lll-B.2, Internal

Bound), the detection error probability is

Py(z) = %[P(Zf > 0|H; is correc}+P(Z; < 0|Hs is correcj]
(39)
Where now
Ny
Zy =Y R'TQ.R" (40)
m=0
R™ = (RP,...,R)T and Q, is defined as in sec.(lll-B,

Internal Bound).

2) External Bound: The received signal during the observa-
tion intervalsimNy, mN;+Ty] and[mNy+x, mNy+x+Tq,
m = 0...Ny, is now projected on the correspondigv,
Fourier basis. The same processing as in sec.(lll-B.1,rexte
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Bound) can be done to obtain the resulting detection ernerorder to study the impact of the observation interval taran
probability. estimation performance, we plot in Fig. IV the RMSE achieved
for signal of delay spread; = 20ns Vs. varying observation
IV. NUMERICAL RESULTS interval lengthT;, and different SNRs. To fairly compare, the
For numerical purpose, we take a equi-spaced multipdfAnsmitted power is adequately adapted for each valdg @i

T

channel with power delay profild[|;|?] = exp” “Ta, with order to obtain unique averag&V R. We observe then that the
o defined as the power decay factor (PDF). In Fig. IV, we pIGtMSE decreases with increasifty, which means that the ML

the obtained 1ZZLB on the root mean square error (RMS@’Stlmator pgrforms _better with increasing signal powemnete

for different delay spread duration vs. Average transmitted '€ Séarch interval is larger.

SNR. The pulse is of duratidfi, = 1ns, the observation period

is of lengthT; = 100ns, and the PDF iQ. The average SNR V. CONCLUSION
is defined asSNR = ff‘“ﬁ‘; We observe then three different In this paper, we give fundamental limitation to the perfor-
operating regions: mance of time-delay estimation of UWB signals by the mean

1) The full ambiguity region corresponding to a very smafif the improved Ziv-zakai lower bound. The bound is more
SNR, in this region the receiver see the signal as noitight than the Cramer-rao lower bound in the operating low
and the error in this case is uniformly distributed oveBNR region of UWB systems, is simple to derive, and was
the a priori intervall0, Ty — Tg). applied in the case of maximum likelihood estimator having

2) The Cramer-Rao region corresponds to a high SNR, perfect knowledge of the 2nd. order statistics of the pragiag
this case the receiver success to match well the sigehinnel. The obtained results show that 1ns accuracy range i
with very small uncertainty. We observe also that forchievable even at low average SNR in one shot attempt. This
increasing delay spredf);, and for the same pulse energyperformance can be dramatically improved with multiframe
the increase in error variance is small even if the energgpetition.
is more spread.
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From [9], we have
APPENDIX
A. Derivation of the detection error probability B2 05 o Fy (1,047&1 +1, %)

We begin by making a Karhunen-Loeve decompositioiRof P21 =2<0) = a1B(ay, az)(B)>
in the basis of its covariance matrif, = UAUT, where A (A-8)
is a diagonal matrix with eigenvalues &f, as diagonal ele-

. ) : , with =a1+as, =01+
ments, andJ is a unitary matrix formed by the corresponding a=aitaz, B=bH+p
eigenvectorsR can be written then as Where I is the Gauss hypergeometric function.
R = UA*R where R=A:U'R | Ky=1I
(A-1)
So we get
Z=R'O,R with Q,=A2UTQ,UA2 (A-2)

As 1Ky, , and 2Ky, , are Hermitian,Q,, is also Hermitian
and can be decomposed also d3/Vt where V is an or-
thonormal matrix of eigenvectors @, and M is a diagonal
matrix of corresponding eigenvalugé. We can thus write

z = (VIRMVIR) =} w|Rif? (A-3)
Where R=VIR=VIASUR, Kp=VKivi=1

As R; are circular complex Gaussian random variables
CN(0,1), the random variable§’; defined asU; = 2|Ri|2
are independent chi-square random variables with two degre
of freedomy(2). We have thus expressefl as weighted sum
of N independent Chi-square random variables.

The eigenvalueq .’} are not necessary equals nor distinct,
so the closed form expression of the distribution/bfis not
tractable. However, a linear combination of chi-squaréatdes
can be well approximated by a Gamma distributed variable [7]
[8] that have the same first and second moments.

We split the set of eigenvalues a§ = {u¢ , u’ > 0} and

b = {|ui|, pui < 0}. Z can then be given as

Z = Zy—Z Where lez%m Z2:Z%i
(A-4)



