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Abstract— In this work, we study fundamental limitation to the
performance of time-delay estimation schemes of IR-UWB signals.
We are specially interested in deriving lower bound on the mean
square error (MSE). As UWB systems are expected to operate
at low signal-to-noise ratio (SNR) (80211.15.4 low-power low rate
standard), the improved Ziv-Zakai lower bound (IZZLB) [1] is
then more suited to characterize the lower bound on the MSE,
than the Cramer-Rao lower bound (CRLB). We express then the
lower bound on MSE of maximum likelihood estimator based on
perfect knowledge of the 2nd order statistics of the received signal
by mean of the IZZLB.

I. I NTRODUCTION

An ultra-wideband (UWB) signaling scheme is defined as
any wireless technology that occupies a bandwidth of more
than 500 MHZ and/or has fractional bandwidth greater than
20%. The fractional bandwidth is defined as
ffrac = 2(fH − fL)/(fH + fL), where fH and fL are
respectively the upper and lower frequency at−10dB.
UWB technology employs pulses of very short durations (≤ ns)
with very low spectral densities. It is resistant to channel
multipath and has very good time-domain resolution allowing
for location and tracking applications, and is relatively low-
complexity and low-cost. Due to low power density, duty cycle
transmission, and dense UWB multipath channel [2], very fine
synchronization is required for reliable transmission.
In this paper, we address the performance limitation of time-
delay estimation schemes of UWB signals. Its well known that
the CRLB applies only to unbiased estimates and yields tight
bounds only for large signal-to-noise ratios (SNR). As UWB
systems are expected to operate at low SNR, CRLB represents
a very optimistic (from engineering point of view) performance
limit. This motivates our choice to use the IZZLB[1] rather than
the CRLB to address the time-delay estimation performance for
UWB signals.
The first application of the IZZLB in time-delay estimation
for UWB signals has been introduced in [3] for the case of
independent channel paths. In this work, we extend this study
to the case of correlated channel paths.
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In [4], a simplified Ziv-Zakai bound for the time-delay es-
timation problem, without taking into account the impact of
the radio channel on the received signal, was introduced as
extension of the work in [5].
The paper is organized as follows, in section II we introducethe
system model, in section II we derive the IZZLB for the case
of single and multiple frame observation. Numerical results are
given in section IV and concluding remarks in section V.

II. SYSTEM MODEL

Let s(t) =
√

Ep

Tp
p(t) be the transmitted IR-UWB single-

pulse one-shot signal, withEp been the pulse energy,p(t) is
the transmitted pulse of durationTp with

∫ Tp

0
p(t)2dt = 1, and

Wb = 1/Tp the signal bandwidth. Propagation studies for IR-
UWB signals have shown that they undergo dense multipath
environment producing large number of resolvable paths [2].
A typical model for the impulse response of a multipath channel
is given by

h(t) =
L

∑

i=1

hiδ(t− τi) (1)

Where τi is the i − th path delay andhi is random variable
modeling signal attenuation atτi,

∑L

i=1
E[|hi|2] = 1.

The received signal during an observation period of duration
Tf can then be written as

r(t) =

{

y(t− θ0) + n(t)t ∈ [θ0, θ0 + Td],
n(t)t ∈ [0, θ0] ∪ [θ0 + Td, Tf ]

(2)

Whereθ0 is the time delay parameter to be estimated,Td the
channel delay spread,n(t) is complex Gaussian noise process
with zero mean and power spectral densityNo, and

y(t) = s(t) ∗ h(t) =

√

Ep

Tp

L
∑

i=1

hip(t− τi) (3)

Since each random variablehi modeling the signal attenuation
is a combination of many significant random variables, we
modely as non-stationary circular complex Gaussian process.
The autocorrelation function ofy is given as

Ky(t, u) =
Ep

Tp

L
∑

i=1

L
∑

j=1

E[hih
†
j ]p(t− τi)p(u− τj) (4)

† denotes complex conjugate.
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III. L OWER BOUND ON MEAN SQUARE ESTIMATION

ERROR

A. The Improved Ziv-Zakai Lower Bound

The Ziv-Zakai formulation of the lower bound is based on the
probability of deciding correctly between two possible values
(θ) and (θ + x) of the signal delayθ0. The derivation of this
bound relies on result from detection theory [6]. An optimal
detection scheme which minimizes the probability of error
performs a likelihood ratio test between the two hypothesized
delays. On the other hand, a suboptimal procedure will be to
apply, first, some estimation procedure to estimate the delay θ̂0
of the received signal then decide between the two hypothesis
by comparingθ̂ with θ + x/2 (the arithmetic mean ofθ and
θ + x). By comparing the performance the two schemes, one
obtains the improved Ziv-Zakai lower bound (IZZLB) [1] on
mean square error of the delay estimate

E[(θ̂0 − θ0)2] ≥
∫ Tf−Td

0

xdx

∫ Tf−Td−x

0

Pd(θ, θ + x)

Tf − Td

dθ (5)

Where Pd(θ, θ + x) denotes the probability of error of the
likelihood ratio test when deciding betweenθ andθ + x.
In cases wherePd(θ, θ+x) is independent ofθ0, the expression
in (5) becomes

E[(θ̂0 − θ0)
2] ≥

∫ Tf−Td

0

x
Tf − Td − x

Tf − Td

Pd(x)dx (6)

B. Single-frame observation

The received signal during the observation interval[0, Tf ]
(Tf >> Td) is given by

r(t) =

{

y(t− θ0) + n(t) t ∈ [θ0, θ0 + Td]
n(t) t ∈ [0, θ0] ∪ [θ0 + Td, Tf ]

(7)

We assume that the receiver has perfect information about
a degenerate kernel of the second order statisticsKy(t, u)
characterized by a finite number of eigenmodes. Letθ1 = 0 and
θ2 = x denote the two hypothesized delays1, x ∈]0, Tf − Td].
When the distance between the two hypothesized delays is
greater than the duration of the signal, the two hypotheses
can be rewritten to obtain a symmetric-hypothesis detection
problem.

r(t) =

{

y(t) + n(t) t ∈ [0, Td]
n(t) t ∈ [x, x+ Td]

∣

∣

∣

∣

H1 (8)

r(t) =

{

y(t− x) + n(t) t ∈ [x, x+ Td]
n(t) t ∈ [0, Td]

∣

∣

∣

∣

H2 (9)

For x ≤ Td, the two hypothesis are no more symmetric.
The observation interval could be reduced to cover only the
region where the signal is present under at least one of the two

1We assume that the detection error probability is independent of θ0 which
is the case forTf >> Td

hypotheses. The two hypotheses becomes then

r(t) =

{

y(t) + n(t) t ∈ [0, Td]
n(t) t ∈ [Td, x+ Td]

∣

∣

∣

∣

H1 (10)

r(t) =

{

y(t− x) + n(t) t ∈ [x, x+ Td]
n(t) t ∈ [0, x]

∣

∣

∣

∣

H2 (11)

In this cases, projecting the signal in term of its covariance
matrix on each observation interval ([0, Td] and [x, x +
Td]) leads to singularities in the log-likelihood ratio function.
For this reason, we will use Fourier basis, common to the two
hypotheses, to obtain our sufficient statistics.

1) Case of x > Td: External Bound: The two observation
intervals are disjoints, the received signal over each observation
interval is projected on a corresponding Fourier basis as follows

r(t) =

N
∑

i=1

R1
iψ

1
i (t) ; R1

i =

∫ Td

0

r(t)ψ1
i (t)dt (12)

ψ1
i (t) =

1√
Td

e
− j2πit

Td for t ∈ [0, Td] (13)

r(t) =
N

∑

i=1

R2
iψ

2
i (t) ; R2

i =

∫ x+Td

x

r(t)ψ2
i (t)dt(14)

ψ2
i (t) =

1√
Td

e
− j2πi(t−x)

Td for t ∈ [x, x+ Td] (15)

WhereN = 2WbTd, andj =
√
−1.

Let R1 = [R1
1, . . . , R

1
N ]T , R2 = [R2

1, . . . , R
2
N ]T and

R =
[

R1T R2T
]T

.
UnderH1, R is zero mean circular complex Gaussian process
with covariance matrix1Kx whose elements are given by

E[R1
iR

1†
k |H1]

= E

�
1

Td

Z Td

0

Z Td

0

r(t)r(u)†ψ1
i (t)ψ1†

k (u)dtdu

�
=
N0

2
δi,k +

1

Td

Z Td

0

Z Td

0

Ky(t, u)e
−

j2π(it−ku)
Td dtdu(16)

E[R2
iR

2†
k |H1] =

N0

2
δi,k (17)

E[R1
iR

2†
k |H1] = 0 (18)

Similarly, underH2, R is zero mean circular complex Gaussian
process with covariance matrix2Kx whose elements are given
by

E[R2
iR

2†
k |H2]

= E

�
1

Td

Z x+Td

x

Z x+Td

x

r(t− x)r(u− x)†ψ2
i (t)ψ2†

k (u)dtdu

�
=
N0

2
δi,k +

1

Td

Z Td

0

Z Td

0

Ky(t, u)e
−

j2π(it−ku)
Td dtdu (19)

E[R1
iR

1†
k |H2] =

N0

2
δi,k (20)

E[R1
iR

2†
k |H2] = 0 (21)
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The log-likelihood ratio function is defined as

L(x) = ln

{

P (R|H1)

P (R|H2)

}

= R†QxR (22)

Where Qx = 1K
−1
x − 2K

−1
x (23)

The two hypothesis are then compared according to the decision

rule: L(x)
H1
>
<
H2

0. As the two hypotheses are symmetric, the

resulting binary detection error probability is

Pd(x) = P (Z > 0|H1 is correct) (24)

WhereZ = R†QxR.
Z is an indefinite quadratic form on complex Gaussian random
variables. In appendix A, we give a general technique to
decomposeZ and derive its distribution.

2) Case of x ≤ Td: Internal Bound: The observation interval
is reduced to cover only the region where the signal is present
under at least one of the two hypotheses; So the received signal
during the interval[0, x+ Td] is projected on a Fourier basis,
common to the two hypotheses, as follows

r(t) =
N

∑

i=0

Riψi(t) (25)

Ri =

∫ x+Td

0

r(t)ψi(t)dt (26)

ψi(t) = 1√
x+Td

e
− j2πit

x+Td are elements of the Fourier basis
defined in the interval[0, x+ Td], N = 2Wb(x+ Td).
Ri are circular complex Gaussian variables with zero mean.
UnderH1 their covariance matrix is given as

1Kx(i, k) = E[RiR
†
k|H1]

= E

�
1

x+ Td

Z x+Td

0

Z x+Td

0

r(t)r(u)†ψi(t)ψ
†
k(u)dtdu

�
=

N0

2
δi,k +

1

x+ Td

Z Td

0

Z Td

0

Ky(t, u)e
−

j2π(it−ku)
x+Td dtdu

(27)

Similarly, under hypothesisH2, Ri have a covariance matrix
given as

2Kx(i, k) = E[RiR
†
k|H2] =

N0

2
δi,k +

1

x+ Td

Z x+Td

x

Z x+Td

x

Ky(t− x, u− x)e
−

j2π(it−ku)
x+Td dtdu

=
N0

2
δi,k +

e
−

j2πx(i−k)
x+Td

x+ Td

Z Td

0

Z Td

0

Ky(t, u)e
−

j2π(it−ku)
x+Td dtdu

= e
−

j2πx(i−k)
x+Td 1Kx(i, k) (28)

The resultant log-likelihood ratio function is then

L(x) = ln

{

P (R|H1)

P (R|H2)

}

= R†QxR−Dx (29)

Where Qx = 1K
−1
x − 2K

−1
x (30)

Dx = [ln det( 1Kx) − ln det( 2Kx)] = 0 (31)

The two hypothesis are then compared according to the decision
rule

L(x)
H2
>
<
H1

0 (32)

The resulting probability of detection error is

Pd(x) =
1

2
[P (Z > 0|H1 is correct)+P (Z < 0|H2 is correct)]

(33)
WhereZ = R†QxR.

C. Multiframe observation

In this case, the transmitted signal is repeated overNf

frames. In order to compare fairly with the single frame
scheme, the transmitted signal energy over each frame is
divided overNf . The receiver signal during the observation
interval [0, NfTf ] is then

r(t) =

{

ym(t− θ0) + n(t) , t ∈ [mTf , mTf + Td]
n(t) , elsewhere

(34)

Where

ym(t) =

√

Ep

NfTp

L
∑

i=1

hip(t− τi), m = 0 . . . Nf − 1 (35)

1) Internal Bound: The received signal during the observa-
tion interval
∪Nf−1

m=0 [mNf , mNf +x+Td] is now projected onNf Fourier
basis as follows

r(t) =

Nf−1
∑

m=0

N
∑

i=1

Rm
i ψ

m
i (t) (36)

Rm
i =

∫ mNf+x+Td

mNf

r(t)ψm
i (t)dt (37)

ψm
i (t) =

1√
x+ Td

e
− j2πit

x+Td , t ∈ [mTf , mTf + x+ Td]

(38)

Following the same processing as in sec.(III-B.2, Internal
Bound), the detection error probability is

Pd(x) =
1

2
[P (Zf > 0|H1 is correct)+P (Zf < 0|H2 is correct)]

(39)
Where now

Zf =

Nf
∑

m=0

R
m†QxR

m (40)

Rm = (Rm
1 , . . . , R

m
N )T and Qx is defined as in sec.(III-B,

Internal Bound).
2) External Bound: The received signal during the observa-

tion intervals[mNf , mNf +Td] and[mNf +x, mNf +x+Td],
m = 0 . . . Nf , is now projected on the corresponding2Nf

Fourier basis. The same processing as in sec.(III-B.1, External
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Fig. 1. IZZLB on RMSE Vs. average SNR, forTd = 25ns, 30ns

Bound) can be done to obtain the resulting detection error
probability.

IV. N UMERICAL RESULTS

For numerical purpose, we take a equi-spaced multipath
channel with power delay profileE[|hi|2] = exp

−α
τi
Td , with

α defined as the power decay factor (PDF). In Fig. IV, we plot
the obtained IZZLB on the root mean square error (RMSE)
for different delay spread durationsTd vs. Average transmitted
SNR. The pulse is of durationTp = 1ns, the observation period
is of lengthTf = 100ns, and the PDF is2. The average SNR
is defined asSNR =

EpTp

Tf N0
. We observe then three different

operating regions:
1) The full ambiguity region corresponding to a very small

SNR, in this region the receiver see the signal as noise
and the error in this case is uniformly distributed over
the a priori interval[0, Tf − Td].

2) The Cramer-Rao region corresponds to a high SNR, in
this case the receiver success to match well the signal
with very small uncertainty. We observe also that for
increasing delay spreadTd, and for the same pulse energy,
the increase in error variance is small even if the energy
is more spread.

3) The threshold region is located just between the two
regions cited above. The estimation error in this case
exceeds the CRLB by a large factor and describes more
precisely the limit of the estimation error. It is then more
realistic bound, especially for UWB systems that are
supposed to operate on this range of SNR.

We observe also that the multiframe scheme outperforms
greatly the single frame one even with a small number of
repetitions.
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Fig. 2. IZZLB on RMSE Vs. Frame length , forTd = 20ns

In order to study the impact of the observation interval length on
estimation performance, we plot in Fig. IV the RMSE achieved
for signal of delay spreadTd = 20ns Vs. varying observation
interval lengthTf , and different SNRs. To fairly compare, the
transmitted power is adequately adapted for each value ofTf in
order to obtain unique averageSNR. We observe then that the
RMSE decreases with increasingTf , which means that the ML
estimator performs better with increasing signal power even if
the search interval is larger.

V. CONCLUSION

In this paper, we give fundamental limitation to the perfor-
mance of time-delay estimation of UWB signals by the mean
of the improved Ziv-zakai lower bound. The bound is more
tight than the Cramer-rao lower bound in the operating low
SNR region of UWB systems, is simple to derive, and was
applied in the case of maximum likelihood estimator having
perfect knowledge of the 2nd. order statistics of the propagation
channel. The obtained results show that 1ns accuracy range is
achievable even at low average SNR in one shot attempt. This
performance can be dramatically improved with multiframe
repetition.
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APPENDIX

A. Derivation of the detection error probability

We begin by making a Karhunen-Loeve decomposition ofR
in the basis of its covariance matrix,K0 = UΛU†, whereΛ
is a diagonal matrix with eigenvalues ofK0 as diagonal ele-
ments, andU is a unitary matrix formed by the corresponding
eigenvectors.R can be written then as

R = UΛ
1
2 Ṙ where Ṙ = Λ− 1

2U†R , KṘ = I

(A-1)

So we get

Z = Ṙ†Q̇xṘ with Q̇x = Λ
1
2U†QxUΛ

1
2 (A-2)

As 1Kθ1,x and 2Kθ1,x are Hermitian,Q̇x is also Hermitian
and can be decomposed also asVMV † where V is an or-
thonormal matrix of eigenvectors oḟQx and M is a diagonal
matrix of corresponding eigenvaluesµi

x. We can thus write

Z = (V †Ṙ)†M(V †Ṙ) =
∑

µi
x|R̈i|2 (A-3)

Where R̈ = V †Ṙ = V †Λ− 1
2U†R , KR̈ = V KṘV

† = I

As Ri are circular complex Gaussian random variables
CN(0, 1), the random variablesUi defined asUi = 2|R̈i|2
are independent chi-square random variables with two degrees
of freedomχ(2). We have thus expressedZ as weighted sum
of N independent Chi-square random variables.
The eigenvalues{µi

x} are not necessary equals nor distinct,
so the closed form expression of the distribution ofZ is not
tractable. However, a linear combination of chi-square variables
can be well approximated by a Gamma distributed variable [7],
[8] that have the same first and second moments.
We split the set of eigenvalues asai

x = {µi
x , µi

x ≥ 0} and
bix = {|µi

x| , µi
x < 0}. Z can then be given as

Z = Z1 − Z2 Where Z1 =
∑ ai

x

2
Ui Z2 =

∑ bix
2
Ui

(A-4)

And the probability of decision error becomes

Pd(x) =
1

2
[PH1

(Z1 − Z2 > 0) + PH2
(Z1 − Z2 < 0)] (A-5)

We approximate thenZ1 and Z2 as a gamma distributed
variablesG1(α1, β1) and G2(α2, β2). By equating the first
moments we obtain

α1 =
(
∑

ai
x)2

∑

(ai
x)2

, β1 =

∑

(ai
x)2

∑

ai
x

(A-6)

α2 =
(
∑

bix)2
∑

(bix)2
, β2 =

∑

(bix)2
∑

bix
(A-7)

From [9], we have

F (Z1 − Z2 ≤ 0) =
βα2

1 βα1
2 2F1

(

1, α, α1 + 1, β2

β

)

α1B(α1, α2)(β)α

(A-8)

with α = α1 + α2 , β = β1 + β2

Where 2F1 is the Gauss hypergeometric function.


