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Abstract— We consider a wireless sensor network deployed in
an area to measure the realization of a finite multi-dimensional,
slowly time-varying physical random field. Each sensor observes
one noisy realization of the field, maps it linearly into a signal
with a signature and sends it across a white Gaussian multiple
access channel, under a constraint on the total energy given to
all the sensors per field realization. The receiver or the ’collector
node’ receives all the signals and tries to construct an estimate
of the field within a certain mean distortion based on the MSE
fidelity criterion. We derive, under the total energy constraint,
a lower-bound on the distortion, an achievable one, and another
lower-bound under a TDMA transmission scheme. In the case of
the non-existence of the observation noise, we find the asymptotic
decreasing behavior of the achievable distortion as a function of
the number of sensors. Moreover, we derive a lower-bound on
the distortion over all possible encoding techniques, assuming a
free collaboration and information exchange between the sensors.
We compare these bounds for a particular example with another
bound on the achievable distortion [1].

I. I NTRODUCTION

Wireless sensor networks are typically used to monitor some
spatial characteristics of a field in the area over which the
network is deployed. Examples of fields include temperature,
electromagnetic radiation, natural or induced vibration,or
auditory levels. In such networks, sensors make measurements
of the field, process them locally, potentially with the helpof
neighboring nodes, and then collectively transmit the mea-
surements over a wireless channel to one or more collector
nodes. The collector nodes process the received measurement
data further in order to extract and analyze the spatial cha-
racteristics of the field. The range of applications of such
networks is becoming very large ; including environmental
and habitat monitoring to military surveillance, securityand
civil protection applications. One of the more critical issues
in these networks is the lifetime of the sensing nodes which
is especially true in the case of applications which require
small autonomous sensor devices, and thus small long-life
energy sources. Energy efficiency, therefore, quickly becomes
a critical factor.

While a sensor network is application-dependent, we restrict
our work to an application where the sensors have to track a
slowly time-varying random field. After sensing and coding
the local data, the sensors have to send their information to
a collector node through a white Gaussian multiple access
channel. For achievable schemes, we assume a linear encoder
in each sensor that maps the sensed value into the amplitude of

a signature waveform which is transmitted across the channel.
As is common in the literature, we consider that the sensing
process is imperfect, so that the sensed values are subject
to additive Gaussian observation noise. The choice of linear
encoder is motivated firstly by its simplicity, and secondly
by its optimality in the point-to-point communication model
where a Gaussian source is sent over an AWGN channel [2],
[3]. The latter is true only in the case where the number of
channel uses per source symbol is one. Moreover, here we
are confronted with a problem of correlated sources, since the
sensed values are generally correlated, over a multiple-access
channel. The source-channel separation theorem does not hold
in this case, and therefore, separate coding strategies are
in general sub-optimal [4]. In addition, joint source-channel
encoders used to code long source sequences as described in
[5] will not be appropriate in the case of a slowly time-varying
random field due to the incurred delay. Recent results in [6]
show the optimality of linear encoders for a simple sensor
network model where a single Gaussian source is observed by
multiple noisy Gaussian sensors, and these observations have
to be transmitted via the standard Gaussian multiple access
channel. This is again for the case where a single source letter
is available per channel use.

Here we consider sensor networks with a constraint on
the total radiated signal energy where we seek to minimize
the distortion between the true field and its reconstructed
estimate at the collector node. A similar model has been
studied by Gastpar and Vetterli in [1], [7], and, under certain
field configurations, the achievable distortion we find here can
be compared to the scheme in [1] and clearly outperforms it.
Other than demonstrating an achievable scheme, we derive a
lower-bound on the distortion over all possible total energy
distributions and all signatures, and another more general
lower-bound which is not limited to linear encoders. This
latter bound assumes that the sensors can communicate
with each other freely in order to exchange information,
a problem which was studied extensively in [8]. Under a
TDMA transmission scheme, a lower-bound on the distortion
is derived, which we find to be independent of the number of
sensors. This result shows the sub-optimality of TDMA in the
ideal case where the sensor observations are not corrupted by
noise, since the other schemes exhibit decreasing distortion
with the number of sensors.



The paper is organized as follows. In section II, we describe
the sensor network model. An achievable distortion and a
lower-bound on any linear encoding scheme is found in section
III. In section IV, we derive the general lower-bound over all
possible encoders. In section V, we calculate the asymptotic
behavior of the distortion under an ideal sensor network model
and derive a lower-bound for a TDMA-based transmission
scheme. Numerical results, comparisons, and discussions are
found in section VI.
Concerning the notations used in this paper, a bold letter (eg :
a) denotes a vector, while bold and underlined letter (eg :a)
denotes a matrix. Theith singular value and theith eigenvalue
of a matrixa are denoted respectively byσi(a) andµi(a). E[.]
denotes the mean value over all random variables inside the
brackets.

II. M ODEL

The sensor network model is depicted in Fig.1. We consider
a fieldF (x) occupying a certain areaA and depending on the
spatial-coordinate vectorx. We assume that the fieldF (x)
can be represented in a finite-dimensional orthonormal basis
of space functionsφi(x) for i = 1, . . . , N ′, by considering
that the energy of the field lying outside the basis is too small
and could be neglected. Then

F (x) =

N ′∑

i=1

√
λiUiφi(x) (1)

where eachλi is a constant representing the energy of the field
in the ith dimension andU = (U1, . . . , UN ′)t is a Gaussian
random vector with mean zero and identity covariance matrix.
In the areaA, M sensors are randomly deployed, having
x1, . . . ,xM as space coordinates. The sensork senses the
valueR(xk), a noisy version of the field at positionxk :

R(xk) = F (xk) + Wk (2)

where Wk for k = 1, . . . ,M are i.i.d Gaussian observation
noise with zero-mean and varianceσ2

W ; this value is mapped
onto the signal

Sk

(
R(xk), t

)
=

N∑

i=1

Skiγi(t) for t ∈ [0, T ]

where the set{γ1(t), γ2(t), . . . , γN (t)} forms an orthonormal
basis for the signal space andSki is the projection of the signal
on γi(t). The vectorSk representing the signal components is
taken equal to

Sk =




Sk1

Sk2

...
SkN


 =

√
Ek

E[R2(xk)]
R(xk)ψk (3)

whereEk is the mean energy attributed to the sensork and
ψk a normalized vector representing a signature. A mean total
energyET being dedicated to all the sensors in order that each

one transmit one signal, the energy constraint could be written
as

M∑

k=1

Ek ≤ ET . (4)

Detection

Estimation

Y(t)
Channel

Z(t)
S1(R(x1),t)

S2(R(x2),t)

Sk(R(xk),t)

SM(R(xM),t)

S1

S2

SM

Sk

W1

WM

Wk

W2

R(x2)

R(xk)

R(xM)

+

+

+

+

Field

F(x)

F(x1)

  F(xk)

  F(x2)

  F(xM)

R(x1)

F(x)

Fig. 1. The scheme of the considered wireless sensor network model

After the processing stage, the sensors send simultaneously
their signals to the collector node through a Gaussian multiple
access channel. The outputY (t) of the channel can be written
like

Y (t) =

M∑

k=1

√
αkSk

(
R(xk), t

)
+ Z(t)

with αk representing an attenuation factor proportional to the
distance between the sensork and the collector node, andZ(t)
the white Gaussian noise with zero mean andσ2

Z as power
spectral density. The baseband expression ofY (t) implies an
adjustement at the sensor transmitters of the phases induced
by the channel.
At the detection, we calculatêF (x), the estimate ofF (x)
for all x ∈ A. Here, we assume thatα1, . . . , αM and
x1, . . . ,xM are perfectly known to the collector node. The
distortion measure is the mean squared error, and the total
mean distortion that we want to minimize is equal to

D =

∫

x∈A
E
[(

F (x) − F̂ (x)
)2]

dx (5)

III. PERFORMANCEL IMITS OF L INEAR CODING

In this section, we’ll focus on the linear mapping scheme
that we have presented in our model, in order to test its per-
formance in terms of minimal achievable distortion. In other
words, with a such linear coding done by the sensors in the
processing stage and under the sum-energy constraint, we aim
to find the total energy distributionE1, . . . , EM over the sen-
sors and the appropriate choice of the signaturesψ1, . . . ,ψM

that will minimize the total mean distortion. We put all these
variables in a matrixA , (

√
E1ψ1, . . . ,

√
EMψM ) and let

A = UAΣAV
t
A be the singular value decomposition ofA.

Then, the total energy constraint could be written as

p∑

i=1

σ2
i (A) ≤ ET (6)



wherep = min(M,N). Consequently, our goal will be to find
the minimal achievable distortion corresponding to a certain
matrix A satisfying (6). Unfortunately, this problem is quite
hard to resolve, therefore, we limit ourselves to a lower-bound
and the resulting distortion of a particular encoding scheme
which yields an upper-bound on any optimal scheme.

A. Achievable Distortion

Developing (5), the distortion could be written as

D =

N ′∑

i=1

λiE
[
(Ui − Ûi)

2
]

(7)

where Û is the estimate ofU. In order to minimize the
distortion, the best estimator to be chosen is the minimum
mean squared error (MMSE) estimator. This latter is equal to

Û = E[UY
t]
(
E[YY

t]
)−1

Y, (8)

Y being the projection ofY (t) on the signal space basis. let

γ =




α1

E[R2(x1)]
0 0

0
.. . 0

0 0 αM

E[R2(xM )]


 , (9)

B =




√
λ1α1

E[R2(x1)]
φ1(x1) . . .

√
λN′α1

E[R2(x1)]
φN ′(x1)

...
...√

λ1αM

E[R2(xM )]φ1(xM ) . . .
√

λN′αM

E[R2(xM )]φN ′(xM )


 ;

therefore, (7) gives us

D =
N ′∑

i=1

λi

[
1 − Γ

t
ih

t
(
σ2

ZIN + ACA
t
)−1

hΓi

]
, (10)

whereΓi = (0, . . . , 0, 1, 0, . . . , 0)
t is the vector that has the

ith component equal to1 and all other components equal to
zero,h = AB andC = σ2

Wγ + BB
t. Being symmetric, the

eigenvalue decomposition of the matrixC could be written as
C = UCµC

U
t
C where

µ
C

= diag(µ1(C), . . . , µM (C)) (11)

with µ1(C) ≥ . . . ≥ µM (C), and UC the matrix of the
corresponding eigenvectors.

Hence, by choosingVA = UC , and then, using Lagrange
multipliers [9] in order to optimize the resultant distortion with
respect to the singular values ofA subject to (6), we obtain

Dach =

N ′∑

i=1

λi −
N ′∑

i=1

p∑

j=1

λil
2
ijγ

+
j

µj(C)[σ2
Z + γ+

j ]
(12)

whereli = (li,1, . . . , li,M ) = Γ
t
iB

t
UC ,

γ+
j = max

{
0,

√
σ2

Z

∑N ′

k=1 λkl2kj

δ
− σ2

Z

}
(13)

andδ is such that

p∑

j=1

γ+
j

µj(C)
= ET (14)

B. Lower-Bound

We will derive here a lower-bound over all achievable
distortions while the sensors are performing the linear mapping
described in the previous section. Letq be the rank ofB,
UBΣBV

t
B its ordered (σ1(B) ≥ . . . ≥ σq(B)) singular value

decomposition andr = min(p, q). Let alsoh
t
h = VµV

t

be the ordered eigenvalue decomposition (µ1(h
t
h) ≥ . . . ≥

µN ′(ht
h)) of ht

h, vij the entries ofV andλmin the minimum
of {λ1, . . . , λ

′
N}. Any achievable distortion will be lowered by

canceling the effect of the observation noise or equivalently by
takingσW = 0. Therefore, we have the following inequalities

D ≥
N ′∑

i=1

N ′∑

j=1

λi

σ2
Zv2

ij

σ2
Z + µj(h

t
h)

(15)

≥ λmin

N ′∑

j=1

σ2
Z

σ2
Z + µj(h

t
h)

(16)

= λmin

r∑

j=1

σ2
Z

σ2
Z + µj(h

t
h)

+ λmin(N ′ − r) (17)

The eigenvalues ofht
h are constrained by (see [13] p.171)

r∏

i=1

µi(h
t
h) ≤

(
r∏

i=1

σ2
i (A)

)(
r∏

i=1

σ2
i (B)

)
(18)

Maximizing the right hand side of (18) subject to the sum
energy constraint, gives that for every matrixA satisfying (6),

r∏

i=1

µi(h
t
h) ≤

(
ET

r

)r
(

r∏

i=1

σ2
i (B)

)
(19)

Then, minimizing (17) over (19) gives the following result (the
proof has been omitted due to space restrictions)

Dlower = λmin
r2σ2

Z

rσ2
Z + ET

r
√∏r

i=1 σ2
i (B)

+ λmin(N ′ − r)

(20)

for
ET

r
r

√√√√
r∏

i=1

σ2
i (B) ≥ (2r − 1)σ2

Z . (21)

IV. GENERAL LOWER-BOUND

Until now, we have dealt with linear encoders that just for-
ward their observed values across the channel. Such encoders
are known to have some advantages in terms of low complexity
and delay. It is natural to consider the distortion achievable
with more general encoders. In this section, we derive a
more general lower-bound on the distortion over all possible
encoders, all total energy distributions and all signatures ; note
that, as said previously, the separation theorem does not hold
because of having to code correlated observations over a mul-
tiple access channel. Thus, doing multi-terminal source coding,



then, using capacity-achieving channel encoders does not lead
to an optimal distortion and consequently to a lower-bound.
Therefore, we will assume that the sensors can communicate
freely with each other, an assumption that will render our
model equivalent to a point-to-point communication model on
which the separation theorem holds and an achievable lower-
bound is well-known. A similar lower-bound has been found
in [1] (see also [10], [11]) and can be applied for the special
case of our random field whereλ1 = . . . = λN ′ ; we generalise
this result for generalλ1, . . . , λN ′ in order to obtain the lower-
bound that we seek. Since the observations are noisy versions
of the field, the lower-bound is equal toDremote(C), where

Dremote(R) = min
p(û/r):I(bU;R)≤R

N ′∑

i=1

λiE[(Ui − Ûi)
2] (22)

is the remote distortion rate function of the source vectorU,
R = (R(x1), . . . , R(xM )) and C is the capacity of theN
uses of the multiple input one output channel. Let

Φ =




√
λ1φ1(x1) . . .

√
λN ′φN ′(x1)

...
...√

λ1φ1(xM ) . . .
√

λN ′φN ′(xM )


 (23)

and

Φ
′ = Φdiag(

√
λ1, . . . ,

√
λN ′). (24)

We find that

Dremote(C) =

N ′∑

i=1

[
λi − σ2

i + min{σ2
i , δ}

]
(25)

with

1

2

N ′∑

i=1

(
log

σ2
i

δ

)+

= C (26)

where σ2
1 , . . . , σ2

N ′ are the eigenvalues of the matrix
Φ

′t (
ΦΦ

t + σ2
W IM

)−1
Φ

′ and

C =
N

2
log

(
1 +

ET

∑M
i=1 αi

Nσ2
Z

)
(27)

V. I DEAL MODEL

Consider an ideal sensor network model in which the node’s
sensing ability is perfect, in the sense that the observations
collected by the sensors are no longer corrupted by observation
noise. Assume that the signal space dimension is larger or
equal to the field dimension and thatαi < ∞ for i =
1, . . . ,M . In that case, by choosingVA = UB andσ1(A) =

. . . = σN ′(A) =
√

ET

N ′
,

D =

N ′∑

i=1

N ′∑

j=1

λi

σ2
Zv2

Bij

σ2
Z + ET

N ′
σ2

j (B)
(28)

is achievable wherevBij
are the entries ofVB .

A. Scaling Law

Let b(xi) be theith line vector inB corresponding to a
sensor at positionxi. Here, we assume thatφi(xj) < ∞ for
i = 1, . . . , N ′ and j = 1, . . . ,M . Suppose that there exists
N ′ areasA1, . . . ,AN ′ ⊂ A such that∀x1 ∈ A1, . . . ,∀xN ′ ∈
AN ′ , the vectorsb(x1), . . . ,b(xN′) are linearly independent.
Suppose also, that the position of every sensor, which is
random, follows a certain probability density functionp(x)
defined onA and is independent from the positions of the
other sensors. Thus, the probability that a sensor belongs to
an areaAi is

ci ,

∫

Ai

p(x)dx (29)

Denote byni the number of sensors inAi after throwingM
sensors and letn = min{n1, . . . , nN ′}. Therefore, with the
line vectors ofB, it can be at least constructedn full ran-
ked N’-dimensional square matrices denoted byB1, . . . ,Bn.
Then, for i = 1, . . . , N ′, we have the following result (see
[12] p.176)

n

M
dmin ≤ σ2

i (B)

M
≤ dmax (30)

where
dmin = min

i=1,...,n

[
min
sts=1

||Bis||2
]

(31)

and

dmax = max
i=1,...,M

[
max
sts=1

(b(xi)s)
2 ] (32)

Due to the field and channel assumptions,dmin and dmax

are strictly positive and bounded constants. Note that
limM→∞

n
M = c where c = min{c1, . . . , cN ′}. Hence, the

achievable distortion in (28) scales asymptotically as1
M . This

scaling behavior is under investigation in the case where the
sensors have no information about the channel.

B. Comparison With a TDMA Scheme

In a TDMA transmission scheme, the number of sensors
is equal to the signal space dimension and the matrixψ ,

(ψ1, . . . ,ψM ) is unitary. Therefore,

r∑

i=1

σ2
i (h) =

M∑

i=1

αiEi ≤ ET αmax (33)

with αmax = max
i=1,...,M

αi. Then, an easily lower-bound on the

achievable distortion could be found. In fact, minimizing (17)
under (33) leads to

DTDMA ≥ λminσ2
Zr2

σ2
Zr + αmaxET

+ λmin(N ′ − r). (34)

Compared to the achievable distortion in (28) which scales
asymptotically like 1/M , the left-hand side term in (34)
does not depend on the number of sensors. This leads to
the conclusion of the sub-optimality of such a transmission
scheme especially when the number of sensors becomes large.
Note that this lower-bound is also true when observation noise
exists.



VI. N UMERICAL RESULTS

A simple sensor network model is considered to illus-
trate and compare some of the bounds derived in the above
sections ; The areaA is partitioned in ten smaller areas
A1, . . . ,A10. These are put in a vectorA , (A1, . . . ,A10).
The space functions are taken equal to

φi(x) =

{ 1√
Ai

if x ∈ Ai

0 if x /∈ Ai

for i = 1, . . . , 10.
In the figures 2(a) and 2(b), our achievable distortion outper-
forms the Gastpar-Vetterli result especially for relatevily small
total energy. The distortion is due to the channel noise and to
the observation noise, thus when the total energy increases,
the influence of the channel noise on the distortion decreases.
Therefore, it will be essentially caused by the observation
noise, the influence of which being independant from the total
energy. That’s the reason why, the slope of the curves in
2(a) and 2(b) (exceptDlower because it only depends on the
channel noise) tends to zero when the total energy becomes
relatively large. Comparing the curves corresponding toDach

and Dlower, we see that the gap between them starts very
small and then becomes larger which is due, as mentioned
above, to the fact that the lower-bound does not take into
account the observation noise. Note that the large difference
between the two lower-bound curves for relatively small total
energy reveals nothing on the efficiency of linear encoders,
because of the free information exchange assumption taken in
the calculation of the general lower bound (Dremote(C)) that
render it non-achievable in general. In any case,Dremote(C)
still have the utility of giving us a lower-bound on the
distortion over all possible encoders even if it is not achievable.
At the end, comparing 2(a) to 2(b) reveals the decreasing
behavior for all the distortion curves when the number of
sensors increases.
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