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Abstract— We consider a wireless sensor network deployed in a signature waveform which is transmitted across the channel.
an area to measure the realization of a finite multi-dimensional, As is common in the literature, we consider that the sensing
slowly time-varying physical random field. Each sensor observes process is imperfect, so that the sensed values are subject

one noisy realization of the field, maps it linearly into a signal . . . ) . .
with a signature and sends it across a white Gaussian multiple to additive Gaussian observation noise. The choice of linea

access channel, under a constraint on the total energy given to €ncoder is motivated firstly by its simplicity, and secondly
all the sensors per field realization. The receiver or the 'collector by its optimality in the point-to-point communication mdde
node’ receives all the signals and tries to construct an estimate where a Gaussian source is sent over an AWGN channel [2],
of the field within a certain mean distortion based on the MSE 31 e |atter is true only in the case where the number of
fidelity criterion. We derive, under the total energy constraint, .

a lower-bound on the distortion, an achievable one, and another channel uses pe_r source symbol is one. Moreover, here we
lower-bound under a TDMA transmission scheme. In the case of are confronted with a problem of correlated sources, sinee t
the non-existence of the observation noise, we find the asympimt sensed values are generally correlated, over a multiglesac
decreasing behavior of the achievable distortion as a function of channel. The source-channel separation theorem does idot ho

the number of sensors. Moreover, we derive a lower-bound on i, this case, and therefore, separate coding strategies are
the distortion over all possible encoding techniques, assuming a .

free collaboration and information exchange between the sensars in general sub-optimal [4]. In addition, joint source-chah .
We compare these bounds for a particular example with another €ncoders used to code long source sequences as described in

bound on the achievable distortion [1]. [5] will not be appropriate in the case of a slowly time-vanyi
random field due to the incurred delay. Recent results in [6]
show the optimality of linear encoders for a simple sensor
Wireless sensor networks are typically used to monitor sometwork model where a single Gaussian source is observed by
spatial characteristics of a field in the area over which theultiple noisy Gaussian sensors, and these observatioms ha
network is deployed. Examples of fields include temperatut® be transmitted via the standard Gaussian multiple access
electromagnetic radiation, natural or induced vibration, channel. This is again for the case where a single soure lett
auditory levels. In such networks, sensors make measutemes available per channel use.
of the field, process them locally, potentially with the help  Here we consider sensor networks with a constraint on
neighboring nodes, and then collectively transmit the metie total radiated signal energy where we seek to minimize
surements over a wireless channel to one or more collectbe distortion between the true field and its reconstructed
nodes. The collector nodes process the received measurenestimate at the collector node. A similar model has been
data further in order to extract and analyze the spatial ctetudied by Gastpar and Vetterli in [1], [7], and, under derta
racteristics of the field. The range of applications of sudield configurations, the achievable distortion we find hexe c
networks is becoming very large; including environmentddle compared to the scheme in [1] and clearly outperforms it.
and habitat monitoring to military surveillance, securityd Other than demonstrating an achievable scheme, we derive a
civil protection applications. One of the more criticaluses lower-bound on the distortion over all possible total egerg
in these networks is the lifetime of the sensing nodes whiclistributions and all signatures, and another more general
is especially true in the case of applications which requitewer-bound which is not limited to linear encoders. This
small autonomous sensor devices, and thus small long-lisgter bound assumes that the sensors can communicate
energy sources. Energy efficiency, therefore, quickly ez with each other freely in order to exchange information,
a critical factor. a problem which was studied extensively in [8]. Under a
While a sensor network is application-dependent, we réstritDMA transmission scheme, a lower-bound on the distortion
our work to an application where the sensors have to tracksaderived, which we find to be independent of the number of
slowly time-varying random field. After sensing and codingensors. This result shows the sub-optimality of TDMA in the
the local data, the sensors have to send their informationitieal case where the sensor observations are not corrupted b
a collector node through a white Gaussian multiple accessise, since the other schemes exhibit decreasing dstorti
channel. For achievable schemes, we assume a linear enced#r the number of sensors.
in each sensor that maps the sensed value into the amplitude o

I. INTRODUCTION



The paper is organized as follows. In section I, we descrilmme transmit one signal, the energy constraint could beemrit
the sensor network model. An achievable distortion and as
lower-bound on any linear encoding scheme is found in sectio M
lll. In section IV, we derive the general lower-bound ovdr al Z Er < Er. (4)
possible encoders. In section V, we calculate the asyneptoti k=1
behavior of the distortion under an ideal sensor networkehod

and derive a lower-bound for a TDMA-based transmission ivw
scheme. Numerical results, comparisons, and discussiens & Fo, ¥y Rex) SR izm
found in section VI. Fo, ¥ ke
Concerning the notations used in this paper, a bold letter (e O— SREaM
a) denotes a vector, while bold and underlined letter (&g : "
denotes a matrix. Thé" singular value and thé" eigenvalue e X, s | Cramel [y Detecton | F,
of a matrixa are denoted respectively by(a) andu;(a). E].] .
denotes the mean value over all random variables inside t -
brackets. R ¥ Con
I[I. MODEL

The sensor network model is depicted in Fig.1. We consider
a field F'(x) occupying a certain ared and depending on the
spatial-coordinate vectox. We assume that the field'(x) After the processing stage, the sensors send simultaryeousl
can be represented in a finite-dimensional orthonormalsbagieir signals to the collector node through a Gaussian plelti

of space functions);(x) for i = 1,...,N’, by considering access channel. The outgiitt) of the channel can be written
that the energy of the field lying outside the basis is too bmake

and could be neglected. Then M
Y(t) =Y vorSe(R(xk).t) + Z(t)

k=1

Fig. 1. The scheme of the considered wireless sensor netwodelmo

F(x) = Z VAU (%) 1)

with «, representing an attenuation factor proportional to the
) ) _ distance between the sengoand the collector node, ari(t)
where each; is a constant representing the energy of the fielflo \\hite Gaussian noise with zero mean arid as power

H ‘th A i _ t i i . B | A

in the i dimension andU = (Uy,...,Un")" is @ Gaussian gpecyral density. The baseband expressiolr @) implies an

random vector with mean zero and identity covariance matriédjustement at the sensor transmitters of the phases iduce
In the areaA, M sensors are randomly deployed, havingy the channel.

X1,...,Xy @S space coordinates. The senko's.ense.s the At the detection, we calculaté'(x), the estimate ofF(x)
value R(xy), a noisy version of the field at positiaty, : for all x € A. Here, we assume that;,...,a, and
R(xy) = F(xz) + Wi (2) Xi--o XM are perfgctly known to the collector node. The
distortion measure is the mean squared error, and the total
where W, for k = 1,..., M are i.i.d Gaussian observationmean distortion that we want to minimize is equal to
noise with zero-mean and varianeg, ; this value is mapped S
onto the signal D= / E [(F(x) - F(x)) } dx (5)
x€eA
N
Sk (R(xk),t) = Zski%(t) for t € [0, 7] I1l. PERFORMANCELIMITS OF LINEAR CODING
i=1 In this section, we’ll focus on the linear mapping scheme

where the sefy1 (1), 72(%), . ..,vn(t)} forms an orthonormal that we have presented in our model, in order to test its per-

basis for the signal space afg; is the projection of the signal formance in terms of minimal achievable distortion. In othe

on~;(t). The vectorS,, representing the signal components i¥/0rds, with a such linear coding done by the sensors in the
taken equal to processing stage and under the sum-energy constraintmve ai

to find the total energy distributiofy, . .., 'y, over the sen-
Sk1 sors and the appropriate choice of the signatures .., v ,,
Sk EL that will minimize the total mean distortion. We put all tkes
Sk, = : - E[Rz(xk)]R(xk)’/’k () variables in a matrixA £ (VE4,, ...,/ Euv,,) and let

g A = QAEAXQ be the singular value decomposition Af.
kN Then, the total energy constraint could be written as
where E;; is the mean energy attributed to the senkaand »
1, a normalized vector representing a signature. A mean total Z o2(A) < Er (6)
=1

energyFEr being dedicated to all the sensors in order that each



wherep = min(M, N). Consequently, our goal will be to find
o X . X . . P +
the minimal achievable distortion corresponding to a derta z Vi
matrix A satisfying (6). Unfortunately, this problem is quite iz, (C)
hard to resolve, therefore, we limit ourselves to a loweunzb
and the resulting distortion of a particular encoding sobenf- Lower-Bound
which yields an upper-bound on any optimal scheme. We will derive here a lower-bound over all achievable
. . . distortions while the sensors are performing the linearpirap
A. Achievable Distortion described in the previous section. Le¢tbe the rank ofB,

(14)

Jj=

Developing (5), the distortion could be written as U3,V its ordered ¢, (B) > ... > o,(B)) singular value
N decomposition and = min(p,q). Let alsoh’h = VpuV’
D= Z/\iE {(Ui - D\i)ﬂ (7) be the ordered eigenvalue decompositipn(h'h) > ... >
=1 pn(h'h)) of h'h, v;; the entries oM and i, the minimum
R , ) — @ /tmin
where T is the estimate ofU. In order to minimize the of {\1,..., Ay }. Any achievable distortion will be lowered by

canceling the effect of the observation noise or equiviidmnt

distortion, the best estimator to be chosen is the minimu o .
in = 0. Therefore, we have the following inequalities
mean squared error (MMSE) estimator. This latter is equal tto gow =0 g 1neq

U = E[UY'] (E[YY") Y, (8) NN
. C . . D > _ 1
Y being the projection ot (¢) on the signal space basis. let - ;; o2 + uj( hth) (19)
g 0 O N’ 2
E[R?(x1)] o
. Z >\min Z 16
7= 0 g 0 ’ ©) ; o% + nj(h'h) (19
0 0 BmEetan] r 2
= )\min Z -z + )\min (N, - T) (17)

—~ 52 4 1;(h'h)
Anran j=1°2 FACLIELY
[ xl)]¢1(X1) o ERT G O (%) _ ’ _

The eigenvalues dh'‘h are constrained by (see [13]151)

\/7,5[2%?%%” o1(xnr) .- %@v’ (xnm) H,ui(hfh) < (H J?(A)> <H U?(B)> (18)
-1 i=1 i=1

therefore, (7) gives us

B:

Maximizing the right hand side of (18) subject to the sum
energy constraint, gives that for every matfixsatisfying (6),

’

D=3\ [1-Th' (31, + ACA") 'hTi|, (10)

— T ET T 7"
;(h'h) < [ = 2(B 19
whereT’; = (0,...,0,1,0,. O)t is the vector that has the H“ (b'h) < ( r ) (H 7 ()> (19)

it" component equal ta and all other components equal to
zero,h = AB andC = UW1+@t_ Being symmetric, the Then, minimizing (17) over (19) gives the following resutg

eigenvalue decomposition of the matfixcould be written as proof has been omitted due to space restrictions)

Cc=U UL where 2452

o 70&070 Diower = Amin 5 TT O—Zr 3 + Amin (N/ - T')
g, = diag (11 (C),. .., ua(C)) (11) rog + Er {11z, 07 (B) (20)

with 41(C) > ... > un(C), and U, the matrix of the

corresponding eigenvectors. for (21)

Hence, by choosing/ , = U, and then, using Lagrange
multipliers [9] in order to optimize the resultant distortiwith
respect to the singular values Af subject to (6), we obtain

IV. GENERAL LOWER-BOUND

Until now, we have dealt with linear encoders that just for-
ward their observed values across the channel. Such erscoder

7

ij . .

Dach = Z Ai — Z Z NU—jJrH (12)  are known to have some advantages in terms of low complexity
' i=1j=1 7 J and delay. It is natural to consider the distortion achiévab

wherel; = (L;1,...,lin) = T'B'U,, with more general encoders. In this section, we derive a

more general lower-bound on the distortion over all possibl

o2 vav—ll Al2 encoders, gll total_energy distributioqs and all signaurete
yj = max {0, %ﬂ - U%} (13) that, as said previously, the separation theorem does nadt ho
because of having to code correlated observations over a mul

andJ is such that tiple access channel. Thus, doing multi-terminal sourctén



then, using capacity-achieving channel encoders doesadt |A. Scaling Law

to an optimal distortion and consequently to a lower-bound. | et b(x;) be thei!” line vector inB corresponding to a
Therefore, we will assume that the sensors can communicaigsor at positior;. Here, we assume that (x;) < oo for

freely with each other, an assumption that will render oyr— 1 . N’ andj = 1,..., M. Suppose that there exists
model equivalent to a point-to-point communication model oN” areasd,, ..., Ay C A such thatvx; € Ai,...,Vxn: €
which the separation theorem holds and an achievable lowers,, the vectorsh(xy), ..., b(xn/) are linearly independent.

bound is well-known. A similar Iower-boun(_j has been foun_guppose also, that the position of every sensor, which is
in [1] (see also [10], [11]) and can be applied for the specighndom, follows a certain probability density functigix)
case of our random field whedg = ... = An+; we generalise defined on.A and is independent from the positions of the

this result for generals, ..., Ay~ in order to obtain the lower- other sensors. Thus, the probability that a sensor belamgs t
bound that we seek. Since the observations are noisy versigq aread; is

of the field, the lower-bound is equal 10,.c,,,.t.(C), where A / p(x)dx (29)
A;

C; —
IN%
Dyemote(R) = min Z/\z'E[(Ui — ﬁi)2] (22) Denote byn; the number of sensors id; after throwing M
p(a/r):I(UR)SR sensors and let = min{ny,...,ny/}. Therefore, with the
line vectors ofB, it can be at least constructed full ran-

is the remote distortion rate function of the source ve&for | .4 \_dimensional square matrices denotedBy ..., B

R = (R(x1),...,R(xar)) and C is the capacity of theV

n*

T Then, fori = 1,...,N’, we have the following result (see
uses of the multiple input one output channel. Let [12] p 1762) 9 (
2
Vv >\1 ¢1(X1) s V )‘N'ng' (Xl) idmin < % (B) < dmax (30)
. . M M
P = : : (23)
: : where
VAGiGa) VAN (o) duio = win_ [ min |[Bs|? (31)
i=1,...,n" sts=1
and _ and
g/zidlag(\/)‘lv"'a V)\N’)' (24)
— . 2
We find that A = ax, | max (b(xi)s)" ] (32)
N’ Due to the field and channel assumptiods,, and da.x
Diremote(C) = Z [\ — 07 + min{o7, §}] (25) are strictly positive and bounded constants. Note that
i—1 limpy/ oo 77 = ¢ Wherec = min{cy,...,cn0}. Hence, the
with achievable distortion in (28) scales asymptoticallyﬁsThis
N o+ scaling behavior is under investigation in the case wheee th
%Z (log ?) s (26) Sensors have no information about the channel.
i=1 B. Comparison With a TDMA Scheme
where o%,...,0%, are the eigenvalues of the matrix In a TDMA transmission scheme, the number of sensors
3" (2 +0‘2/V1M)*1 &' and is equal to the signal space dimension and the mafrix
- B o (11,...,%,,) is unitary. Therefore,
_ N ET Z?il (67} r M
C=7los (1 T NoZ G S 02(h) = Y i < Broma (33)
=1 =1
V. IDEAL MODEL With amax = max_ a;. Then, an easily lower-bound on the

i=1,...

Consider an ideal sensor network model in which the nodeishievable distortion could be found. In fact, minimizirkgy{
sensing ability is perfect, in the sense that the obsematiaunder (33) leads to
collected by the sensors are no longer corrupted by obsenvat
noise. Assume that the signal space dimension is larger or Amin0 272

equal to the field dimension and that < oo for i = Drpya 2 + Amin (N = 7). (34)

021 + Amax BT

1,..., M. In that case, by choosinyf , = Uz ando;(A) = ) i . i
By y W, =Us o1(A) Compared to the achievable distortion in (28) which scales
o= on(A) =/ F asymptotically like 1/M, the left-hand side term in (34)
. does not depend on the number of sensors. This leads to
N N 2,2 . . . .
0ZVB,; the conclusion of the sub-optimality of such a transmission
D= ZZ}” 2 4 Er 2 (28) scheme especially when the number of sensors becomes large
i—1j1 9zt N0 (B) p y ge.

Note that this lower-bound is also true when observatiosaoi
is achievable wherep,; are the entries oV . exists.



VI. NUMERICAL RESULTS

A simple sensor network model is considered to illus-
trate and compare some of the bounds derived in the above
sections; The aread is partitioned in ten smaller areas

A1, ..., Awo. These are put in a vectod £ (A, ..., Aig).
The space functions are taken equal to
L ifxe A
(x) =< VA v
9i(x) { 0 ifxé A

fori=1,...,10.

In the figures 2(a) and 2(b), our achievable distortion autpe
forms the Gastpar-Vetterli result especially for relaiegsmall
total energy. The distortion is due to the channel noise and t
the observation noise, thus when the total energy increases
the influence of the channel noise on the distortion decsease
Therefore, it will be essentially caused by the observation
noise, the influence of which being independant from thd tota
energy. That's the reason why, the slope of the curves in
2(a) and 2(b) (excepb;,, because it only depends on the
channel noise) tends to zero when the total energy becom
relatively large. Comparing the curves correspondindtgy,

and Dj,er, We see that the gap between them starts ver
small and then becomes larger which is due, as mentione
above, to the fact that the lower-bound does not take int
account the observation noise. Note that the large diftaren
between the two lower-bound curves for relatively smalhltot
energy reveals nothing on the efficiency of linear encoders
because of the free information exchange assumption taken
the calculation of the general lower bounB,{,,,.:.(C)) that
render it non-achievable in general. In any caBgs,ote(C)

still have the utility of giving us a lower-bound on the
distortion over all possible encoders even if it is not achide.

At the end, comparing 2(a) to 2(b) reveals the decreasin
behavior for all the distortion curves when the number of
Sensors increases.
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