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ABSTRACT

We consider the problem of optimally allocating the base sta-
tion transmit powers for a wireless multi-cellular (N -cell) sys-
tem in order to maximize the total system throughput under
interference and noise impairments, and short term (minimum
and peak) power constraints. Employing dynamic reuse of
spectral resources, we impose the power constraints at each
base station and allow for coordination between the base sta-
tions. For the two-cell case, the capacity-optimal power al-
location has been previously shown to be binary [1]. We
now propose to perform binary power allocation, (by simply
checking the corners of the domain resulting from the power
constraints), also when N > 2, and we identify two scenarios
in which the optimality of binary power control can be proven
also for arbitrary N . Furthermore, in the general setting for
N > 2, we demonstrate by simulations that a network perfor-
mance with negligible loss, compared to the best non-binary
scheme found by geometric programming, can be obtained.

1. INTRODUCTION

The need for higher spectrum efficiency motivates the search
for system-wide optimization of the wireless resources. A key
example of multi-cell resource allocation is that of power con-
trol, which serves as means for both battery savings at the mo-
bile, and interference management. Traditional power control
solutions are designed for voice-centric networks, hence aim-
ing at guaranteeing a target signal-to-noise-and-interference
ratio (SNIR) level to the users [2]. In modern wireless net-
works, link adaptation [3] is or will be implemented, and
throughput maximization becomes a more relevant metric.

The simultaneous optimization of transmission rates and
power with the aim of maximizing the multi-cell sum capacity
is a difficult problem. Considering the problem of optimally
allocating the transmit power for N concurrent communica-
tion links, a common approach is to use a high SNIR approx-
imation to establish convexity in the sum-capacity objective
function [4, 5]. However, this approximation by construction
prohibits completely turning off the power of any base sta-
tion at any time. This extra constraint may in fact cause the
resulting power vector to steer away from the optimum solu-
tion. Indeed one of the major points made in this work is that

the ability of shutting down one or more base stations can be
instrumental in approaching maximum network capacity.

Restricting the scenario to interference limited systems,
i.e., neglecting noise sources, in [5] the high SNIR assump-
tion is used only for a set of active links, but although im-
proving over the schemes presented in [4], the method “is
still inferior to maximization of the actual aggregate through-
put” [5]. Under a sum power constraint, [6] neglects noise
sources and uses waterfilling to maximize the network capac-
ity. But, due to the sum power constraint and neglection of
noise, these results are not applicable to our analysis. We ar-
gue that for cellular networks, applying an individual power
constraint at every base station is more realistic.

When modeling the transmission rate as a linear function
of the received power, [7] shows that a base station when on
should transmit at maximum power for optimality. This re-
sult has the merit of showing potential benefits of an on/off
power control, but in general, the assumed linear relationship
between rate and power is however unfortunately far from the
truth since the rate is known to have a log(·) behavior. The
proof does not extend to arbitrarily increasing rate-power re-
lations, and the results will not in general yield throughput-
optimal power allocation. Nevertheless, here we show that
when using a low SNIR approximation, the linear relation
in [7] is indeed obtained, and thus the conclusions from that
paper holds in this case, and can be extended to include a
minimum power constraint at each base station.

In this paper we tackle the problem of power allocation in
cellular networks without resorting to the restricting assump-
tions of high SNIR or interference-limited systems. The ap-
plication we have in mind is a wireless data access network
with best-effort type of quality-of-service, and where the to-
tal throughput across the network is the figure of merit. The
system is assumed to be enabled with perfect link adaptation,
so the user rate is adapted as a function of the user’s SNIR as
to always achieve Shannon capacity in any resource slot.

Our contributions are as follows: We consider the N > 2
cell case, and show that when either a geometric-arithmetic
mean or a low-SNIR approximation is applicable binary power
control1 is still optimal (as always true for any SINR in the

1On/off power control and binary power control are equivalent if the min-
imum transmit power is zero.
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N = 2 case). In the general case for N > 2, we utilize the
mathematical framework of geometric programming (GP) [8]
in order to establish a sum capacity benchmark, and compare
with our proposed binary power allocation through exhaus-
tive simulations. Empirically, we demonstrate that the loss
associated with restriction to binary power levels is negligi-
ble. On the other hand, discretizing the optimization space is
highly beneficial: the feedback rate needed to communicate
between network nodes is reduced, transmitter design is sim-
plified, and finally, limiting the potential solutions to search
over better facilitates distributed resource allocation [9].

The remainder of the present paper is organized as fol-
lows. We introduce the wireless system model under inves-
tigation in Section 2. In Section 3 we derive optimal power
control schemes for sum throughput maximization. In Sec-
tion 4 numerical results are presented, and finally conclusions
are given in Section 5.

2. SYSTEM MODEL

We consider a system in which N neighboring base stations
communicate with mobile terminals over a coverage area. In
each cell, we consider an orthogonal multiple access scheme
such that in any given spectral resource slot (where resource
slots can be time or frequency slots in TDMA/FDMA, or
codes in orthogonal CDMA) a single user is supported. The
spectral resource slots are shared by all cells, leading in gen-
eral to an interference and noise impaired system. Schedul-
ing policies can in principle also be incorporated, by suitably
modifying the users’ channel statistics. However, in order to
focus solely on power control, we do not explicitly consider
scheduling here. The communication links are considered to
be downlink, but the results can also be generalized to an up-
link scenario. Furthermore, we emphasize that our analysis is
valid for any geometry, even for non-cellular systems such as
ad-hoc networks, as long as the sum of link capacities is an
relevant performance metric.

The data destined for user un is transmitted with power
Pn. Each base station is in general assumed to operate under
both minimum and peak power constraints,

Pmin ≤ Pn ≤ Pmax, n = 1, 2, . . . , N. (1)

Denote by Gn,i(m) the channel power gain to the selected
mobile user un(m) in cell n from the cell i base station in
slot m. We will suppress the slot index from now on, concen-
trating on one arbitrary slot. The channel gains are assumed
to be constant over each such resource slot, i.e., we have a
block fading scenario. Note that the gains Gn,n correspond
to the desired communication links, whereas the Gn,i, for
n �= i, correspond to the unwanted interference links. Assum-
ing the transmitted symbols to be independent random vari-
ables with zero mean and unit variance, the signal to noise-
plus-interference ratio (SNIR) for each user is given by

SNIRun
=

PnGn,n

σ2
Zn

+
∑

j �=n PjGn,j
, (2)

where σ2
Zn

is the variance of the independent zero-mean ad-
ditive white gaussian noise (AWGN) in cell n.

Under the assumption that capacity-achieving codes for
AWGN channels can be employed, the achievable rate (in in-
formation bits/s/Hz) of user un is given by

Run
= log2(1 + SNIRun

). (3)

From (2), (3) the total achievable throughput (sum rate) R =∑N
n=1 Run

is then found as

R =
N∑

n=1

log2

(
1 +

PnGn,n

σ2
Zn

+
∑

j �=n PjGn,j

)
. (4)

Finally, we note that our system model with (possibly dif-
ferent) noise levels {σ2

Zn
}N

n=1 also accommodates the model-
ing of additional interfering sources disturbing the users dif-
ferently, contrary to previous works. One important applica-
tion of this is when, for complexity reduction, the joint multi-
cell power allocation is undertaken for a subnet (cluster) of
neighboring cells only. In this case σ2

Zi
represents the com-

bined effect of noise and interference received from out-of-
cluster cells by the ith user.

3. TRANSMIT POWER ANALYSIS

This section presents the general optimal power allocation
scheme P∗ = (P ∗

1 , . . . , P ∗
N ), which has as inputs the channel

gains {Gn,i > 0}, and the AWGN variances {σ2
Zn

> 0}. We
search for the optimal power allocation by approaching the
following optimization problem,

P∗ = arg max
P∈ΩN

R, (5)

where ΩN = {P| Pmin ≤ Pn ≤ Pmax, n = 1, . . . , N} is
the feasible set and R is given in (4). Since ΩN is a closed
and bounded set and R : ΩN → R is continuous, (5) has a
solution. Note that for Pmin = 0, ΩN admits solutions where
some base stations shut down the power completely, which
from a cellular engineering point of view can be interpreted
as a form of dynamic channel reuse.

3.1. The 2-Cell Case
For the two-cell case (N = 2) it is possible to find a closed
form solution by an analytical derivation [1]2. Defining ΔΩ2 =
{(Pmax, Pmin), (Pmin, Pmax), (Pmax, Pmax)}, the optimal power
allocation can then be stated as

(P ∗
1 , P ∗

2 ) = arg max
(P1,P2)∈ΔΩ2

R(P1, P2), (6)

Hence, for a two-cell system the optimal power control is bi-
nary, depending on the noise and channel gains, transmit at
full power only at base station 1, and minimum power at base
station 2, vice versa, or both at full power.

2In [1] this result was derived for the case of Pmin = 0, but the result is
extended here to Pmin > 0. Letting Pmin > 0 might be necessary in some
scenarios to ensure that all users receive a minimum transmission, such as
control information or pilot symbols.



3.2. Binary Power Control in the N -cell Case

For N > 2, analytical treatment of the optimization prob-
lem (5) proves to be very challenging, because of the lack of
convexity and the fact that the above analysis from the two-
cell case does not generalize to N cells. However, motivated
both by the optimality of binary power allocation for the two-
cell case and its potential in complexity reduction and finding
distributed solutions, we will investigate the properties of bi-
nary power control also in the N -cell case.

Binary power control for N cells is done by evaluating
R(P) at the corners of ΩN , and picking the maximum value.
Mathematically formulated,

Pbin = arg max
P∈ΔΩN

R(P), (7)

where ΔΩN is the set of 2N −1 corner points of ΩN , exclud-
ing the all-Pmin point. We now proceed by considering binary
power control for N cells in three cases, 1) approximation by
the arithmetic-geometric means inequality, 2) the low-SNIR
regime, and 3) the general case.

3.2.1. Arithmetic mean-geometric mean approximation

Writing (4) as the log of products, we can apply the arithmetic-
geometric means inequality to obtain

R(P) = log2

(
N∏

n=1

1 +
PnGn,n

σ2
Zn

+
∑

j �=n PjGn,j

)

≤ N log2

(
1 +

1
N

N∑
n=1

PnGn,n

σ2
Zn

+
∑

j �=n PjGn,j

)
.

(8)

Now, in scenarios where the right hand side of the above in-
equality can be used as an approximation of R(P), i.e.,

R(P) ≈ N log2

(
1 +

1
N

N∑
n=1

PnGn,n

σ2
Zn

+
∑

j �=n PjGn,j

)
, (9)

the optimization problem (5) simplifies, and we can analyti-
cally find a closed form solution. As always true in the two-
cell case, the optimal power control is binary when (9) holds.

Theorem 1. The sum throughput maximizing power control
is binary for any N when (9) holds.

Proof. Due to the monotonicity of the log-function, we estab-
lish the result by showing that the argument of the logarithm
on the right hand side of (9) is convex in each variable Pk.

∂2

∂P 2
k

(
1 +

1
N

N∑
n=1

PnGn,n

σ2
Zn

+
∑

j �=n PjGn,j

)
=

1
N

∑
n�=k

2PnGn,nG2
n,k

(σ2
Zn

+
∑

j �=n PjGn,j)3
≥ 0.

(10)

Now, for any P where at least one of its components is not
an endpoint of its interval, there is another point P′ with
R(P′) ≥ R(P) such that one more component is at an end-
point of its interval.

For more details on the arithmetic-geometric mean ap-
proximation and its applications to power control, see [10].

3.2.2. Low-SNIR regime

In the low-SNIR regime we can apply a first order Taylor ap-
proximation of the achievable rate, thus simplifying the prob-
lem, specifically for low SNIR: log2(1 + SNIR) ≈ SNIR

ln 2 .
Thus, we have

R(P) ≈ 1
ln 2

N∑
n=1

PnGn,n

σ2
Zn

+
∑

j �=n PjGn,j
, (11)

and again find that binary power control is optimal, which is
easily seen from the proof of Theorem 13. In fact, the objec-
tive function obtained by both the low-SNIR approximation
and the arithmetic-geometric means approximation is maxi-
mized by the same binary power values.

In the low-SNIR case the binary power allocation is also
optimal for a weighted sum rate criterion, Rw =

∑N
n=1 wnRn,

wn ≥ 0, which we state as a corollary.

Corollary 1. In the low-SNIR regime, for a weighted sum
rate criterion, the sum throughput maximizing power control
is binary.

Proof. The result follows by the rules of differentiation.

3.2.3. General case
In the general case, when none of the above approximations
hold, we have not found mathematical relations establishing
the performance of binary power control, and hence we resort
to exhaustive numerical simulations, trying to cover typical
settings for cellular networks. To evaluate the performance
of binary power control against a non-binary benchmark we
capitalize on geometric programming [8], as discussed next.

3.3. Geometric Programming Power Control
As the yardstick for binary power control performance we use
power control by geometric programming. First, we provide
a brief background on geometric programming [8]. A mono-
mial is a function f : Rn

++ → R: g(P) = cP a(1)

1 · · ·P a(n)

n ,
where Rn

++ is the strictly positive quadrant of Rn, c > 0 is

3For the case of Pmin = 0, this was independently reported also by the
authors in [11]. Further, in [7], also with Pmin = 0, the optimization prob-
lem (5) with R as a linear function of the received power, similar to (11), is
considered and an alternative proof for on/off power control is given.



a constant, and a(i) ∈ R, i = 1, . . . , n. A sum of monomials
is called a posynomial:

f(P) =
K∑

k=1

ckP
a
(1)
k

1 P
a
(2)
k

2 · · ·P a
(n)
k

n . (12)

Then, a geometric program in standard form is written as:

minimize f0(P),
subject to fi(P) ≤ 1, i = 1, . . . , I

gm(P) = 1, m = 1, . . . ,M,

(13)

where fi, i = 0, . . . , I are posynomials and gm, m = 1 . . . M
are monomials. Now, using the results in [8], the optimization
problem in (5) can formulated as follows

minimize
N∏

n=1

1
1 + SNIRun

,

subject to
Pn

Pmax
≤ 1, n = 1, . . . , N,

Pmin

Pn
≤ 1, n = 1, . . . , N.

(14)

Inspecting (14), we see that the constraints are monomials
(and hence posynomials), but the objective function is a ratio
of posynomials, as shown by

N∏
n=1

1
1 + SNIRun

=
N∏

n=1

σ2
Zn

+
∑

j �=n Gn,jPj

σ2
Zn

+
∑N

j=1 Gn,jPj

, (15)

and the fact that posynomials are closed under multiplication.
Hence, (14) is not a GP in standard form, but a signomial
programming (SP) problem [8]. SP problems can be solved
by solving a series of GPs [8]. To transform it to standard
form we follow [8], approximating the denominator posyno-
mial of (15) by a monomial. Specifically, denote the denom-
inator posynomial of (15) as g(P). Since a posynomial is a
sum of monomials, write g(P) =

∑
i ui(P) where ui(P) is

a monomial. Then, g(P) can be well approximated with a
monomial g̃(P) as follows

g(P) ≥ g̃(P) =
∏

i

(ui(P)
αi

)αi

, (16)

where αi = ui(P)/g(P). By using (16), (15) is now a ra-
tio of a posynomial and a monomial. This ratio is again a
posynomial, and hence (14) is approximated and transformed
to standard form, and can be solved using GP techniques.

4. NUMERICAL RESULTS

Based on the system model described in Section 2, we will
now through Monte Carlo simulations evaluate a cellular sys-
tem, assuming that the users are uniformly distributed in each
cell, following the spatial channel models developed in [12].
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Fig. 1. Frequency of optimality of binary power allocation,
relative to optimal (GP) power allocation.

Specifically, the following environments are considered: the
suburban macrocell, the urban macrocell, and the urban mi-
crocell line of sight (LOS). In the macrocell environments the
maximum transmit power Pmax = 10 W, while for the mi-
crocell setting Pmax = 1 W. All three scenarios are simulated
with Pmin = 0 W. Depending on the model, BS-to-user dis-
tances should exceed 20 − 35 m, thus we exclude users from
being located in a circular disk of radius 20 − 35 m around
each base station.

4.1. Network Capacity Statistics

For the three simulation settings, Table 1 depicts the aver-
age per-cell capacity, defined as R

N , obtained by using GP
and binary power control, and as a reference full power in all
cells. It is clear that introducing power control improves the
throughput performance, in particular for the urban microcell
environment. However, note the only marginal improvement
in going from binary power control to optimal GP power con-
trol based on geometric programming. As seen from the table,
the average per cell capacity decreases as the number of cells
increase. This is to be expected since all cells share the same
spectral resources. As an example of how instrumental it is to
be able to operate some cells at minimum power, we see that
the system capacity in the urban microcell environment is less
for two cells than for one cell using full power. However, us-
ing binary and GP power control, we observe an increase in
system capacity, due to better management of interference.

In Fig. 1 we have plotted the frequency of optimality of
binary power control, i.e., how often binary power control is
optimal. It is seen that for one and two cells, binary power
control is indeed always optimal, while for more than two
cells it is no longer so. However, as shown in Table 1, the
gap between the optimal (GP) power control and the subopti-
mal binary power control is still marginal. This demonstrated
near-optimality of binary power control has several implica-
tions in the design and analysis of wireless networks. First,
the complexity transmitter design is reduced since only a two



Table 1. Network capacity statistics
Average pr. cell capacity (bits/s/Hz) shown in (GP, Binary, Full) triplets

Number of cells (N ) Suburban Macro Urban Macro Urban Micro
1 (6.02, 6.02, 6.02) (5.13, 5.13, 5.13) (11.96, 11.96, 11.96)
2 (4.93, 4.93, 4.74) (4.40, 4.40, 4.27) (6.64, 6.64, 4.54)
3 (4.41, 4.40, 4.02) (4.03, 4.03, 3.75) (6.03, 6.03, 3.39)
4 (4.03, 4.01, 3.53) (3.70, 3.69, 3.33) (4.66, 4.65, 2.91)
5 (3.98, 3.95, 3.45) (3.68, 3.67, 3.28) (3.88, 3.85, 2.75)
6 (3.81, 3.78, 3.25) (3.54, 3.53, 3.11) (3.41, 3.36, 2.58)
7 (3.67, 3.64, 3.08) (3.42, 3.41, 2.97) (3.06, 3.00, 2.40)

level power control is required. Second, when searching for
distributed power control algorithms, binary power control
provides a key simplification of the problem by enabling dis-
tributed control of the power allocation [9].

5. CONCLUSIONS

We have analyzed transmit power allocation for an N -cell
wireless system under a sum-capacity maximization criterion
and minimum and peak power constraints at each base sta-
tion. Assuming perfect channel gain information to be avail-
able, we investigated the system capacity without power con-
trol, with binary power control, and with (optimal) GP-based
power control. We show that the optimal power control is bi-
nary for two cells, as well as when the network throughput
can be approximated either by low-SNIR assumption or by
a geometric-arithmetic means inequality. In the general case
when N > 2, it was demonstrated by computer simulations
that when restricting ourselves to binary power levels only a
negligible loss occurs. For practical systems, these results are
of importance since the transmitter design is simplified and
the search for distributed algorithms becomes more manage-
able.
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