
Modeling Seed Scheduling Strategies in BitTorrent

Pietro Michiardi1, Krishna Ramachandran2 and Biplab Sikdar2

1 Institut Eurecom Pietro.Michiardi@eurecom.fr
2 Rensselaer Polytechnic Institute ramak,sikdab@rpi.edu

Abstract. BitTorrent has gained momentum in recent years as an effective means
of distributing digital content in the Internet. Despite the remarkable scalability
and efficiency properties that characterize BitTorrent in the long haul, several
studies identify the source of the content as the main culprit for the poor per-
formance of the system in a transient regime where user requests for a popular
content swamp the source and in case of high node churn. Our work models the
scheduling decisions made at the source (called the seed) for selecting which
pieces of the content to inject in the system through a stochastic optimization
process and provides an analytical framework to compare different strategies. We
define a new piece selection algorithm (called proportional fair scheduling, PFS)
that incorporates the seed’s limited vision of the system dynamics in terms of user
requests so as to ensure a better content distribution among the users. We prove
convergence of PFS and compare its short and long term performance against
the mainline BitTorrent implementation and the “smart seed” technique recently
introduced in [9]. Our results show that PFS induces substantial improvements
on both system performance, by decreasing the download time at the users, and
system robustness against peer dynamics, by quickly reacting to sudden changes
in the request patterns of the users.

1 Introduction

Peer-to-peer (P2P) networks provide a paradigm shift from the traditional client
server model of most networking applications by allowing all users to act as both clients
and servers. The primary use of such networks so far has been to swap media files
within a local network or over the Internet as a whole. Among current solutions de-
ployed in the Internet, BitTorrent (BT) has received a lot of attention from the research
community because of its scalability properties and its ability to handle the so called
flash crowd scenario, a transient phase characterized by a sudden burst of concurrent
requests for a popular content. However, recent results [1–3, 9, 11] have revealed some
inefficiencies of BT that translate into a prolonged transient phase, indicating the source
of the content (called the seed) as the main cause of a disproportionate distribution of
the content among the downloaders. In this paper, we motivate the need to incorporate
intelligence into scheduling file pieces at the seed and develop an analytic framework
wherein the impact of the chosen strategies can be studied for a BT-like P2P network.
We propose a novel scheduling policy called Proportional Fair Scheduling (PFS) that
improves the content distribution process based both on past scheduling decisions and
on the actual distribution of content requests as seen by the seed. Using the proposed



2

analytical framework we compare our scheduling policy with the one used in the main-
line BT implementation and with the best known scheduling improvement called “smart
seed” [9]. Through numerical evaluation we show that PFS outperforms previous poli-
cies in the short term. For the long term analysis we built a BT simulator and show
that our scheduling algorithm achieves a fair content distribution, and reduces the time
needed for the seed to inject the content in the system. To summarize, our contributions
in the current work can be stated as follows:

– Present an analytic framework wherein different scheduling policies can be mod-
eled and their behavior analyzed.

– Propose a new algorithm, called Proportional Fair Scheduling (PFS) for piece dis-
tribution that performs better than the current proposed scheduling modification for
the seed.

1.1 BitTorrent overview

Before proceeding further, we provide a brief system overview. BT is a P2P ap-
plication that replicates the content by leveraging the upload bandwidth of the peers
involved in the download process. Each unique content in the system is associated with
a .torrent file, and is independent of the remaining torrents in the system. What this im-
plies is that a peer’s view of the BT system is confined to a subset, termed the peer set,
of all the hosts associated with a specific torrent. Peers wishing to download a particular
content obtain the corresponding .torrent file from a web server and use a centralized
entity called the tracker to collect a random subset of hosts currently active in the tor-
rent. Peers involved in a torrent cooperate to replicate the file among each other using
swarming techniques. BitTorrent achieves scalable and efficient content replication by
employing the choke and rarest first algorithms. The former is used for peer selection,
i.e. which peer to upload to, while the latter for selecting the file part scheduled to be
transfered. Finally, a peer in BitTorrent exists in two states: seed state wherein it has
the entire content or leecher state wherein it is in the process of downloading the file.
Note that we have limited our description to details relevant to the current work and
have glossed over several technicalities of the BT protocol, which may be found in [7].

The rest of the paper is organized as follows: in Section 2 we survey related liter-
ature, while in Section 3 we discuss on the rationale and motivations of our work. In
Section 4 we present our analytical model that emulates the various content scheduling
strategies for a seed, Section 4.1 provides an analytical dissection and addresses issues
such as stability and convergence of the scheduling strategies. We present our results in
Section 5 and draw relevant inferences from them and finally summarize the work in
Section 6.

2 Related Work

In recent times BitTorrent has received substantial interest from the research com-
munity, with several modeling as well as simulation studies aiming at improving its



3

performance. Mathematical models for BT are presented in [3–5]. In [4] a fluid model
is used to characterize the performance of BitTorrent like networks in terms of the
average number of downloads and download times. The authors in [5] propose to im-
prove upon the aforementioned modeling work using a stochastic differential equation
approach, by incorporating more realistic BT network behavior in their study. A Marko-
vian model of a BT network was studied in [3], wherein the authors propose a novel
peer selection strategy to improve download times. Along similar lines is another mod-
eling work, [10], wherein a branching process based Markovian model was formulated
to study BitTorrent like networks.

Simulation based studies are the focus of the works presented in [1,2,6,8,9]. In [1],
the authors investigate the efficacy of the rarest first and the choke algorithms while
[2] documents the impact of various system parameters on the networks performance.
Along similar lines, [8] presents the dissection of the performance of the mechanisms
and algorithms used by BT over a five month period. In [6], the authors make the case
for a network coding scheme to improve content replication, while in [9], the authors
study the performance of BT by employing metrics such as file download time, link
utilization and fairness.

A common feature shared by the literature surveyed thus far is the attempt at model-
ing the BT system in its entirety. As a result, not all facets pertaining to efficient content
distribution are explored. For instance, the first step in this direction is to ensure that the
initial seed is able to inject the entire content among the leechers at the earliest and this
calls for specialized scheduling algorithms. Unfortunately, with a wholistic approach,
this is difficult to accomplish. In this current work we restrict our attention to the seeds,
and study the impact of scheduling decisions at their end on the effectiveness of content
distribution in the system. This is elaborated further in the following section.

3 Rationale and motivation

Typically when content first appears in a BT network, it is stored at a single host, i.e.
there is a single seed. From here on, the lifetime of a torrent can be broadly classified
into three stages: the initial flash crowd or transient phase where the seed experiences a
huge volume of concurrent requests for the content followed by the steady state phase
where the system dynamics (especially the arrival of requests for content) are regular
and finally the “dying” out phase which marks the point where a substantial portion of
the leechers complete downloading the content and leave the system. Note that, it is
not binding for one stage to necessarily succeed the other. For, instance a torrent could
witness multiple iterations of the flash crowd and steady state phases before eventually
dying out.

The motivation for the current work stems from the findings of various simulation
studies [2,9,11] revealing an inefficiency in the performance of the protocol during the
flash crowd phase of a torrent arising from a disproportionate distribution of content
among the leechers. It was found that in the flash crowd scenario, often the distribution
from the seed becomes a bottleneck in the replication process. In such a scenario, a lack
of intelligence during the upload process at the seed could result in some of the pieces
not being replicated at all. This phenomenon is termed starvation and can adversely



4

impact the torrent’s performance in the following manner: consider the scenario where
after a certain time (say t), the seed decides to go offline. At such time, if there are cer-
tain parts of the file that have not yet been replicated among any of the leechers, then the
torrent would eventually die out since none of the leechers would be able to complete
the download. Even otherwise, a disproportionate distribution of the parts would result
in a prolonged flash crowd scenario since the leechers have nowhere else to request the
parts from. In other words the seed and the leechers hosting the rarer parts would be
swamped with a huge volume of upload requests. This problem if further magnified
if the seed is bandwidth constrained. Thus, an improved distribution of content at the
seed’s end would serve to improve the performance of the torrent by decreasing the
download time of the leechers, since there is a bigger pool of leechers with the same
piece.

A relevant doubt at this stage would be to question the rationale behind distinguish-
ing between scheduling decisions at a seed and those at a leecher. In other words, why
would not a common scheduling algorithm work for both ? The answer to this lies in
the difference between the view of the torrent as seen by a leecher and a seed. While the
leecher has complete information on the part distribution among the peers in it’s peer
set, this knowledge is hidden from the seeds. Thus, lack of a global snapshot constrains
a seed to base scheduling decisions on it’s own past history in order to improve content
distribution and hence the motivation behind the current work.

The endeavor in the current work is arrive at a mathematical framework generic in
nature so as to facilitate the performance quantification of various scheduling strategies
that could be implemented at the seed. In this paper we try and address the following
problem: How best can a seed incorporate the limited view of the BT system into its
scheduling decisions so as to ensure better content distribution among the download-
ers?

To this end, as a part of their simulation study of BT, the authors in [9] propose
the local rarest first (LRF) policy, termed “smart seed” scheduling policy, as an im-
provement over the current scheduling scheme. However, the proposed scheme is not
receptive to the system dynamics, i.e. leechers entering and leaving the torrent, and
further, the optimality of such a strategy is not guaranteed. In this paper, we provide
a theoretical grounding for the problem through a framework based on stochastic ap-
proximation algorithms. In particular, we compare the performance of our scheduling
strategy, the proportional fairness scheme (PFS), with the current proposed modifica-
tion, local rarest first (LRF), and the existing policy, random scheduling (RS), currently
used in the mainline BT client.

4 Analytical Framework

In this section, we present our analytic framework based on stochastic approxima-
tion to study the performance of piece scheduling decisions made at the seed. While
the framework is generic in nature and applicable to study a large class of scheduling
policies, for illustrative purposes we focus our discussion on characterizing the propor-
tional fairness (PFS) and the LRF schemes. In the current section we present a detailed
overview of incorporating the PFS scheme into the framework while in Section 4.2



5

we outline the modeling of the LRF scheme. The gist of the two schemes is presented
below:

– LRF: In this policy users are served on a first come first serve basis. Leechers
request the seed for a set of parts (RB) and the seed uploads the least served piece
amongst RB.

– Proportional Fairness Scheme (PFS): In this scheme, the seed takes into account
the requests coming in for each part and the corresponding past throughput and
uploads the piece with the maximum ratio of the two.

Note that the existing scheduling algorithm (RS) is purely random in nature hence
we do not model it in the current work.

Before proceeding with the description of the model, we outline our assumptions:
The content to be replicated is divided into p equal parts and is stored at a single seed.
The seed is modeled by a single server queue with no buffer space. Time is slotted in
intervals with the granularity of each round chosen to accommodate the transfer of a
single file part. For the sake of simplicity, in the current work we allow peers to up-
load to 1 other randomly selected peer, as opposed to the fully fledged implementation
wherein 4 peers are selected using the choke algorithm. In particular, the seed serves
only one part in a round, with the decision on the piece to be uploaded in the next round
made based on the requests that arrive during the current time slot. The peer satisfy-
ing the scheduling criteria is served in the next slot while the rest of the requests are
dropped. The above assumptions are a reasonable mapping to a bandwidth constrained
seed where it makes sense to dedicate the entire bandwidth to serve a particular request
instead of increasing the latency by dividing it.

Let the request vector at the end of slot n (start of slot n + 1) be represented as
R(n + 1) = [r1,n+1, r2,n+1, · · · , rp,n+1], where ri,n+1 denotes the number of times
part i was requested for in round n. In other words, each entry in R(n + 1) represents
the number of leechers requesting for that particular part during the previous round,
i.e. round n. Let the throughput vector be denoted as T (n) = [t1,n, t2,n, · · · , tp,n],
where ti,n represents the number of times part i was served in n rounds. Similarly,
let θ(n) = [θ1,n, θ2,n, · · · , θp,n] denote the vector of sum of requests for the different
parts, each time it was served, averaged over the past n rounds. The average throughput
and request rate for part i after n rounds are defined as follows:

Ti,n =
∑n

k=1 Ii,k
n

θi,n =
∑n

k=1 ri,kIi,k
n

where Ii,k is an indicator variable equal to 1 if part i is scheduled in round k and 0
otherwise. Thus, at the end of each round, each entry in vectors θ and T can be updated
as follows:

θi,n+1 = θi,n + εn[Ii,n+1ri,n+1 − θi,n] and Ti,n+1 = Ti,n + εn[Ii,n+1 − Ti,n] (1)

with Ii,n+1 as explained above and εn = 1
n+1 . Given the above system parameters,

the seed scheduling algorithm we propose (PFS) can be summarized as follows:



6

– Among the non-zero request entries that arrive in a round, select that part maximiz-
ing the following ratio:

arg max
i

{
ri,n+1

θi,n + d

}
(2)

If there are multiple parts satisfying the above criterion, break ties arbitrarily. Here,
d is a constant arbitrarily close to zero and is chosen to avoid the divide by zero
error in the initial stages of the torrent when the throughputs for nearly all the parts
are close to or equal to zero.

– Upload the chosen part from the previous step to the requesting peer. Again, break
ties arbitrarily

It is quite natural to question the soundness, be it theoretical or practical, of a formu-
lation as in Equation (2). The proposed format can be justified if the content replication
process were to be viewed, from a seed’s perspective, as a variant of the utility maxi-
mization problem. Note that in a BT system, the onus is primarily on the seed to ensure
the spread of content among the peers in the system. Thus, a seed seeks to maximize
the replicas of each piece among the leechers and therefore it is reasonable to assume
that the utility function chosen is concave in nature. In this context consider the utility
function to be the sum of the logarithm of average number of requests of the individual
pieces, i.e.

U(θ) =
p∑

i=1

log(θi + d) (3)

Then it can be shown [13] that for this particular choice of utility maximization, the
policy outlined in Equation (2) yields optimal results. We further note that the seed is not
constrained to choose the policy of Equation (2). Any reasonable representative concave
function can be chosen as the utility function and the scheduling policy appropriately
tailored to obtain optimal results.

4.1 Convergence Analysis

The formulation of Equation (1) is in the framework of stochastic approximation
algorithms [12]. Notably, under certain assumptions, which can be shown to be valid
in a BitTorrent scenario, it can be shown that the stochastic approximation algorithm
in Equation (1) can be described by a deterministic mean field ordinary differential
equation (ODE) system. This enables us to characterize the behavior of the proposed
algorithm and is also a useful tool to study the asymptotic properties such as the long
term throughput of the respective file pieces. An important consequence of the conver-
gence proof is that concerning the stability of the system. For example, a scheduling
policy that converges asymptotically also characterizes a stable system. We now outline
the assumptions required for the ODE convergence:

– Stationarity of the request distribution: {R(n), n < ∞}. Note that in a BT system,
the requests generated by leechers for the missing pieces depend only on the current



7

distribution of the parts among each other. For instance, if a system snapshot at time
t were to be translated to a different instant, say t1, the pattern of requests generated
would be similar. Define the stationary expectation w.r.t. the request distribution for
part i as

ĥi(θ) = E[I{ ri
θi+di

≥ rj
θj+dj

},∀j 6=i
] (4)

– Lipschitz continuity of ĥi(.), 1 ≤ i ≤ p. We demonstrate this with the help of a
simple case where the file consists of two parts and the joint probability density is
given by p(r1, r2). Then, for part 1, Equation (4) can then be simplified as

ĥ1(θ) =
∫
I{ r1

r2
≥w}p(r1, r2)dr1dr2 (5)

where w = (θ1 + d)/(θ2 + d). Note that in the above equation we have used
a continuous density function for the request generation process, which is in fact
discrete. This is because, it has been shown in [14], that the requests for the parts
can be approximated by a Gaussian distribution which is continuous. In the current
work, we employ the same approximation and hence the formulation of Equation
(5). Now, Eqn. (5) is Lipschitz continuous with respect to w, since the area of
the region where the indicator function is not zero is a differentiable function of
w [13]. Similar is the case for ĥ2(θ). Further, the derivatives of ĥ1(θ) and ĥ2(θ)
will be continuous if p(r1, r2) is bounded and continuous.

– Bounded density of R(n). This is trivially satisfied since the number of users in a
BT system is finite thus ensuring that the requests generated during each round of
time remain bounded.

Under the above assumptions, the stochastic approximation algorithm of Equation
(1) can be approximated by the ODE given by:

Ṫ PFS
i = E[I{ ri

θi+di
≥ rj

θj+dj
}∀j 6=i

]− T PFS
i (6)

4.2 Modeling other policies
The analytic framework provides a generic setting wherein a wide class of schedul-

ing policies can be modeled and quantified. We illustrate the robustness of the frame-
work by modeling the LRF scheme in [9] as follows:

– For each piece i in the request block (RB) set ri,n+1 = 1
– Choose piece i such that: arg maxi∈RB

{
1

θi,n+di

}
; break ties arbitrarily

– Upload the piece from the previous step

The corresponding throughput formulation for part i, T LRF
i , is then given by:

T LRF
i,n+1 = T LRF

i,n + εn[I{ 1
θi+di

≥ 1
θj+dj

}∀j 6=i − T LRF
i,n ] (7)

and the equivalent ODE by:

Ṫ LRF
i = E[I{ 1

θi+di
≥ 1

θj+dj
}∀j 6=i]− T LRF

i (8)



8

5 Results

In this section we present results comparing the efficiency of the PFS scheme against
LRF. To prove the robustness of the proposed framework, we quantify the performance
gains obtained in the short term as well as in the long run. For the short term analy-
sis we perform a numerical evaluation of the PFS scheduling using the stochastic ap-
proximation algorithm as described in Section 4. On the other hand, we perform the
long term evaluation using a custom simulator of the BT system. The rationale be-
hind this choice lies in the lack of a realistic characterization of the piece request rate
R(n) = [r1,n, r2,n, · · · , rp,n] to be used in the analytical evaluation presented in Sec-
tion 4.1. Our implementation, which is outlined in Section 5.2, also provides a global
perspective of the system, as opposed to the seed’s perspective offered by the analytical
model.

5.1 Short term behavior

Since the primary objective in the initial stages of a torrent is to minimize starvation
of pieces, a natural benchmark for comparing the policies would be to measure the
number of starved pieces at a certain point of time under each policy. Here, we choose to
make the comparison after p rounds, where p denotes the number of pieces the content
is divided into. The rationale behind this is as follows: since we assume that the seed
schedules one piece per round, in the ideal case it would require p rounds to ensure that
the file in it’s entirety is present among the leechers. Figure 1 graphs the performance
of the various policies in the flash crowd stage. In Figure 1(a), the number of starved
parts of a 30 part file are plotted for each policy over 100 runs of our algorithm while
Figure 1(b) quantifies the impact of the file size on the number of starved parts. Each
point on the graph of Fig. 1(b) is an average of 100 runs. As seen from the plots, the
proportional fair scheme offers significant gains over the other two policies. Even with
increasing file sizes, the performance degradation is not very substantial. In fact, for
a file consisting of 100 parts, the ratio of starved pieces in the “flash crowd” phase is
about 1:3 for PFS and LRF, while it is around 1:18 when comparing PFS and the RS
schemes. We believe the better performance of the algorithm could be attributed to the
following factors:

– The seed makes a scheduling decision taking into account all the requests that are
made in a particular round, unlike LRF and RS where users are served in a first
come first served manner. For instance, if a large number of leechers request for a
particular piece there is a higher probability of it being a rare piece as compared
the rarity of a piece requested by a single user.

– In an open BT system the local rarest piece need not reflect reality, from the seed’s
perspective, due to leechers entering and leaving the system. Thus, when a seed
bases its scheduling decisions only on its past history like in the LRF case, due
to peers’ dynamics a seed may have a stale vision of what is rare and what is not
in the system. The PFS scheme accounts for this by using the number of requests
for a piece as the system’s indicator of rarity and makes the scheduling decision
accordingly.



9

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15
Scheduling Efficiency of PFS, LRF and Random Scheduling Schemes

Simulation Run

Nu
mb

er 
of 
st
ar
ve
d p

art
s

LRF
PFS
RSLRF

PFS

RS

30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40
Scheduling Efficiency of PFS, LRF and Random Scheduling Schemes

Number of parts (file size)

N
um

be
r o

f s
ta
rv
e
d

 p
ar

ts

LRF
PFS
RS

(a) (b)

Fig. 1. Performance evaluation in the flash crowd phase

5.2 Long term behavior

As a final validation of our theoretical formulation presented in Eqn (2), we present
a simulation comparison of the proposed PFS algorithm against the LRF scheme, espe-
cially the behavior over long time periods. Since we only modify the seed scheduling
algorithm, it only makes sense to quantify the impact within the seed’s peer set and not
globally. The main objective in the long term is to prevent a high variance in the number
of replicas of each part, i.e. prevent a disproportionate piece replication in the peer set
since it is the root cause of all problems. In other words the scheduling process should
be “fair” to the individual pieces. The intuition behind this is that ensuring a balanced
replication of the pieces can help improve download times since there is a higher level
of redundancy and also distribute the load more evenly among the leechers. As a mea-
sure of the degree of fairness, we employ the Max-Min Fairness Index [15] given by
min∀i(xi)
max∀i(xi)

, where xi denotes the number of replicas of part i at the end of a round in the
seed’s peer set. Before discussing the long term results, we provide a brief description
of the custom simulator we designed.

BitTorrent Simulator: We developed a synchronous simulator working in rounds
wherein we implemented both seed and leecher algorithms following the BT specifica-
tion. We then implemented two scheduling policies at the seed side, the PFS and the
LRF. The only limitation we imposed on the simulator follows the one of the analytical
model: only one peer is unchoked in each round. The peer set size for a peer is set to the
default value of the mainline BT client, that is 80 peers. To quantify the impact of the
scheduling decisions, we assume that leechers that finish downloading leave the torrent,
i.e. there is a single seed in the system at all times.

Simulation results We compare the LRF and the PFS scheduling algorithms assuming
the content to be split in p = 150 pieces. We simulate the presence of one seed only
in the system and study two representative and realistic scenarios: the first where the
torrent experiences a heavy flash crowd and the second indicative of a torrent with a
high churn rate.



10

To simulate the flash crowd setting, 160 peers are injected into the system in the
first round, after which no further joins are allowed. The objective here is to study the
algorithm’s sensitivity toward achieving a balanced replication in the wake of a huge
volume of requests. Note that the Max-Min Fairness plots can also be used to infer and
compare the download times experienced by the leechers. Since we assume that leechers
with the entire content depart, the time T when the graph reaches one also denotes the
instant when all the leechers in the system have finished downloading. Therefore, the
faster the graph peaks to one, the better it is in terms of fairness as well as download
times. In Figure 2(a) we plot the Max-Min Fairness index versus time (in simulation
rounds) for the flash crowd scenario described above. When using PFS scheduling,
T = 159 while for the LRF case T = 219. A similar trend was observed over multiple
repetitions of the experiment, showing an improvement of the total time to download
the content in favor of PFS whereas this improvement was even more pronounced in
the case of smaller files.

120 140 160 180 200 220 240
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (simulation round)

M
ax

−M
in

 F
ai

rn
es

s 
In

de
x

 

 

PFS

LRF

T=159 T=219

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (simulation round)

M
ax

−
M

in
 F

ai
rn

es
s 

In
de

x

 

 

PFS

LRF

(a) (b)

Fig. 2. Simulation results for the long term analysis.

In the second simulation study, we focus on the responsiveness of scheduling de-
cisions at the seed when substantial variations in the population of peers downloading
the content arise, i.e. a system with high churn. In particular, we consider 80 peers join-
ing the system at round 1, then 30 randomly chosen peers leaving the system at round
150, and finally 80 new peers joining the system at round 250. Although both PFS and
LRF scheduling reach the highest fairness index, Figure 2(b) clearly shows that PFS
reacts consistently faster to peer dynamics as compared to LRF. Similar results have
been obtained for different runs of the same scenario.

6 Conclusion and Future Work

In this work, we motivated the need for improved scheduling algorithms at the seed
in a BT system and quantified the performance gains obtained thus. A generic analyt-
ical framework to model such algorithms was presented and a novel seed scheduling



11

strategy to achieve better content replication was proposed. Through numerical evalu-
ation of the model as well as simulations the improved performance of the proposed
PFS algorithm over existing strategies in the literature (LRF and the existing mainline
random scheduling schemes) was demonstrated.

References

1. A. Legout, G. Urvoy-Keller and P. Michiardi, Rarest First and Choke Algorithms Are Enough,
ACM SIGCOMM/USENIX IMC 2006, Rio de Janeiro, Brazil.

2. G. Urvoy-Keller and P. Michiardi, Impact of Inner Parameters and Overlay Structure on the
Performance of BitTorrent, IEEE Global Internet Symposium 2006, Barcelona, Spain.

3. Y. Tian, D. Wu and K. W. Ng, Modeling, Analysis and Improvement for BitTorrent-Like File
Sharing Networks, IEEE INFOCOM 2006, Barcelona, Spain.

4. D. Qiu and R. Srikant, Modeling and performance analysis of BitTorrentlike peer-to-peer
networks, ACM SIGCOMM 2004, Portland, OR, USA.

5. B. Fan, D-M. Chiu and J. C. Sl Lui, Stochastic Differential Equation Approach to Model
BitTorrent-like P2P Systems, IEEE ICC 2006, Istanbul, Turkey.

6. C. Gkantsidis and P. Rodriguez, Network Coding for Large Scale Content Distribution, IEEE
INFOCOM 2005, Miami, USA.

7. B. Cohen, Incentives Build Robustness in BitTorrent, Workshop on Economics of Peer-to-Peer
Systems 2003, Berkeley, USA.

8. M. Izal, G. Urvoy-Keller, E. W. Biersack, P. Felber, A. A. Hamra and L. Garces-Erise, Dis-
secting BitTorrent: Five Months in a Torrent’s Lifetime, PAM 2004, Antibes, France.

9. A. Bharambe, C. Herley and V. N. Padmanabhan, Analyzing and Improving a BitTorrent Net-
work’s Performance Mechanisms, IEEE INFOCOM 2006, Barcelona, Spain.

10. X. Yang and G. de Veciana, Service capacity in peer-to-peer networks, IEEE INFOCOM
2004, Hong Kong, China.

11. F. Mathieu and J. Reynier, Missing Piece Issue and Upload Strategies in Flashcrowds and
P2P-assisted Filesharing, Technical Report, ENS, France.

12. H. J Kushner and G. Yin, Stochastic Approximation Algorithms and Applications, 2nd ed.
Berlin, Germany: Springer-Verlag, 2003.

13. H. J Kushner and P. A Whiting, Convergence of Proportional-Fair Sharing Algorithms Under
General Conditions, IEEE Transactions on Wireless Communications, Vol. 3, No. 4, July 2004

14. D. Erman, D. Ilie and A. Popescu, BitTorrent Session and Message Models, ICCGI 2006,
Bucharest, Romania.

15. B. Radunović and J.Y. Le Boudec, A Unified Framework for Max-Min and Min-Max Fairness
with Applications, Technical Report, EPFL, July 2002


