
On the Interaction Between Internet
Applications and TCP�

M. Siekkinen1,��, G. Urvoy-Keller2, and E.W. Biersack2

1 University of Oslo, Dept. of Informatics, Postbox 1080 Blindern, 0316 Oslo, Norway
siekkine@ifi.uio.no

2 Institut Eurecom, 2229, route des crêtes, 06904 Sophia-Antipolis, France
{urvoy,erbi}@eurecom.fr

Abstract. We focus in this paper on passive traffic measurement tech-
niques that collect traces of TCP packets and analyze them to derive, for
example, round-trip times or aggregate metrics such as average through-
put. The seminal work of Zhang [1] has shown that for more than 50%
of the TCP connections observed, it is not the network bandwidth that
limits the throughput but rather the application or mechanisms such as
TCP slow start or too small a receiver window. Certain types of analysis
of the network characteristics are meaningful only when performed on
TCP traffic that experiences minimal interference by the application. To
eliminate such interference, we propose a generic method that partitions
the packets of a TCP connection in bulk data transfer and in applica-
tion limited periods: The packets of a bulk data transfer period (BTP)
experience minimal interference from the application, while the packets
of an application limited period (ALP) experience interference from the
application that prevents TCP from fully utilizing the network resources
because the application does not produce data fast enough. As a proof
of concept, we apply our algorithm to public Internet traffic traces and
show that unless the effects of the application are filtered out, studying
the end-to-end path and traffic characteristics from a network point of
view can produce biased results.

1 Introduction

While the majority of Internet applications today use TCP as a transport pro-
tocol, they differ very much in the way they use TCP. Consider, for instance,
a P2P application such as BitTorrent that may establish 20-30 connections of
which only a subset is actively used at any time for transmitting data. On the
other hand, FTP establishes one control and one data connection. FTP trans-
fers ”all the data at once”, whereas BitTorrent connections alternate between
transfer (unchoked) and idle (choked) periods.

Much research has been done to detect anomalies and to characterize TCP
traffic in the Internet through passive measurements. This work usually focuses
� This work has been partly supported by France Telecom, project CRE-46126878.

�� Work mostly done while at Institut Eurecom.

L. Mason, T. Drwiega, and J. Yan (Eds.): ITC 2007, LNCS 4516, pp. 962–973, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On the Interaction Between Internet Applications and TCP 963

on the TCP and IP layers, but often ignores the effects of the application on
top. When seeking to explain certain characteristics, e.g. burstiness of TCP
traffic [2], it is crucial to account for the effects of the application. In addition,
it is very important to understand to what extent the applications themselves
are responsible for the transmission rates observed in today’s Internet, and not
limited by the available resources in the network [1].

The contributions of this paper are two fold: First, we present an algorithm
that allows to isolate bulk data transfer periods (BTP) and application limited
periods (ALP) within a connection for an application using TCP as transport
protocol. We define a BTP as a period where the TCP sender never needs to
wait for the application on top to provide data to transfer. Other time periods
are defined as ALPs. Our algorithm to identify BTPs within a TCP connection
is generic in the sense that it works regardless of the type of application on top of
TCP. In this way, it can be applied to traces containing traffic from an unknown
mixture of applications. Second, as a proof of concept, we show through examples
that unless the effects of the application are filtered out, studying the end-to-end
path and traffic characteristics from a network point of view can produce biased
results.

Pioneering research work on TCP root cause analysis was done by Zhang et
al. in [1] where they identify application limitation as one of the possible causes
for achieving a given throughput. Our work differs from theirs by providing a
method to isolate the bulk data transfers for further analysis and to evaluate
the effect of the application in a quantitative way. Allman [3] recommends to
carefully choose the application when evaluating TCP performance. We propose
to minimize the effect of the application in the case when it is impossible to
make such a choice, e.g. when analyzing traffic traces recorded by third parties.

2 Applications and TCP

Figure 1 describes the way data flows from sender to receiver application using a
single TCP connection. The interaction happens through buffers: at the sender
side the application stores data to be transmitted by TCP in buffer b1, while at
the receiver side TCP stores correctly received and ordered data in buffer b2 that
is consequently read by the receiving application. We focus only on the behav-
ior of the sending application since it projects directly the application protocol
behavior while the receiving application should always read the buffer b2 when-
ever it contains data1. When the application sends data constantly, buffer b1 in
Figure 1 always contains data waiting to be transferred. We refer to such a period
as Bulk Transfer Period (BTP). In other cases, when the application limits the
throughput achieved, TCP is unable to fully utilize the network resources due to
lack of data to send. We call such a period Application Limited Period (ALP).
The interaction between the sending application and TCP manifests itself in the
traffic in diverse ways depending on the type of application.
1 When the receiving application can not read the buffer b2 fast enough, the receiving

TCP will notify the sending TCP by lowering the receiver advertised window.

964 M. Siekkinen, G. Urvoy-Keller, and E.W. Biersack

Application

TCP

Application

TCPNetwork

buffers
b1

ReceiverSender

b2

Fig. 1. Data flow from the sender to the receiver application through a single TCP
connection

Table 1. Summary of Different Application Types

Type Main Characteristics Example Applications
1 constant application limited transmis-

sion rate, consists of a single ALP
Skype and other live streaming, and
client rate limited eDonkey

2 user dependent transmission rate, typ-
ically a single ALP

telnet and instant messaging applica-
tions

3 transmission bursts separated by idle
periods, applications using persistent
connections, BTPs interspersed with
ALPs

Web w/ persistent HTTP connections,
BitTorrent (choked and unchoked peri-
ods)

4 transmit all data at once, single BTP FTP
5 mixture of 1 and 3 BitTorrent with rate limit imposed by

client application

We depict the diverse classes of applications operating on top of TCP in
Table 1. This classification illustrates the multiple ways in which the application
can influence the TCP traffic. Given such a diversity, it is challenging to design
a generic algorithm that separates BTPs from ALPs since the application may
interfere on very different time scales.

3 The Isolate & Merge (IM) Algorithm

3.1 Context

We call our algorithm for identifying BTPs and ALPs the Isolate & Merge (IM)
Algorithm due to the way it proceeds. The algorithm is generic in that it can be
applied without any calibration to traffic from any application. Additionally, it
does not depend on the version of TCP used. Instead, the algorithm relies only on
observing generic behavior common to all TCP versions. The algorithm processes
bidirectional TCP/IP traffic passively collected at a single measurement point2.

2 It may not always be possible to capture the traffic in both directions, e.g. in the
backbone where connections may have asymmetric upstream and downstream paths
[4]. Nevertheless, we argue that unidirectional traces are often not sufficient for in-
depth analysis, as is the case for round-trip time (RTT) estimation.

On the Interaction Between Internet Applications and TCP 965

We define a TCP connection as a sequence of packets having the same source-
destination or destination-source pairs of IP addresses and TCP port numbers.
The IM algorithm processes only connections consisting of at least 130 data
packets: Connections with fewer than 130 packets are very likely to be dominated
by the TCP slow start algorithm and therefore convey little information about
the TCP/IP data path for future analysis. We have chosen this threshold since a
TCP sender that starts in slow start needs to transmit approximately 130 data
packets (assuming a MSS of 1460 bytes) in order to reach a congestion window
size equal to 64 Kbytes, which is a common size for the receiver advertised
window [5]. For the same reasons, we define the minimum required size of a
BTP to be 130 data packets. We also define as short transfer period (STP) a
sequence of packets that contains fewer than 130 data packets and whose rate of
transfer is not application limited. We use the term transfer period (TP) to refer
to either a BTP or STP. The IM algorithm identifies BTPs for a single direction
of a connection at a time.

3.2 Procedures

The IM algorithm consists of two phases: First, the Isolate phase partitions the
connection into TPs separated by ALPs. In the second, Merge phase, the algo-
rithm attempts to merge two consecutive TPs including the ALP that separates
these two TPs in order to create a new BTP.

The key insight of the Isolate phase is to use small-size packets and idle
times between packets as indications that the application does not provide data
fast enough to TCP. Therefore, a large fraction of transmitted packets that are
smaller than MSS or an idle time longer than a RTT following a packet smaller
than MSS trigger the beginning of an ALP. Similarly, many consecutive MSS
packets mark the beginning of a BTP.

In order to understand the reasoning behind the Merge phase, let us consider
how the ALPs differ from the TPs. ALPs achieve by definition a lower throughput
than TPs, since the application prevents TCP from fully using the network
resources. Thus, the application interference is visible as a reduced throughput.
The merging phase is needed because, after the isolate phase, a connection may
be divided into many BTPs and STPs separated by very short ALPs. It would
be often desirable to combine these periods into one long BTP for subsequent
analysis if the effect of these short ALPs on the overall throughput achieved
is small. For the above reasons, the procedure of merging periods is based on
comparing the throughput of the periods involved in the merger.

The mergers are controlled with the threshold parameter drop ∈ [0, 1].
Figures 2 and 3 demonstrate successful and failed mergers, respectively. Peri-
ods can be merged if and only if the throughput of the resulting merged BTP
(total bytes divided by total duration) is higher than the drop value times the
throughput of the TPs combined together excluding the ALP in the middle
(sum of bytes of TPs divided by sum of durations of TPs). In this way, the drop
parameter value limits the maximum amount of application interference, i.e.
throughput decrease, within the resulting merged periods. Hence, by selecting

966 M. Siekkinen, G. Urvoy-Keller, and E.W. Biersack

ALP
merge, drop=0.8

2.0001 MB / 12 sec
2 MB / 10 sec

= 0.83 > 0.8 => SUCCESS

BTPBTP
5 sec
1 MB

2 sec
100 B 1 MB

5 sec

Fig. 2. Successful merger

merge, drop=0.8

1.11 MB / 11.3 sec
1.1 MB / 3.3 sec

= 0.29 < 0.8 => FAILED

ALPBTP STP
3 sec
1 MB 10 KB

8 sec
100 KB
0.3 sec

Fig. 3. Failed merger

a specific value of the drop parameter, the user can choose the desired maxi-
mum amount of application interference allowed to be present in the resulting
BTPs that can then be used for further analysis. The algorithm for merging pe-
riods proceeds in an iterative manner, which ensures that eventually all possible
mergers, and only those allowed, are performed.

Experimenting with different values of the drop parameter allows for a quan-
titative analysis of the application impact on the throughput achieved, which, as
we show in the extended version of this paper [6], can provide interesting input
for characterizing the application behavior. Due to space limitations, we refer
the reader for an algorithmic description of the IM procedures to our techni-
cal report [6]. The procedures are more complex that one would think at first
sight because they are designed to work correctly regardless of the location of
the measurement point on the TCP/IP path (i.e. at sender/receiver or middle
of path). Because of that, the measurement point location needs first to be de-
termined, as it is not always known a priori, and furthermore, the location has
implications to RTT estimation and calculations of the inter-arrival times (IAT)
between packets.

We validated the IM algorithm with the help of the Web100 software [7] that
allows querying the TCP state information of active TCP connections. We cross-
checked the results of applying IM on a large trace of Internet traffic with the
Web100 data captured at the sender and observed that the results matched in
more than 95% of the cases. For more details please consult [6].

4 Data Sets

We applied the IM algorithm to eight application-specific traffic traces in order to
investigate the impact of different applications in our studies in Section 5. Except
for the SSH data set, all of the application specific traces were extracted from
the same original public ADSL access network traces (the first 19 days from
Location 4 traces in the M2C Measurement Data Repository at http://m2c-
a.cs.utwente.nl/repository/, two traces per day, 15 minutes each) by filtering
on the well-known TCP port numbers of these applications. This method gives
in most of the cases solely the traffic from the expected application except for
some cases where well-known TCP ports, such as port 80, are used by P2P
applications to bypass firewalls, for example. The SSH traffic data set consists of
scp downloads from various locations all over the world to a single destination.

On the Interaction Between Internet Applications and TCP 967

Table 2. Trace characteristics

traffic type BitTorrent eDonkey FTP data SSH Gnutella HTTP(S) FastTrack WinMX
port numbers 6881-6889 4661,4662 20 22 6346,6347 80,443 1214 6699

duration 4d 22h 4d 22h 18d 22h 7d 18d 22h 4d 22h 18d 22h 18d 22h
packets 31M 44M 9M 3.6M 8M 14M 20M 13M
bytes 19GB 20GB 7GB 2.9GB 2GB 9GB 14GB 5GB
cnxs 150K 1.6M 5.9K 48K 410K 590K 360K 6.3K

cnxs carrying >10KB 30K 23K 1.1K 670 8.0K 53K 11K 3.3K
cnxs with BTPs 10K 5.5K 390 442 940 3.2K 5.6K 480

bytes in BTPs (drop=1) 2.9GB 690MB 4.3GB 2.7GB 560MB 4.5GB 7.0GB 150MB
bytes in BTPs (drop=0.9) 7.4GB 3.0GB 5.2GB 2.8GB 1.0GB 4.8GB 11GB 1.2GB
avg BTP size (drop=1) 640KB 550KB 2.9MB 4.8MB 590KB 1.6MB 770KB 290KB

avg BTP size (drop=0.9) 850KB 780KB 13.4MB 5.9MB 1.2MB 1.9MB 1.9MB 3.7MB
avg BTP dur. (drop=1) 38s 2m 23s 55s 14s 51s 35s 1m 47s 27s

avg BTP dur. (drop=0.9) 1m 45s 4m 14s 4m 31s 17s 2m 26s 51s 5m 13s 6m 7s

Table 2 summarizes the characteristics of the traces. Regardless of the appli-
cation type, BTPs were found only in a small fraction of the connections, which
is mostly explained by the large number of small connections and the fact that
BTPs are required to contain at least 130 packets. BTPs generally carry the
majority of the bytes. However, BitTorrent and eDonkey traffic are exceptions
with BTPs containing a smaller fraction of the bytes, which can be explained
by the fact that these applications often throttle their transmission rates, hence,
generating only ALPs. The average size of the connections including no BTPs
was below 30KB for all applications except for FTP which had an average of
220KB. Oddly enough, the largest ones of these FTP connections, carrying up to
90MB, appeared clearly to be rate limited by the application sending constantly
small packets. These unexpected examples clearly emphasize the need to identify
the BTPs even for “bulk transfer applications” such as FTP.

5 Distortion Due to ALPs on End-to-end Path Studies

BTPs can capture the TCP/IP path properties in a different way than do the
entire connections. If TCP sends at full rate, the effects for the data path (e.g.
congestion) and, thus, the behavior observed (e.g. retransmissions), are different
from the situation when the application limits the transmission rate. In many
cases (network health monitoring, network aware applications etc.), it will be
necessary to capture only the effects of the TCP/IP data path excluding the
application impact.

In this section, we attempt to quantify what we call distortion in the TCP/IP
data path analysis due to the presence of ALPs. This distortion is the biasing
effects due to the application protocol in measures/estimations of metrics that
typically measure the end-to-end TCP/IP path properties. RTT and throughput
are generally the two principal ones among such metrics. That is why they
are the focus of our two case studies. In the first case study, we study the
impact of the application protocol on the characteristics of TCP transfer rates,
i.e. the throughput achieved on a given data path. In the second case study,
we investigate the impact of the application protocol on the accuracy of RTT

968 M. Siekkinen, G. Urvoy-Keller, and E.W. Biersack

estimation of TCP connections. Our goal is not to demonstrate that connection-
level measurements (vs. BTP-level measurements) yield necessarily wrong results
(especially in the first case study). Instead, we want to underline the fact that
one should carefully consider what is the role and impact of the application
running on top of TCP on the measurements when drawing conclusions from
them. While there are cases when connection-level measurements are desirable,
there are also other cases where they can be misleading.

5.1 Studying Characteristics of Rates

Throughput is a key performance metrics for many Internet application. It can
be seen as a manifestation of the underlying TCP/IP data path characteristics
at a given time instant. However, if the application controls the transmission
rate, such an interpretation is false. In order to demonstrate the difference in
measuring the mean throughput directly at the connection level vs. first filtering
out the application impact, we compared the mean rates of BTPs within a con-
nection to the mean rates of entire connections. Throughout this study, we used
drop = 0.9 when identifying the BTPs used in the analysis, which means that we
allowed a maximum of 10% of reduction in the throughput of the merged TPs.

We computed the ratio (connection bytes
connection duration)
(
�

BTP bytes�
BT P duration) , which is the throughput computed

for the entire connection divided by the throughput obtained when including
only the bytes and durations of the BTPs of the connection. The mean values of
the ratios for each application data set are in Table 3. These values show that the
results can differ a lot depending on the application. The interpretation depends
also on the application: For example, while the average download throughput
of a BitTorrent BTP might express the average achievable throughput of that
specific TCP/IP path, the average download throughput of an entire BitTorrent
connection could be interpreted as the average rate a specific peer is providing
to another peer. On the other hand, in the case of web browsing using persistent
HTTP connections, a difference between these two throughput values could be
interpreted as a sign of particular user behavior. For example, a large difference
means that the user spends a long time reading the current page before clicking
on a new link.

The authors found in [1] that the rates and sizes of transfers were highly cor-
related (coefficients of correlation consistently over 0.8) which they considered
as an indication of specific user behavior: the users choose what they download
based on the available bandwidth. Table 4 contains the coefficients of corre-
lation between the rates (throughput) and sizes (number of bytes transferred)
computed for entire connections and BTPs of our data sets. In the case of BTPs,
the average throughput and the sum of bytes transferred was computed for each
connection. As in [1], we compared the logarithms of the rates and sizes because
of the large range of values.

While we observe correlation throughout our data sets, the amount of corre-
lation varies a lot depending on the application. Furthermore, when we compare
correlation at connection- and BTP-level, the difference in the degree of correla-

On the Interaction Between Internet Applications and TCP 969

Table 3. Mean Values of the Throughput Ratio

traffic type BitTorrent eDonkey FTP data SSH
avg tput ratio 0.36 0.86 0.96 0.73
traffic type Gnutella HTTP(S) FastTrack WinMX

avg tput ratio 0.74 0.64 0.94 0.87

Table 4. Coefficients of correlation between log of throughput and log of number of
bytes transferred. Only connections transferring at least 100KB were included and
drop = 0.9 was used when determining the BTPs.

traffic type BitTorrent eDonkey FTP data SSH
connections 0.92 0.66 0.41 0.83

BTPs 0.37 0.42 0.32 0.16
traffic type Gnutella HTTP(S) FastTrack WinMX
connections 0.63 0.19 0.56 0.91

BTPs 0.48 0.13 0.52 0.77

tion varies from negligible (HTTP and FTP) to very large (BitTorrent and SSH).
The large difference for BitTorrent traffic is due to two characteristics specific
to the application protocol. First, BitTorrent favors fast peers. Fast peers, i.e.
the peers having large available bandwidth, are less likely to be choked and,
hence, manage to exchange more bytes than slower peers. Slow peers are more
likely to be choked more often and, thus, exchange less bytes. While this ef-
fect is also visible in the correlations when looking at the BTPs, it is amplified
when the throughput is computed for the entire connection. The first reason is
that the choked periods, during which the peer is idle, are identified as ALPs,
which, therefore, decrease the connection-level throughput but do not affect the
throughput of the BTPs. In this way, connections of slow peers mainly con-
tribute to the difference of the correlations between connection and BTP level
for BitTorrent traffic in Table 4. The second reason is the BitTorrent download
connections that are not used simultaneously to upload data. In this case, the
upstream data traffic of these connections consists only of periodically sent very
small packets containing requests for new chunks and other control messages.
This type of traffic generates very low-rate (< 5Kbit/s) small-size connections
that are identified as ALPs and, therefore, excluded when studying the BTPs.

For SSH traffic, the large difference in the degree of correlation in connection-
level and BTP-level is explained by the parameter negotiation in the beginning
of the connection. This negotiation takes a relatively long time (even up to a few
seconds) during which few bytes are transferred. Since the very low throughput
during this negotiation phase is controlled by the application, this period is iden-
tified as an ALP. Therefore, it only decreases the connection-level throughput.
Moreover, the fewer are the bytes transmitted in total, the larger is the impact
on the rate of the connection.

970 M. Siekkinen, G. Urvoy-Keller, and E.W. Biersack

Overall, the degrees of correlation seem to be slightly higher for the P2P
applications (BitTorrent, eDonkey, Gnutella, FastTrack, and WinMX). One ex-
planation is their ability to download a given file in pieces from several sources
simultaneously: the faster the peer, the more it contributes by transferring more
pieces, i.e. a larger portion of the file. This behavior may be reflected in both,
connection-level and BTP-level results, depending on whether a transfer of mul-
tiple pieces is identified as a single or multiple BTPs. In the case that the ap-
plication waits for a download of a piece to finish before requesting a new piece,
which can cause an ALP, a transfer of a piece is likely to be identified as a sep-
arate BTP. If the application “pipelines” the requests, the transfer of multiple
pieces is likely to be continuous and be identified as a single BTP.

The relatively low correlation for FTP and HTTP contradicts with the re-
sults in [1] and suggests that users download content regardless of the available
bandwidth. In other words, the content is what matters most. The data sets
used in [1] date back to 2001 and 2002, which could partially explain this change
in behavior. Five years ago, many users were still accessing the Internet using
standard modem and ISDN lines with relatively low access capacities and paying
for each minute of connection. In such a case, a cost-aware user may not want to
wait a long time for a large download to finish and, thus, aborts it or does not
start it at all if the available bandwidth is low. An impatient user may do the
same. Today, the standard is broadband access (e.g. DSL and cable modems)
which is typically flat rate, as is the case for our data sets originating from an
ADSL access network. In addition, the typical access link speeds have multi-
plied. Therefore, there are fewer reasons for choosing the content size based on
the available bandwidth today.

5.2 Case Study on RTT Estimation

The case of RTT estimation is particularly interesting, since the ALPs may
distort the estimates in yet another way when the measurement point is in the
middle of the TCP/IP path, a common situation in traffic monitoring [8]. In
this case, when estimating the RTT from passively collected packet headers
and using techniques based on observing bidirectional traffic, the RTT needs
to be computed in two parts (see Figure 4): (i) delay between observing a data
packet and the corresponding ack packet and (ii) delay between observing the ack
packet and the data packet the transmission of which the ack packet triggered.
The main challenge in such a technique is to be able to compute the second part
(d2 in Figure 4), i.e. to associate a data packet to an ack packet that triggered
its transmission. However, as Figure 4 shows, there is an additional error d3
added to the RTT estimate whenever the application delays giving more data to
TCP for transmission. This error affects every RTT estimation technique that is
based on bidirectional traffic observations, such as the technique relying on TCP
timestamps to do the ack-to-data association (the authors of [9] acknowledge
the problem in Section 4.1) or the technique described in [4] which reconstructs
the TCP state machine to track the sender’s congestion window, which in turn
enables the ack-to-data association.

On the Interaction Between Internet Applications and TCP 971

est rtt=d1+d2
corr rtt=d1+d2−d3

Sender ReceiverMeasurement point

data

acktim
e

d3 d2

d1

application
delays giving
data to TCP

data

Fig. 4. Problem with RTT estimation during an ALP

In the case that data is constantly transferred in both directions of a connec-
tion, an RTT estimate can be obtained by simply computing d1 in Figure 4 for
both directions and then summing them up. Unfortunately, it is rare to have
constant data transfers in both directions within a connection.

Other RTT estimation techniques based only on unidirectional traffic observa-
tions have been proposed in [9] and in [1]. These techniques base the estimation
on observing the self clocking behavior of TCP in the traffic pattern. However,
when the application dominates the transfer rate and, hence, controls the pace
at which new data packets are sent, this pattern will cease to exist and the
estimations will be distorted.

To compute the running RTT samples we used primarily the technique from [9]
relying on TCP timestamps and secondarily the technique from [4] when TCP
timestamps were not available. For each connection, we computed the average for
two sets of estimated RTT samples: first, including only the BTPs and second,
including only the ALPs. We used drop = 0.9. The CDF plot in Figure 5 shows
how the ratio of the average RTTs (RTT ALP

RTT BT P
) is distributed.

We can first observe that the differences between RTTs during BTPs and
ALPs are striking: For instance, approximately 18% of the eDonkey connections
have ten times longer and approximately 10% of them ten times shorter average
RTT during ALPs than during BTPs. Second, the results vary significantly from
one application to another. Many of the inflated RTT values during the ALPs
can be due to large values of d3 (see Figure 4).

Figure 6 shows an example of the error that can be introduced by the applica-
tion. The figure contains estimated RTT samples from a short piece of an HTTP
connection that incorporates several BTPs interleaved with ALPs. Similar saw-
tooth pattern of the RTTs persists throughout the lifetime of the connection.
It could be a persistent HTTP connection transferring several objects of a web
page. The first RTT sample of each BTP after an ALP is clearly longer than
the other samples and corresponds to the situation depicted in Figure 4. These
RTTs are erroneously inflated by the delay due to the application (d3 in Figure
4), which makes them on the average much larger than the actual RTT. In this
example, this delay d3 due to the application inflates the first RTT sample of
each BTP (right after the dotted vertical line in Figure 6) because no packets

972 M. Siekkinen, G. Urvoy-Keller, and E.W. Biersack

10
−2

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

RTT
ALP

 / RTT
BTP

F
(x

)

eDonkey
BitTorrent
HTTP

Fig. 5. CDFs of ratio of the mean
RTTs: RTT ALP

RTT BT P
(drop = 0.90)

69125 69135 69145

10
0

20
0

30
0

40
0

50
0

60
0

70
0

time (s)
rt

t (
m

s)

Fig. 6. Piece of an HTTP connection.
Dashed and dotted vertical lines start
an ALP and BTP (drop = 0.95), respec-
tively

are transmitted and, thus, no samples obtained during the ALPs. As a conse-
quence, to correct the error introduced by the application, the first sample of
each BTP should be filtered out. This example may partially explain why in
Figure 5 we also observe larger RTTs during the BTPs than during the ALPs
of a connection. In order to fully explain all of these particular findings (e.g.
why we observe many shorter RTTs during ALPs especially in eDonkey traffic)
requires further research including experimentations with these applications in a
controlled environment. This work is beyond the scope of this paper whose goal
is to raise awareness on the potential impact of the application on the analysis
results when studying the TCP/IP path and to propose an application agnostic
solution for these studies.

6 Conclusions

TCP is the dominant transport protocol carrying a large fraction of the total
traffic in the Internet. It is therefore quite natural to use TCP packet traces
for network tomography purposes. However, as we have shown in this paper,
the application can interfere in various ways with the flow of packets injected
into the network. The IM algorithm is able to isolate the ”contribution” of the
application for TCP packet traces containing traffic of any kind of application.
We applied the IM algorithm to a variety of different application traffic and
demonstrated the impact of the application when studying the TCP/IP path
properties in the case of throughput achieved and RTT estimation.

As a continuation of this work, we have applied the IM algorithm on traffic
traces in order to study the role of applications as origins of the rates and
throughput performance observed by today’s Internet applications. In specific,
we have evaluated to what extent clients of ADSL access network experience

On the Interaction Between Internet Applications and TCP 973

throughput limitation by the application [10]. As future work, we would also
like to investigate some of the TCP traffic and network path properties, such as
RTT and burstiness [2], using publicly available traffic traces (such as the ones
used in [2]) in order to quantify the impact of applications on these properties.

References

1. Zhang, Y., Breslau, L., Paxson, V., Shenker, S.: On the characteristics and ori-
gins of internet flow rates. In: Proceedings of ACM SIGCOMM 2002 Conference,
Pittsburgh, PA, USA (2002)

2. Jiang, H., Dovrolis, C.: Source-level IP packet bursts: causes and effects. In: IMC
’03: Proceedings of the 3rd ACM SIGCOMM conference on Internet measurement,
New York, NY, USA, pp. 301–306. ACM Press, New York (2003)

3. Allman, M., Falk, A.: On the effective evaluation of TCP. Comput. Commun.
Rev. 29, 59–70 (1999)

4. Jaiswal, S., Iannaccone, G., Diot, C., Kurose, J., Towsley, D.: Inferring tcp connec-
tions characteristics from passive measurements. In: Proc. Infocom 2004 (2004)

5. Medina, A., Allman, M., Floyd, S.: Measuring the evolution of transport protocols
in the internet. Comput. Commun. Rev. 35, 37–52 (2005)

6. Siekkinen, M., Biersack, E.W., Urvoy-Keller, G.: On the interaction be-
tween internet applications and tcp. Technical report, Institut Eurecom (2006)
http://www.eurecom.fr/s̃iekkine/pub.hml

7. Mathis, M., Heffner, J., Reddy, R.: Web100: extended TCP instrumentation for
research, education and diagnosis. Comput. Commun. Rev. 33, 69–79 (2003)

8. Jaiswal, S.: Measurements-in-the-middle: Inferring end-end path properties and
characteristics of TCP connections through passive measurements. PhD thesis,
Univ. of Massachusetts, Amherst (2005)

9. Veal, B., Li, K., Lowenthal, D.: New methods for passive estimation of TCP round-
trip times. In: Proceedings of Passive and Active Measurements (PAM) (2005)

10. Siekkinen, M., Collange, D., Urvoy-Keller, G., Biersack, E.W.: Performance lim-
itations of ADSL users: A case study. In: Proceedings of the Eighth Passive and
Active Measurement Conference (PAM) (2007)

	Introduction
	Applications and TCP
	The Isolate & Merge (IM) Algorithm
	Context
	Procedures

	Data Sets
	Distortion Due to ALPs on End-to-end Path Studies
	Studying Characteristics of Rates
	Case Study on RTT Estimation

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

