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ABSTRACT
In queueing theory, it has been known for a long time that the
scheduling policy used in a system greatly impacts user-perceived
performance. For example, it has been proven in the 1960’s that
size-based scheduling policies that give priority to shortjobs are
optimal with respect to mean response time. Yet, virtually no sys-
tems today implement these policies. One reason is that realsys-
tems are significantly more complex than a theoretical M/M/1or
M/G/1 queue and it is not obvious how to implement some of
these policies in practice. Another reason is that there is afear
that the big jobs will ”starve”, or be treated unfairly as compared
to Processor-Sharing (PS). In this article we show, using two im-
portant real world applications, that size-based scheduling can be
used in practice to greatly improve mean response times in real
systems, without causing unfairness or starvation. The twoappli-
cations we consider are connection scheduling in web servers and
packet scheduling in network routers.

1. INTRODUCTION
Resource allocation in the very first computer systems was easy:

computers were special purpose devices, used by only one user at
a time. Scheduling of system resources quickly became more com-
plex, when computer systems started to be shared simultaneously
by multiple users and to run many concurrent processes. Today,
many systems simultaneously serve thousands of clients, making
the question of how to schedule resources between clients a chal-
lenging and critical aspect of system design.

Resource scheduling in modern IT systems serves a number of
different goals. One of the key goals is to schedule system re-
sources, e.g. CPU and disk, such as to provide each user the il-
lusion of “owning the system” or a fair share of it. Another goal
is to schedule requests such as to make efficient use of the system
resources (e.g. minimize the movements of a disk head).

In this paper, we focus on a third aspect of scheduling: schedul-
ing as a means to provideshorter mean response timesacrossall
requests in a system. The response time of a request is definedas
the time from when a user submits a request until the user receives
the complete response. We use two common real-world applica-
tions to illustrate how scheduling can greatly improve userexpe-
rienced system performance, without requiring major changes to
system hardware or software. We will begin with a study of SRPT
scheduling for Web servers (Section 2). We will then move on to
LAS scheduling for network routers (Section 3). Finally, wewill
discuss the impact of the system model (open vs closed) on the
effectiveness of scheduling (Section 4).

2. SCHEDULING IN WEB SERVERS

2.1 How favoring short requests can help all
Much of the recently renewed interest in scheduling has been

sparked by the following question, which was originally posed for
Web servers serving static (GET file) requests:“Is it possible to
reduce the expected response time ofeveryHTTP request at a Web
server, simply by changing the order in which we schedule there-
quests?”

Surprisingly, it turns out that the answer is yes. The idea is
to replace the fair time-sharing scheduling policy used by tradi-
tional web servers with a different policy SRPT (Shortest Remain-
ing Processing Time), which gives preference to requests for small
files or requests with short remaining file size. In scheduling the-
ory it has been known for a long time that scheduling jobs in the
order of Shortest-Remaining-Processing-Time (SRPT) is optimal.
However, SRPT hasn’t been used in practice for fear of starvation:
when analyzed under the M/M/1 queue, SRPT significantly penal-
izes long jobs.

Recent implementation work as well as new analytical results
show that this fear is unfounded for many practical applications.
Figure 1 shows results from an implementation study [17], which
implements SRPT scheduling in an Apache web server and evalu-
ates its performance under a trace-based workload. The implemen-
tation is done at the kernel level and involves controlling the order
in which socket buffers are drained into the network, such that pri-
ority is given to connections with few remaining bytes to be sent.
The SRPT server is compared to a standard (non-modified) Apache
server, which fairly time-shares between all connections.We will
therefore also refer to the standard server as a FAIR server.

As shown in Figure 1 (left), the mean response time of the new
SRPT web server is significantly lower than those of the standard
FAIR web server. For high loads, the SRPT server improves mean
response times by nearly a factor of ten compared to the FAIR
server. Most importantly, these improvements in mean response
time do not come at the expense of hurting requests for large files.
Figure 1 (right) shows the response time under the SRPT and the
FAIR server as a function of the request size (percentile of the re-
quest size distribution). The graph shows that 99% of all requests
benefit from SRPT scheduling, while requests for the largest1% of
all files are hardly penalized. The mean response time of the largest
1% of requests is nearly identical under FAIR and SRPT schedul-
ing and requests for the very largest file are only slightly penalized
(5% larger response time under SRPT compared to FAIR).

The explanation for this counter-intuitive result lies in the sta-
tistical distribution of web file sizes. While the traditional M/M/1
queueing model assumes an exponential job size distribution, web
file sizes have been shown to exhibit highly variable distributions
with heavy-tails. It turns out that for those highly variable distribu-
tions size-based scheduling that favors short jobs does notunfairly
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Figure 1: (Left) Shows the improvement in mean response time of SRPT scheduling over FAIR scheduling for static requests at a web
server in a LAN setting. (Right) Shows mean response time as afunction of the size of the requested file, where system load is fixed at
ρ = 0.8.

penalize long jobs. A number of very recent theoretical papers for-
malize and generalize this result [4, 32, 44, 43, 45]. For example,
the work in [4] shows that in many situations even the very largest
job might prefer an SRPT system over a fair time-sharing system,
depending on the job size distribution and system load. The work
in [43] provides a scheme for classifying general scheduling poli-
cies with respect to their fairness when compared with processor
sharing.

These new experimental and analytical results have motivated
a number of generalizations and extensions on the idea of SRPT
scheduling for web servers [9, 14, 21, 24, 31, 46, 47]. Some ofthis
work [21, 24, 31], for example, proposes taking other request at-
tributes in addition to file size into account, when making schedul-
ing decisions. Others propose new hybrid policies, that combine
features of the standard FAIR scheduler and the new SRPT sched-
uler [14].

2.2 Scheduling under overload
Interestingly, scheduling can also help with another key chal-

lenge that web sites face:transient periods of overload. Web traf-
fic is known to be bursty and hard to predict, and hence even well-
provisioned servers can experience transient periods of overload.
During overload the number of connections at a server grows rapidly,
leading to long response times and eventually rejected connections.
The key idea behind scheduling for improving overload perfor-
mance is that a traditional server, by time-sharing among all re-
quests, is slowing down every request in the system, causinga large
connection buildup. On the other hand, SRPT-based scheduling
minimizes the number of connections at a server by always work-
ing on the connection with the smallest amount of work left.

The work in [35] demonstrates in extensive experiments that
SRPT-based scheduling significantly improves both server stability
and client experience during transient overload conditions. Figure 2
shows one of the results from this work. Both a traditional FAIR
server and an SRPT server are run under a time-varying, trace-
based workload, which alternates between periods of overload and
periods of low load. Figure 2 (left) shows the mean response times
observed under the FAIR system, while Figure 2 (right) showsthe
dramatically improved mean response times under SRPT schedul-
ing. Note the improvement is close to an order of magnitude.
Again, counter to intuition, the improvements in mean response

times do not come at the expense of hurting the requests for large
files, due to the heavy-tailed nature of web file size distributions.

2.3 Scheduling dynamic web requests
The previous two subsections have focused entirely on static web

requests. Ideally, one would like to apply the same techniques
to improve user-perceived performance for dynamic web requests,
that is web requests whose responses are created on the fly. Since
a common bottleneck in processing dynamic web requests is the
database backend, applying the size-based scheduling ideato dy-
namic requests means scheduling database transactions to give pri-
ority to short transactions.

Unfortunately, implementing size-based scheduling for database
transactions is more complicated than for static web requests for
two reasons. First, giving priority to short transactions,in the spirit
of SRPT, requires a way of knowing the length of a transaction
before actually running it, which is a hard problem. We will see
in Section 3 that there is a scheduling policy that favors short jobs
without prior knowledge of the job size.

A second problem in scheduling database transactions is that ex-
isting database management systems do not support effective trans-
action prioritization for web-based transactional workloads. While
existing prioritization tools are based on CPU scheduling,web-
based database workloads are often lock-bound, hence requiring
lock scheduling for effective transaction prioritization[22]. To
overcome this problem, recent work has implemented and evalu-
ated a number of different lock scheduling policies [23] forweb-
driven workloads. The authors find that a new lock schedulingpol-
icy POW (Preempt-on-Wait) can significantly improve the perfor-
mance of high priority transactions without overly penalizing low
priority transactions. For example, in systems where 10% ofthe
transactions are high priority and the remaining 90% low priority,
POW improves the mean response time of high priority transac-
tions by a factor of 8, while increasing the mean response time of
low priority transactions by less than 10%.

Other recent work proposes and implements a methods for schedul-
ing transactionsoutsidethe database system, without directly con-
trolling database internal resources [36, 37]. Surprisingly, the re-
sults from this work show that external transaction scheduling, when
done right, can be as effective as internal (lock) scheduling, with-
out introducing any negative side-effects, such as reducedsystem
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Figure 2: (Left) Mean response time under FAIR scheduling under transient overload. (Right) Mean response time under SRPT schedul-
ing under transient overload. Loadρ alternates between 1.2 and 0.2, averaging atρ = 0.7.

throughput or increased overall response times.

3. SCHEDULING IN ROUTERS

3.1 Introduction
While SRPT scheduling is highly effective in improving mean

response times in many systems, it is not applicable in routers since
the “job size” is not known a priori. This section presents anal-
ternative policy, LAS (Least-Attained-Service), for use in systems
where size estimates are not available. LAS aims at mimicking
SRPT by guessing the remaining service time of a job based on the
service it has received so far. Below we provide some background
on LAS and describe its application in traditional packet-switched
networks as well as in wireless networks.

3.2 Background on LAS
LAS was proposed in the mid 1960s for time sharing computers

to favor short interactive jobs at the expense of batch jobs.LAS is
a preemptive scheduling policy that requires no prior knowledge of
the job sizes. LAS gives service to the job in the system that has
received the least amount of service. In the event of ties, the jobs
having received the least service share the processor in a processor-
sharing mode. A newly arriving job always preempts the job cur-
rently in service and retains the processor until it departs, or until
the next arrival occurs, or until it has obtained an amount ofservice
equal to that received by the job preempted on arrival, whichever
occurs first.

First analytical results on the LAS queue (mean and Laplace
transform of the response time), were obtained by Schrage [34] and
Kleinrock [19]. Note that LAS is known under different names,
such as Foreground Background (FB) or Shortest Elapsed Time
(SET). Also, different flavors of the policy exist, depending on the
number of priority queues, the use of preemption and on whether
the minimum amount of service (service quantum) is null or strictly
positive.

LAS belongs to the family of blind policies that do not know the
job size in advance, in contrast to other size-based scheduling poli-
cies, like SRPT (Shortest Remaining Processing Time) that gives
priority to the job that is the closest to completion. The common
belief about LAS and other size-based scheduling policies favoring
short jobs is that they might lead to the starvation of the longest
jobs. However, in the context of Internet traffic where the traffic

usually consists of a mix of a lot of small flows and a few large
flows that account for a significant fraction of the mass, it has been
observed that size-based policies can avoid the starvationof the
longest flows.

In the remainder of this section, we briefly review theoretical re-
sults that back up those observations. Due to space constraints, we
present only a few results and refer to the recent survey by Nuyens
and Wierman [25] and the references therein for further details.
Despite the existence of theoretical results on the LAS queue, net-
working researchers often rely on simulations to study these poli-
cies for the simple reason that a job as used in queuing theoryis
not a good model for a flow in the networking context. In the queu-
ing theory, the termjob defines an amount of work that arrives to
the system allat once. Therefore, aflow of packets cannot be con-
sidered as a job since a flow does not arrive at a router at once.
Instead, the source transmits a flow as a sequence of packets,pos-
sibly spaced out in time, that are in turn statistically multiplexed
with packets from other flows. However, we will see in Section
3.5 that in the specific case of LAS, job level results and flow level
results can agree.

3.3 Notation
Notation used in the rest of this paper is summarized in Table

1. Note that the set of IMRL (Increasing Mean Residual Life) dis-
tributions encompasses the set of DFR (Decreasing Failure Rate)
distributions. All IMRL (and thus DFR) distributions have aCoV
greater than 1.

3.4 Job level results for LAS
We present in this section, results for the mean response time

and the conditional mean response time of an LAS queue. Unless
otherwise stated, all results apply to an M/G/1/LAS queue.

3.4.1 Mean Response Times
LAS tries to mimic the SRPT policy by guessing the remain-

ing service time of a job based on the service it has received so
far. The reason behind this strategy is that SRPT is optimal (for
a G/GI/1/LAS queue) in the sense that it minimizes the mean re-
sponse time and the mean queue length among all policies. If LAS
correctly guesses the remaining service time, LAS should thus be
optimal among all blind policies. Several results have beenproven
along this line. It has been shown that LAS is optimal among all



X
Service requirement with meanE[X]
and variancevar(X)

f

Density of X. We assume thatf is
continuous and with finite first and
second moments.

F
Cumulative distribution function ofX

λ
Arrival Rate of clients to the queue

ρ , λE[X] Input load to the queue

ρ(x) , λ
R x
0 xf(x)dx

Input load to the queue due the clients
of size less or equal tox

ρx , ρ(x) + λx(1 − F (x))

Input load to the queue due to clients
of size less or equal tox and clients of
size larger thanx but truncated tox

Tp
Response time of policyp with mean
E[Tp]

E[Tp(x)]
Mean conditional response time of a
client of sizex for policy p

E[Sp(x)] ,
E[Tp(x)]

x

Mean conditional slowdown of a
client of sizex for policy p

CoV (X) ,
p

var(X)/E[X] Coefficient of variation ofX

DFR
Decreasing Failure Rate. For a DFR

distribution, f(x)
1−F (x)

is a decreasing
function ofx

IMRL
Increasing Mean Residual Life. For a
IMRL distribution,
E[X − x|X ≥ x] is an increasing
function ofx

Table 1: Notation

blind policies for the case of DFR service time distributions. How-
ever, LAS is not necessarily optimal for the class of IMRL ser-
vice time distributions [1], or for all service time distributions with
CoV(X)> 1.

Concerning the comparison between LAS and PS, Coffman and
Denning ([8], page 189) conjectured that for service time distribu-
tions withCoV(X) > 1 the mean response time for LAS is lower
than that of PS. Recently, Wierman et al. [42] have shown thatthis
is not the case. However, for the more restrictive class of IMRL
service time distributions, LAS achieves a smaller mean response
time than PS [1].

More generally, an upper and a lower bound on the mean re-
sponse time of LAS have been obtained in [25]:

THEOREM 1. E[X]
ρ

≤ E[TLAS] ≤ E[X] 1−ρ/2

(1−ρ)2

The deterministic distribution constitutes a worst case where the
upper bound on the mean response time of LAS is attained, while
a number of distributions (of practical interest) lead to the lower
bound.

A number of studies have also been conducted on the impact
of the load on the performance of LAS. When the load reaches 1,
both LAS and PS see their mean response time growing to infinity.
However, the ratio of the average response time of PS to LAS grows
unbounded, which means that the PS queue builds up faster than the
LAS queue [25].

3.4.2 Conditional Mean Response Times
Let us first consider the mean conditional response timeE[TLAS(x)].

The extent to which the mean conditional response time of LASis
close to the corresponding value under SRPT depends both on the
distribution and the load of the input traffic [29]:

THEOREM 2. For all job sizesx and at loadρ < 1:
E[TSRPT (x)] ≤ E[TLAS(x)] ≤

`
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Figure 3: E[TLAS(x)]
E[TSRPT (x)]

as a function of the job size percentile

Figure 3 illustrates the previous theorem for an exponential dis-
tribution with a mean job size of 3000 units and a bounded Pareto
distribution with an minimum value of 322 units, a maximum value
of 1010 units and a shape parameterα of 1.1. The mean of the
bounded Pareto distribution is also 3000 units. The CoV of the
exponential distribution is 1 and the CoV of the bounded Pareto
distribution is 284. One can see from Figure 3 that for a distri-
bution with a large CoV like the Bounded Pareto distribution, the
mean conditional response time of LAS is very close to the oneof
SRPT for all job sizes, almost irrespectively of the load. This is
not the case for the exponential distribution where good agreement
exists only for small to moderate load values.

The number of small jobs that experience a smaller response time
under LAS than under PS has been studied in [43, 29, 6]. Combin-
ing the results in [43, 29, 6], one obtains:

THEOREM 3. In an M/G/1 queue,
E[TLAS(x)] ≤ 1−ρ/2

1−ρ
E[TPS(x)] ∀x

E[TLAS(x)] ≤ E[TPS(x)] ∀x s. t.ρx ≤ max{ ρ
(1+

√

1−ρ
), 2

3
ρ}.

Brown [6] has further proven that for Pareto distributions with
infinite second moment, the conditional mean response time for all
job sizes is smaller under LAS than under PS.

In case of overload, some jobs still experience a finite service
time under LAS [29]. This is in contrast with FIFO and PS where
the conditional response time of all jobs goes to infinity.

THEOREM 4. Whenρ > 1, all jobs of sizex < xρ, such that
ρxρ = 1 have a finite response under LAS.

Apart from response time, fairness has also received significant
attention. The metric used to evaluate fairness is the mean condi-
tional slowdownE[S(x)]. A policy is said to be fair if its mean
conditional slowdown for all job sizes is smaller than the corre-
sponding metric under PS. Wierman and Harchol-Balter [43] pro-
posed a framework to classify scheduling policies with respect to
their fairness. A striking result is that fairness of the maximum job
size is the same for both LAS and PS. However, when the flow size
distribution has a finite second moment, some large jobs (though
not the largest job) always experience a slowdown greater under
LAS than under PS [43].

3.5 Flow level results



While queuing theory offers an ideal framework to compare dif-
ferent scheduling strategies, the results obtained are notdirectly
applicable to packet networks as we have already discussed above.
However, in [30], we demonstrated that a router implementing LAS
can be modeled by an M/G/1/LAS queue, provided a low packet
loss rate (less than 2%), homogeneous round trip times, and identi-
cal packet sizes. The intuition behind this result is that since LAS
is a priority scheduling policy, the behavior of an LAS router is
similar to that of an LAS queue as long as the packet to be serviced
next arrives at the router before the time instant where it isselected
by the scheduler. As a FIFO router can be modeled as an M/G/1/PS
queue, we can use the results presented in the previous section on
the comparison between LAS and PS at job level to compare LAS
and FIFO scheduling in a router.

3.6 LAS and TCP
LAS scheduling in packet switched networks such as the Internet

can be applied to flows. A flow is defined as a group of packets
with a common set of attributes such as (source address, destination
address, source port, destination port). For each flowF , the amount
of bytesSF served so far needs to be tracked in order to compute
the service priority of the next packet of flowF . SF is initialized
to 0 when the flow starts and incremented byP when a packet of
sizeP belonging to flowF arrives. In the “basic” version of LAS,
the service priorityof a flow is given bySF . The flow that has
sent the least amount of bytes will have the highest service priority.
Recall that the lower the value of the service priority, the higher
the priority, and the closer to the head of the queue the packet is
inserted.

We have already seen that there are some differences between
LAS applied to jobs as compared to flows and we want to empha-
size one more point. Routers have a finite buffer space and the
implementation of LAS in routers must extended to not only de-
cide in which order to serve packets but also which packet to drop
when the buffer is full. When a packet arrives to a queue that is
full, LAS computes the service priority of that packet, inserts the
packet at its appropriate position in the queue, and then drops the
packet that is atthe end of the queue.

LAS for scheduling packets is attractive if the following condi-
tions hold:

• The load of the link over which LAS schedules the transmis-
sion of packets is sufficiently high. Under low and moderate
load (ρ < 0.7) there is not much difference in terms of con-
ditional mean service times between the various scheduling
policies such as LAS, PS or FIFO. It will be sufficient to de-
ploy LAS scheduling in the routers serving congested links
to achieve a significant reduction in the end-to-end response
time for most flows. The links that are congested (highly
loaded) are often located at the edge of the network. One
place where the deployment of LAS can make a difference
is for scheduling the transmission of packets over the broad-
band access link of home users.

• The flow size distribution generally exhibits a high coeffi-
cient of variation1. Internet traffic exhibits a high coefficient
of variation since most of the flows are short, while more than

1Although we have seen before that a high CoV may not be suf-
ficient to obtain good performance, theoretical distributions used
to model user traffic such as the Bounded Pareto distribution, have
been observed to be very effective in reducing the response time of
most flows when LAS is used as compared to FIFO (see section 3.2
of [29]).

50% of the bytes are carried by less than 5% of the largest
flows [26, 7].

Due to the closed-loop nature of TCP, the treatment given by
LAS to an individual packet is likely to affect when TCP transmits
the following packets of that flow. In fact, LAS interacts very fa-
vorably with the congestion control and error control of TCPand
accelerates the transfer of most flows:

• Congestion Control: A new TCP flow starts in what is known
as “slow start”, where its congestion window is initialized
to a very small value and then doubled after every round of
transmission. The duration of a round is essentially deter-
mined by the time between the transmission of the packet and
the reception of the acknowledgment, and comprises packet
transmission time, propagation delay, and queuing delay. Since
under LAS the first packets of a flow will experience no
or negligible queuing delay, the duration of a round will be
shorter under LAS than under FIFO and the congestion win-
dow will increase faster.

• Error Control: LAS gives buffer space priority to the first
packets of each flow, which means that these packets should
not experience any loss. Avoiding loss is very important
since any packet loss may temporarily prevent the sender
from emitting new packets until the loss has been repaired.
Loss repair for the first packets of a TCP flow typically oc-
curs after a timeout and requires much more time as com-
pared to loss repair using duplicate ACKs (see [28]).

We have implemented LAS under Linux and are able to handle
data rates of several tens of Mbit/s without any special tuning. The
Linux kernel contains a complete architecture for support of QoS
with components such as flow classification, packet dropping, me-
tering, marking, and shaping, which makes it easy to experiment
with new scheduling policies. The implementation of LAS keeps
track for each flow of how many bytes have been served, computes
the service priority to obtain the priority value for each packet and,
most importantly implements a priority queue that inserts an arriv-
ing packet according to its priority value.

3.7 Performance of LAS vs FIFO in a single
bottleneck case

We present the result of one experiment where LAS is used to
schedule transmission over a bottleneck link of 320 Kbit/s that ex-
periences an average offered load of 0.91. The round trip time is
40 ms and a total of 500,000 flows have been transmitted. The flow
sizes are drawn from a bounded Pareto Distribution with minimum
flow size of 1.5 KByte and maximum flow size of 233 MByte and
a coefficient of variation of 33.41. For more results see [33]. The
comparison of LAS and FIFO in Figure 4 shows that LAS reduces
the mean response time of most of the TCP flows by an order of
magnitude and more.

However, during our experiments we also discovered that LAS
can “starve” large TCP flows more frequently than FIFO. This prob-
lem is due to the fact that some long TCP flows get preempted fora
very long period of time by flows that have received less service. If
a TCP flow gets preempted and some of its packets are stuck in the
queue of the bottleneck link, the sender will timeout after atime
RTO, and resend these packets. At each retransmission, the sender
doubles its RTO, adopting an exponential back-off strategy. After
15 attempts, the TCP connection is aborted. The time until abort
corresponds on average toRTO∗( 1

2

P15
i=1 2i) = RTO∗(215−1).

Since the minimal initial RTO value in TCP ranges from 200 ms to
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Figure 4: Conditional mean response time of FIFO and LAS
and their ratio.

1 sec (see RFC 2988), it will take at least 90 minutes before a con-
nection is aborted.

It should be clear from this example that only under very rarecir-
cumstances a TCP flow will be aborted and the higher the data rate
of the bottleneck or the larger the RTT, the less likely the event.
In any case, there is a very simple fix against starvation of TCP
connections: Limit the duration during which the transmission of
packets for a flow can be suspended. We can modify LAS to obtain
LAS-thresholdwhere the service priority assigned to any packet
cannot take values larger thanthreshold. Such a scheme is dis-
cussed by Feng and Misra under the name of FLIPS [10] and as
LAS-FCFS in Rai’s thesis (section 6.6. of [27]) and has been im-
plemented and evaluated in [33].

Under LAS-threshold, the packets with service priority values
less thanthresholdwill be served according to LAS, the remaining
packets are handled in a “background” FIFO queue, reducing the
duration of a flow preemption. Finding the value forthresholdis
not too difficult since the time before a TCP connection is aborted
is so large. In our implementation we saw that 300 KByte was a
good value forthreshold[33].

In fact, LAS-thresholdis just one possible modification to LAS
and several other modifications are possible that allow to take into
account the needs of applications such as IP telephony or audio/video
streaming. There are for instanceLAS-fixedwhere all packets of a
flow have the same fixed service priority value andLAS-logwhere
the service priority grows with the logarithm of the number of bytes
served, i.e. much slower than under normal LAS where it grows
linearly. For more details, analytic results and also on howthe dif-
ferent LAS policies interact see [30].

3.8 LAS in wireless networks
In this section, we discuss the use of LAS in a wireless context,

with a focus on 802.11 networks. Pure ad-hoc networks or infras-
tructure networks suffer from two issues that LAS could alleviate.
First, the relatively low bandwidth available in those environments,
as compared to wired networks, as well as the bandwidth variability
tend to create bottlenecks. Second, TCP suffers from poor perfor-
mance and unfairness in wireless networks [18, 12].

In [11], the use of LAS in static 802.11 networks is investigated.
Small multi-hop ad-hoc networks with a chain or grid topology
are considered along with a single hop infrastructure network. We
demonstrate here the benefits of LAS by reporting the resultsob-
tained for a chain topology. Let us consider a chain topologywith

four nodes where three long-lived FTP connections are established
between a node at one end of the chain and each other node in the
chain. Let us first assume that there is no hidden node. In this
scenario, TCP suffers from unfairness as the throughput decreases
with the number of hops in the path [16]. Simulation results re-
ported in [11] show that LAS enforces fairness between the FTP
connections. These results highlight that the bad performances of
TCP in wireless networks are not solely due to the TCP algorithms
but also to the interaction between TCP and FIFO.

Note that some transient starvations are observed when the three
FTP connections do not start simultaneously, as has been observed
in the previous section for a wired setting. However, the same
type of argument applies here which is that in a realistic case with
flows of different sizes (and not long-lived flows), these starvations
should not last long enough to break the underlying TCP connec-
tions.

The case of a chain topology with one hidden node [13] (the
last FTP receiver) is also addressed in [11]. It turns out that LAS
can partly enforce fairness in this case as compared to FIFO where
the last FTP receiver completely starves. The intuition behind this
result is that the last FTP connection, which is penalized bythe
presence of the hidden node in its path (the last node in the chain),
is granted a higher priority under LAS at the other (non hidden)
nodes of the path. Thus, the last FTP connection has a chance to
catch up with the other ones.

Though preliminary, those results highlight the benefits brought
by the use of LAS in wireless networks.

3.9 Related work
There are several papers [15, 2] that try to improve the perfor-

mance of short flows by using two FIFO queues. The firstK pack-
ets of a flow are enqueued in the first queue and the remaining ones
of a flow are enqueued in the second queue. Each queue is served
in FIFO order and packets from the second queue are only served
if the first queue is empty. Two-queue based disciplines reduce the
mean transfer times of the short flows compared to FIFO schedul-
ing, however not to the extent that LAS is able to do.

4. THE EFFECT OF CLOSED VERSUS OPEN
SYSTEM MODELS ON SCHEDULING

Most researchers are well aware of the fact that the performance
of scheduling policies is greatly influenced by factors suchas the
job size distribution and the system load. However, little attention
has been paid to the impact of whether the system under study fol-
lows aclosedversus anopensystem model.

Figure 5(a) depicts aclosed system configuration. In a closed
system model, it is assumed that there is some fixed finite number
of users, who use the system forever. This number of users is typ-
ically called themultiprogramming level(MPL). Each of the users
repeats these 2 steps, indefinitely: (a) submit a job, (b) receive the
response and then “think” for some amount of time. In a closedsys-
tem,a new request is only triggered by the completion of a previous
request.

Figure 5(b) depicts anopen system configuration. In an open
system model, each user is assumed to submit one job to the sys-
tem, wait to receive the response, and then leave. The numberof
users queued or running at the system at any time may range from
zero to infinity. The differentiating feature of an open system is that
a request completion does not trigger a new request: a new request
is only triggered by a new user arrival.The arrival times of users
could for example be generated from a Poisson process or taken
from a trace.
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Figure 5: Illustrations of the closed and open system model.

While nearly all queuing theoretic results on the performance of
scheduling policies assume an open system model, in experimen-
tal work the system model is implicitly dictated by the workload
generator used. In the case of web workloads, for example, there
are popular workload generators that are based on a closed system
model [5, 40, 41], as well as generators that follow an open system
model [3, 20, 39].

Recent work [38] shows that the choice between an open and a
closed system model can greatly impact results, in particular when
it comes to the effectiveness of scheduling. In [38] implementa-
tion and simulation experiments together with theoretic support are
used in order to identify a set of basic principles that capture the
differences in behavior of closed, open, and a hybrid partly-open
system models.

One key principle derived in [38] is that while open systems
benefit significantly from scheduling with respect to response time,
closed systems improve much less. Figure 6(a) shows the response
time as a function of load for four different scheduling policies
simulated in an open and a closed system. The four scheduling
policies include two common non-size-based policies, First-Come-
First-Serve (FCFS) and Processor-Sharing (PS), and two size-based
policies, Preemptive-Shortest-Job-First (PSJF) and Preemptive-Longest-
Job-First (PLJF). Under the open system, the disparity in perfor-
mance between the scheduling policies grows to up to an order
of magnitude for high loads. On the other hand under the closed
system performance differences between the policies are compara-
tively moderate.

The above differences between open and closed system models
are shown to be present across a range of applications, including
web servers and database systems, and motivate the need for system
designers to be able to determine how to choose if an open or closed
model is more appropriate for the system they are targeting.The
work in [38] therefore also presents a method that allows designers
to determine whether a given system is better represented byan
open or closed system model. The authors apply this method tothe
Web logs of more than ten large sites, and find that there is no “one
fits all” solution: some sites are best modeled by an open system
and others by a closed system, while some require a hybrid model.
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Figure 6: Model-based simulation results illustrating the different ef-
fects of scheduling in closed and open systems. In the closedsystem
the MPL is 100, and in both systems the service demand distribution has
mean 10 and a squared coefficient of variation of 8.

5. CONCLUSIONS
In this paper, we have demonstrated through two real world ex-

amples that scheduling is a very powerful tool to improve user-
perceived system performance.

We started by considering a Web server serving static requests.
We showed that changing the connection scheduling from the tradi-
tional time-sharing scheduling to SRPT-based scheduling can greatly
reduce mean response times at a busy web server. We also showed
that this change in the connection scheduling significantlyimproves
both server stability and client experience during transient overload
conditions. Most importantly, these improvements do not come at
the expense of hurting requests for large files.

In the second example, we have discussed LAS as a scheduling
policy in routers. While LAS requires a small amount of per flow
state in the routers, our experience has shown that LAS is easy to
implement and interacts very nicely with TCP. LAS can be incre-
mentally deployed and when used to schedule packet transmission
over broadband access lines or wireless links, the user-perceived
performance will be significantly improved. Also, its different pri-
ority functions offer a wide variety of possibilities for service dif-
ferentiation.
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