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ABSTRACT

In queueing theory, it has been known for a long time that the
scheduling policy used in a system greatly impacts usergperd
performance. For example, it has been proven in the 1968k th
size-based scheduling policies that give priority to shaolos are
optimal with respect to mean response time. Yet, virtuatlysgs-
tems today implement these policies. One reason is thasysal
tems are significantly more complex than a theoretical M/lgif'1
M/G/1 queue and it is not obvious how to implement some of
these policies in practice. Another reason is that there fisaa
that the big jobs will "starve”, or be treated unfairly as quemed

to Processor-Sharing (PS). In this article we show, usirg it
portant real world applications, that size-based schaduan be
used in practice to greatly improve mean response timesah re
systems, without causing unfairness or starvation. Theapi-
cations we consider are connection scheduling in web seavea
packet scheduling in network routers.

1. INTRODUCTION

Resource allocation in the very first computer systems wayg ea
computers were special purpose devices, used by only omause
a time. Scheduling of system resources quickly became noone ¢
plex, when computer systems started to be shared simulialyeo
by multiple users and to run many concurrent processes. yJoda
many systems simultaneously serve thousands of clientsinga
the question of how to schedule resources between clierttala ¢
lenging and critical aspect of system design.

2.1 How favoring short requests can help all

Much of the recently renewed interest in scheduling has been
sparked by the following question, which was originally dgor
Web servers serving static (GET file) requestis it possible to
reduce the expected response timexaryHTTP request at a Web
server, simply by changing the order in which we scheduleghe
guests?”

Surprisingly, it turns out that the answer is yes. The idea is
to replace the fair time-sharing scheduling policy used daglit
tional web servers with a different policy SRPT (Shortestri@an-
ing Processing Time), which gives preference to requestsnall
files or requests with short remaining file size. In schedytime-
ory it has been known for a long time that scheduling jobs & th
order of Shortest-Remaining-Processing-Time (SRPT) tarab.
However, SRPT hasn't been used in practice for fear of stiava
when analyzed under the M/M/1 queue, SRPT significantly lpena
izes long jobs.

Recent implementation work as well as new analytical result
show that this fear is unfounded for many practical appiocet
Figure 1 shows results from an implementation study [17]ictvh
implements SRPT scheduling in an Apache web server and-evalu
ates its performance under a trace-based workload. Themsgn-
tation is done at the kernel level and involves controllihg brder
in which socket buffers are drained into the network, suctt fini-
ority is given to connections with few remaining bytes to lkats
The SRPT server is compared to a standard (non-modified)epac
server, which fairly time-shares between all connectiong. will
therefore also refer to the standard server as a FAIR server.

Resource scheduling in modern IT systems serves a number of As shown in Figure 1 (left), the mean response time of the new

different goals. One of the key goals is to schedule system re

SRPT web server is significantly lower than those of the stethd

sources, e.g. CPU and disk, such as to provide each userthe il FAIR web server. For high loads, the SRPT server improvesimea

lusion of “owning the system” or a fair share of it. Anotherafjo
is to schedule requests such as to make efficient use of ttensys
resources (e.g. minimize the movements of a disk head).

In this paper, we focus on a third aspect of scheduling: adhed
ing as a means to providghorter mean response timasrossall
requests in a system. The response time of a request is deféned
the time from when a user submits a request until the useivee
the complete response. We use two common real-world applica
tions to illustrate how scheduling can greatly improve usque-
rienced system performance, without requiring major cleang
system hardware or software. We will begin with a study of IRP
scheduling for Web servers (Section 2). We will then move®n t
LAS scheduling for network routers (Section 3). Finally, wil

response times by nearly a factor of ten compared to the FAIR
server. Most importantly, these improvements in mean mespo
time do not come at the expense of hurting requests for laeg fi
Figure 1 (right) shows the response time under the SRPT and th
FAIR server as a function of the request size (percentildefre-
quest size distribution). The graph shows that 99% of alliests
benefit from SRPT scheduling, while requests for the larfy#sbf
all files are hardly penalized. The mean response time oftigest
1% of requests is nearly identical under FAIR and SRPT sdhedu
ing and requests for the very largest file are only slightigadized
(5% larger response time under SRPT compared to FAIR).

The explanation for this counter-intuitive result lies hetsta-
tistical distribution of web file sizes. While the tradit@nvi/M/1

discuss the impact of the system model (open vs closed) on thequeueing model assumes an exponential job size distributieb

effectiveness of scheduling (Section 4).

2. SCHEDULING IN WEB SERVERS

file sizes have been shown to exhibit highly variable distidns
with heavy-tails. It turns out that for those highly varialdlistribu-
tions size-based scheduling that favors short jobs doesnfairly
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Figure 1: (Left) Shows the improvement in mean response time of SRPfesktiling over FAIR scheduling for static requests at a web
server in a LAN setting. (Right) Shows mean response time darection of the size of the requested file, where system loaéixed at

p=0.38.

penalize long jobs. A number of very recent theoretical ps -
malize and generalize this result [4, 32, 44, 43, 45]. Forpla,
the work in [4] shows that in many situations even the vergédat
job might prefer an SRPT system over a fair time-sharingesyst
depending on the job size distribution and system load. Téwxw
in [43] provides a scheme for classifying general schedupiali-
cies with respect to their fairness when compared with Esce
sharing.

These new experimental and analytical results have metivat
a number of generalizations and extensions on the idea of SRP
scheduling for web servers [9, 14, 21, 24, 31, 46, 47]. Sombisf
work [21, 24, 31], for example, proposes taking other retjaés
tributes in addition to file size into account, when makinestul-
ing decisions. Others propose new hybrid policies, thathiom
features of the standard FAIR scheduler and the new SRPT-sche
uler [14].

2.2 Scheduling under overload

Interestingly, scheduling can also help with another keglch
lenge that web sites facé&ransient periods of overload\Veb traf-
fic is known to be bursty and hard to predict, and hence eveh wel
provisioned servers can experience transient periods eflaad.
During overload the number of connections at a server grapislly,
leading to long response times and eventually rejectedemiiums.
The key idea behind scheduling for improving overload perfo
mance is that a traditional server, by time-sharing amohgeal
quests, is slowing down every request in the system, caadisge
connection buildup. On the other hand, SRPT-based scimeduli
minimizes the number of connections at a server by alway&wor
ing on the connection with the smallest amount of work left.

The work in [35] demonstrates in extensive experiments that
SRPT-based scheduling significantly improves both setedility
and client experience during transient overload condgtidfigure 2
shows one of the results from this work. Both a traditional RA
server and an SRPT server are run under a time-varying, -trace
based workload, which alternates between periods of caermd
periods of low load. Figure 2 (left) shows the mean respoinsest
observed under the FAIR system, while Figure 2 (right) shtives
dramatically improved mean response times under SRPT sthed
ing. Note the improvement is close to an order of magnitude.
Again, counter to intuition, the improvements in mean resgo

times do not come at the expense of hurting the requestsripe la
files, due to the heavy-tailed nature of web file size distitins.

2.3 Scheduling dynamic web requests

The previous two subsections have focused entirely orcsted
requests. ldeally, one would like to apply the same tectesiqu
to improve user-perceived performance for dynamic web estgy
that is web requests whose responses are created on therite Si
a common bottleneck in processing dynamic web requestis th
database backend, applying the size-based schedulingddba
namic requests means scheduling database transactione farig
ority to short transactions.

Unfortunately, implementing size-based scheduling féabase
transactions is more complicated than for static web regues
two reasons. First, giving priority to short transactioimsthe spirit
of SRPT, requires a way of knowing the length of a transaction
before actually running it, which is a hard problem. We wiks
in Section 3 that there is a scheduling policy that favorstsjobs
without prior knowledge of the job size.

A second problem in scheduling database transactionstisxha
isting database management systems do not support efféetis-
action prioritization for web-based transactional wodds. While
existing prioritization tools are based on CPU scheduliwgh-
based database workloads are often lock-bound, hencerirgfui
lock scheduling for effective transaction prioritizati¢®2]. To
overcome this problem, recent work has implemented andieval
ated a number of different lock scheduling policies [23] fazb-
driven workloads. The authors find that a new lock schedpivlg
icy POW (Preempt-on-Wait) can significantly improve thefper
mance of high priority transactions without overly penialiglow
priority transactions. For example, in systems where 10%hef
transactions are high priority and the remaining 90% lovoty,
POW improves the mean response time of high priority transac
tions by a factor of 8, while increasing the mean response tim
low priority transactions by less than 10%.

Other recent work proposes and implements a methods fodathe
ing transactionsutsidethe database system, without directly con-
trolling database internal resources [36, 37]. Surprisindpe re-
sults from this work show that external transaction schiedulwhen
done right, can be as effective as internal (lock) schedulwith-
out introducing any negative side-effects, such as redsgstém
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Figure2: (Left) Mean response time under FAIR scheduling under traest overload. (Right) Mean response time under SRPT schiedu
ing under transient overload. Loag@ alternates between 1.2 and 0.2, averagingoat 0.7.

throughput or increased overall response times.

3. SCHEDULING IN ROUTERS

3.1 Introduction

While SRPT scheduling is highly effective in improving mean
response times in many systems, it is not applicable in restace
the “job size” is not known a priori. This section presentsadn
ternative policy, LAS (Least-Attained-Service), for usesiystems
where size estimates are not available. LAS aims at mimickin
SRPT by guessing the remaining service time of a job basedeon t
service it has received so far. Below we provide some backgto
on LAS and describe its application in traditional packesttshed
networks as well as in wireless networks.

3.2 Background on LAS

LAS was proposed in the mid 1960s for time sharing computers
to favor short interactive jobs at the expense of batch jolsS is
a preemptive scheduling policy that requires no prior kremge of
the job sizes. LAS gives service to the job in the system that h
received the least amount of service. In the event of tiesjdhs
having received the least service share the processor ocagsor-
sharing mode. A newly arriving job always preempts the job cu
rently in service and retains the processor until it depantsuntil
the next arrival occurs, or until it has obtained an amourses¥ice
equal to that received by the job preempted on arrival, wdieh
occurs first.

First analytical results on the LAS queue (mean and Laplace
transform of the response time), were obtained by Schratjeajd
Kleinrock [19]. Note that LAS is known under different names

usually consists of a mix of a lot of small flows and a few large
flows that account for a significant fraction of the mass, & baen
observed that size-based policies can avoid the starvafidhe
longest flows.

In the remainder of this section, we briefly review theoratie-
sults that back up those observations. Due to space caristraie
present only a few results and refer to the recent survey hyeNsi
and Wierman [25] and the references therein for furtherideta
Despite the existence of theoretical results on the LAS gueet-
working researchers often rely on simulations to studyeheali-
cies for the simple reason that a job as used in queuing thHsory
not a good model for a flow in the networking context. In thewgue
ing theory, the ternjob defines an amount of work that arrives to
the system alat once Therefore, dlow of packets cannot be con-
sidered as a job since a flow does not arrive at a router at once.
Instead, the source transmits a flow as a sequence of papksts,
sibly spaced out in time, that are in turn statistically riplétxed
with packets from other flows. However, we will see in Section
3.5 that in the specific case of LAS, job level results and flevel
results can agree.

3.3 Notation

Notation used in the rest of this paper is summarized in Table
1. Note that the set of IMRL (Increasing Mean Residual Lifis) d
tributions encompasses the set of DFR (Decreasing Failate)R
distributions. All IMRL (and thus DFR) distributions haveCaV
greater than 1.

3.4 Joblevd resultsfor LAS

We present in this section, results for the mean response tim

such as Foreground Background (FB) or Shortest Elapsed Timeand the conditional mean response time of an LAS queue. Bnles

(SET). Also, different flavors of the policy exist, deperglion the
number of priority queues, the use of preemption and on vereth
the minimum amount of service (service quantum) is null gy
positive.

LAS belongs to the family of blind policies that do not knoveth
job size in advance, in contrast to other size-based scimedobli-
cies, like SRPT (Shortest Remaining Processing Time) tivasg
priority to the job that is the closest to completion. The coom
belief about LAS and other size-based scheduling policiesring
short jobs is that they might lead to the starvation of thegést
jobs. However, in the context of Internet traffic where thegfic

otherwise stated, all results apply to an M/G/1/LAS queue.

3.4.1 Mean Response Times

LAS tries to mimic the SRPT policy by guessing the remain-
ing service time of a job based on the service it has receiged s
far. The reason behind this strategy is that SRPT is optifioal (
a G/GI/1/LAS queue) in the sense that it minimizes the mean re
sponse time and the mean queue length among all policie#\Sf L
correctly guesses the remaining service time, LAS should tie
optimal among all blind policies. Several results have h@emen
along this line. It has been shown that LAS is optimal amorg al



Service requirement with mean[ X|

X and variancear(X)
Density of X. We assume thaf is
f continuous and with finite first and
second moments.
P Cumulative distribution function ok
N Arrival Rate of clients to the queue
p = \E[X] Input load to the queue

Input load to the queue due the clients
of size less or equal to
Input load to the queue due to clients
of size less or equal te and clients of
size larger than: but truncated ta:

Response time of policy with mean

p(@) £\ ¢ 2 f(2)da

pe 2 pla) + Aa(1 - F(2))

T E[T;)
Mean conditional response time of|a
E[Tp(2)] client of sizex for policy p
a E[Tp(z)] Mean conditional slowdown of 4§
E[Sp(z)] = @ client of sizex for policy p
CoV(X) £ \/var(X)/E[X] | Coefficient of variation ofX
Decreasing Failure Rate. For a DHR
DFR distripution, 1f§f&) is a decreasing
function ofz
Increasing Mean Residual Life. Forla
IMRL IMRL distribution,

E[X — z|X > z] is an increasing
function ofz

Table 1: Notation

blind policies for the case of DFR service time distributoilow-
ever, LAS is not necessarily optimal for the class of IMRL-ser
vice time distributions [1], or for all service time disttibons with
CoV(X)> 1.
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Figure 3 illustrates the previous theorem for an exponedita
tribution with a mean job size of 3000 units and a boundedtBare
distribution with an minimum value of 322 units, a maximuniua
of 10%° units and a shape parameterof 1.1. The mean of the
bounded Pareto distribution is also 3000 units. The CoV ef th
exponential distribution is 1 and the CoV of the bounded ®are
distribution is 284. One can see from Figure 3 that for a distr
bution with a large CoV like the Bounded Pareto distributitire
mean conditional response time of LAS is very close to theaine
SRPT for all job sizes, almost irrespectively of the load.isTis
not the case for the exponential distribution where gooéament
exists only for small to moderate load values.

The number of small jobs that experience a smaller respamse t

Concerning the comparison between LAS and PS, Coffman and under LAS than under PS has been studied in [43, 29, 6]. Combin

Denning ([8], page 189) conjectured that for service tinsriiu-
tions with CoV(X) > 1 the mean response time for LAS is lower
than that of PS. Recently, Wierman et al. [42] have showntthigt
is not the case. However, for the more restrictive class dRLM
service time distributions, LAS achieves a smaller meaparse
time than PS [1].

More generally, an upper and a lower bound on the mean re-
sponse time of LAS have been obtained in [25]:
1—p/2
(1-p)2

The deterministic distribution constitutes a worst casenmgtihe
upper bound on the mean response time of LAS is attainedewhil
a number of distributions (of practical interest) lead te tbwer
bound.

THEOREM 1.

E[X]
== < E[TLas] < E[X]

ing the results in [43, 29, 6], one obtains:

THEOREM 3. In an M/G/1 queue,
ETpas(z)] < —1If,/,2E[TPS($)] Va
E|Tpas(z)] < E[Tps(z)] Vxs.t.p, < max{ﬁ), 2p}.

Brown [6] has further proven that for Pareto distributionghw
infinite second moment, the conditional mean response timallf

job sizes is smaller under LAS than under PS.

In case of overload, some jobs still experience a finite servi
time under LAS [29]. This is in contrast with FIFO and PS where
the conditional response time of all jobs goes to infinity.

THEOREM 4. Whenp > 1, all jobs of sizer < z,, such that

A number of studies have also been conducted on the impact?=, = 1 have afinite response under LAS.

of the load on the performance of LAS. When the load reaches 1,
both LAS and PS see their mean response time growing to finit
However, the ratio of the average response time of PS to La&gr
unbounded, which means that the PS queue builds up fasteththa
LAS queue [25].

3.4.2 Conditional Mean Response Times

Let us first consider the mean conditional response filf#€; 45 ()]
The extent to which the mean conditional response time of [SAS
close to the corresponding value under SRPT depends botieon t
distribution and the load of the input traffic [29]:

THEOREM 2. For all job sizesr and at loadp < 1:
E[Tsrpr(z)] < E[Tpas(2)] < (222)°ElTsrpr(z)]

Apart from response time, fairness has also received signifi
attention. The metric used to evaluate fairness is the meadic
tional slowdownE[S(z)]. A policy is said to be fair if its mean
conditional slowdown for all job sizes is smaller than theree
sponding metric under PS. Wierman and Harchol-Balter [48} p
posed a framework to classify scheduling policies with ee$po
their fairness. A striking result is that fairness of the maxm job
size is the same for both LAS and PS. However, when the flow size
distribution has a finite second moment, some large jobsu¢tho
not the largest job) always experience a slowdown greatderun
LAS than under PS [43].

3.5 Flow leve results



While queuing theory offers an ideal framework to comparfe di
ferent scheduling strategies, the results obtained aralinettly
applicable to packet networks as we have already discussr@ a
However, in [30], we demonstrated that a router implementiAS
can be modeled by an M/G/1/LAS queue, provided a low packet
loss rate (less than 2%), homogeneous round trip times camdi+
cal packet sizes. The intuition behind this result is thatsiLAS
is a priority scheduling policy, the behavior of an LAS raute
similar to that of an LAS queue as long as the packet to besvi
next arrives at the router before the time instant whereselscted
by the scheduler. As a FIFO router can be modeled as an M/&/1/P
queue, we can use the results presented in the previousrsecti
the comparison between LAS and PS at job level to compare LAS
and FIFO scheduling in a router.

36 LASand TCP

LAS scheduling in packet switched networks such as thereter
can be applied to flows. A flow is defined as a group of packets
with a common set of attributes such as (source addresaltsn
address, source port, destination port). For each fiothe amount
of bytesSr served so far needs to be tracked in order to compute
the service priority of the next packet of flol. S is initialized
to 0 when the flow starts and incremented Bywhen a packet of
size P belonging to flowF arrives. In the “basic” version of LAS,
the service priorityof a flow is given bySr. The flow that has
sent the least amount of bytes will have the highest serviogty.
Recall that the lower the value of the service priority, thghler
the priority, and the closer to the head of the queue the paske
inserted.

50% of the bytes are carried by less than 5% of the largest
flows [26, 7].

Due to the closed-loop nature of TCP, the treatment given by
LAS to an individual packet is likely to affect when TCP tranits
the following packets of that flow. In fact, LAS interacts yda-
vorably with the congestion control and error control of T&Rl
accelerates the transfer of most flows:

e Congestion Control: A new TCP flow starts in what is known
as “slow start”, where its congestion window is initialized
to a very small value and then doubled after every round of
transmission. The duration of a round is essentially deter-
mined by the time between the transmission of the packet and
the reception of the acknowledgment, and comprises packet
transmission time, propagation delay, and queuing delageS
under LAS the first packets of a flow will experience no
or negligible queuing delay, the duration of a round will be
shorter under LAS than under FIFO and the congestion win-
dow will increase faster.

Error Control: LAS gives buffer space priority to the first
packets of each flow, which means that these packets should
not experience any loss. Avoiding loss is very important
since any packet loss may temporarily prevent the sender
from emitting new packets until the loss has been repaired.
Loss repair for the first packets of a TCP flow typically oc-
curs after a timeout and requires much more time as com-
pared to loss repair using duplicate ACKs (see [28]).

We have already seen that there are some differences between We have implemented LAS under Linux and are able to handle

LAS applied to jobs as compared to flows and we want to empha-

data rates of several tens of Mbit/s without any specialngnThe

size one more point. Routers have a finite buffer space and theLinux kernel contains a complete architecture for suppdi®oS

implementation of LAS in routers must extended to not only de
cide in which order to serve packets but also which packetap d
when the buffer is full. When a packet arrives to a queue that i
full, LAS computes the service priority of that packet, irsehe
packet at its appropriate position in the queue, and thepsdtioe
packet that is athe end of the queue

LAS for scheduling packets is attractive if the followingnt-
tions hold:

e The load of the link over which LAS schedules the transmis-
sion of packets is sufficiently high. Under low and moderate
load (p < 0.7) there is not much difference in terms of con-
ditional mean service times between the various scheduling
policies such as LAS, PS or FIFO. It will be sufficient to de-
ploy LAS scheduling in the routers serving congested links
to achieve a significant reduction in the end-to-end respons
time for most flows. The links that are congested (highly
loaded) are often located at the edge of the network. One
place where the deployment of LAS can make a difference
is for scheduling the transmission of packets over the broad
band access link of home users.

The flow size distribution generally exhibits a high coeffi-
cient of variation. Internet traffic exhibits a high coefficient
of variation since most of the flows are short, while more than

LAlthough we have seen before that a high CoV may not be suf-
ficient to obtain good performance, theoretical distribog used
to model user traffic such as the Bounded Pareto distributiave
been observed to be very effective in reducing the respamsedf

most flows when LAS is used as compared to FIFO (see section 3.2corresponds on average RY'O « (3

of [29]).

with components such as flow classification, packet droppirey
tering, marking, and shaping, which makes it easy to expEitm
with new scheduling policies. The implementation of LAS e
track for each flow of how many bytes have been served, corapute
the service priority to obtain the priority value for eackcket and,
most importantly implements a priority queue that insentsgiv-

ing packet according to its priority value.

3.7 Performance of LASvs FIFO in a single
bottleneck case

We present the result of one experiment where LAS is used to
schedule transmission over a bottleneck link of 320 Kbit&t ex-
periences an average offered load of 0.91. The round trip tém
40 ms and a total of 500,000 flows have been transmitted. Tive flo
sizes are drawn from a bounded Pareto Distribution with mimn
flow size of 1.5 KByte and maximum flow size of 233 MByte and
a coefficient of variation of 33.41. For more results see .[33}e
comparison of LAS and FIFO in Figure 4 shows that LAS reduces
the mean response time of most of the TCP flows by an order of
magnitude and more.

However, during our experiments we also discovered that LAS
can “starve” large TCP flows more frequently than FIFO. Thap
lem is due to the fact that some long TCP flows get preempteal for
very long period of time by flows that have received less senvif
a TCP flow gets preempted and some of its packets are stuck in th
queue of the bottleneck link, the sender will timeout afteimae
RTO, and resend these packets. At each retransmissiorgrtders
doubles its RTO, adopting an exponential back-off stratégter
15 attempts, the TCP connection is aborted. The time untifttab
1505, 2Y) = RTOx(2"° 1),
Since the minimal initial RTO value in TCP ranges from 200 ms t
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1 sec (see RFC 2988), it will take at least 90 minutes beforma ¢
nection is aborted.

It should be clear from this example that only under very cire
cumstances a TCP flow will be aborted and the higher the dtga ra
of the bottleneck or the larger the RTT, the less likely thergy
In any case, there is a very simple fix against starvation dP TC
connections: Limit the duration during which the transritasof
packets for a flow can be suspended. We can modify LAS to obtain
LAS-thresholdwhere the service priority assigned to any packet
cannot take values larger thahreshold Such a scheme is dis-

four nodes where three long-lived FTP connections are ksiaiol
between a node at one end of the chain and each other node in the
chain. Let us first assume that there is no hidden node. In this
scenario, TCP suffers from unfairness as the throughpuedses
with the number of hops in the path [16]. Simulation resués r
ported in [11] show that LAS enforces fairness between the FT
connections. These results highlight that the bad perfoces of
TCP in wireless networks are not solely due to the TCP aligorst
but also to the interaction between TCP and FIFO.

Note that some transient starvations are observed whehrie t
FTP connections do not start simultaneously, as has beenvelas
in the previous section for a wired setting. However, the esam
type of argument applies here which is that in a realistie caith
flows of different sizes (and not long-lived flows), thesensitions
should not last long enough to break the underlying TCP conne
tions.

The case of a chain topology with one hidden node [13] (the
last FTP receiver) is also addressed in [11]. It turns out ltAeS
can partly enforce fairness in this case as compared to FIR@av
the last FTP receiver completely starves. The intuitionitelthis
result is that the last FTP connection, which is penalizedheay
presence of the hidden node in its path (the last node in taiech
is granted a higher priority under LAS at the other (non higde
nodes of the path. Thus, the last FTP connection has a chance t
catch up with the other ones.

Though preliminary, those results highlight the benefitsuight
by the use of LAS in wireless networks.

3.9 Related work
There are several papers [15, 2] that try to improve the perfo

cussed by Feng and Misra under the name of FLIPS [10] and asmance of short flows by using two FIFO queues. The Rrglack-

LAS-FCFS in Rai’s thesis (section 6.6. of [27]) and has been i
plemented and evaluated in [33].

Under LAS-threshold the packets with service priority values
less tharthresholdwill be served according to LAS, the remaining
packets are handled in a “background” FIFO queue, redutiag t
duration of a flow preemption. Finding the value tbresholdis
not too difficult since the time before a TCP connection isradub
is so large. In our implementation we saw that 300 KByte was a
good value fothreshold[33].

In fact, LAS-thresholds just one possible modification to LAS
and several other modifications are possible that allowke tato
account the needs of applications such as IP telephony @/sigo
streaming. There are for instantAS-fixedwhere all packets of a
flow have the same fixed service priority value amsiS-logwhere
the service priority grows with the logarithm of the numbébygtes
served, i.e. much slower than under normal LAS where it grows
linearly. For more details, analytic results and also on ltosvdif-
ferent LAS policies interact see [30].

3.8 LASIn wirdessnetworks

In this section, we discuss the use of LAS in a wireless cantex
with a focus on 802.11 networks. Pure ad-hoc networks oa#fr
tructure networks suffer from two issues that LAS could\alee.
First, the relatively low bandwidth available in those eonments,
as compared to wired networks, as well as the bandwidthbititia
tend to create bottlenecks. Second, TCP suffers from paforpe
mance and unfairness in wireless networks [18, 12].

In [11], the use of LAS in static 802.11 networks is investigh
Small multi-hop ad-hoc networks with a chain or grid topglog
are considered along with a single hop infrastructure ngkwd/e
demonstrate here the benefits of LAS by reporting the resblts
tained for a chain topology. Let us consider a chain topoldi

ets of a flow are enqueued in the first queue and the remainiesg on

of a flow are enqueued in the second queue. Each queue is served
in FIFO order and packets from the second queue are onlyderve

if the first queue is empty. Two-queue based disciplinesaede
mean transfer times of the short flows compared to FIFO sd¢hedu
ing, however not to the extent that LAS is able to do.

4. THEEFFECT OF CLOSED VERSUSOPEN
SYSTEM MODELSON SCHEDULING

Most researchers are well aware of the fact that the perfocma
of scheduling policies is greatly influenced by factors sastthe
job size distribution and the system load. However, litttertion
has been paid to the impact of whether the system under sblidy f
lows aclosedversus aropensystem model.

Figure 5(a) depicts alosed system configuration. In a closed
system model, it is assumed that there is some fixed finite Bumb
of users, who use the system forever. This number of useypis t
ically called themultiprogramming leve{MPL). Each of the users
repeats these 2 steps, indefinitely: (a) submit a job, (Biveahe
response and then “think” for some amount of time. In a cleysd
tem,a new request is only triggered by the completion of a previou
request

Figure 5(b) depicts anpen system configuration. In an open
system model, each user is assumed to submit one job to the sys
tem, wait to receive the response, and then leave. The nuafiber
users queued or running at the system at any time may range fro
zero to infinity. The differentiating feature of an open gystis that
arequest completion does not trigger a new request: a newestiqu
is only triggered by a new user arrivallhe arrival times of users
could for example be generated from a Poisson process on take
from a trace.
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5. CONCLUSIONS

In this paper, we have demonstrated through two real world ex
amples that scheduling is a very powerful tool to improveruse
perceived system performance.

We started by considering a Web server serving static regues
We showed that changing the connection scheduling fronraioke t
tional time-sharing scheduling to SRPT-based schedubingyceatly
reduce mean response times at a busy web server. We alsodshowe
that this change in the connection scheduling significantfyroves
both server stability and client experience during tramisoerload
conditions. Most importantly, these improvements do nobeat
the expense of hurting requests for large files.

(b) Open system

Figure5: Illustrations of the closed and open system model.

While nearly all queuing theoretic results on the perforoeaf
scheduling policies assume an open system model, in experim
tal work the system model is implicitly dictated by the warkdt
generator used. In the case of web workloads, for exampdee th
are popular workload generators that are based on a closéehsy ; )
model [5, 40, 41], as well as generators that follow an opestesy In th_e second example, we hav_e discussed LAS as a scheduling
model [3, 20, 39]. pollcy. in routers. While LAS requires a small amount of pewflo

Recent work [38] shows that the choice between an open and aState in the routers, our experience has shown that LAS isteas
closed system model can greatly impact results, in pasiouhen implement and interacts very nicely with TCP. LAS can be_ gAcr
it comes to the effectiveness of scheduling. In [38] implatae mentally deployed and when used to schedule packet trasismis
tion and simulation experiments together with theoretjupsut are over broadband access lines or wireless links, the useejved
used in order to identify a set of basic principles that capthe performance will be significantly improved. Also, its diféat pri-

differences in behavior of closed, open, and a hybrid pantlgn
system models.

One key principle derived in [38] is that while open systems

benefit significantly from scheduling with respect to resgmtime,

ority functions offer a wide variety of possibilities forrséce dif-
ferentiation.
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