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Abstract - In this paper we introduce a new method for fusing
classifier outputs. It is inspired from the behavior knowledge
space model with the extra ability to work on continuous input
values. This property allows to deal with heterogeneous classi-
fiers and in particular it does not require to make any decision at
the classifier level. We propose to build a set of units, defining a
knowledge space, with respect to classifier output spaces. A new
sample is then classified with respect to the unit it belongs to and
some statistics computed on each unit. Several methods to create
cells and make the final decision are proposed and compared to
k-nearest neighbor and decision tree schemas. The evaluation is
conducted on the task of video content retrieval which will reveal
the efficiency of our approach.

Keywords: classifier fusion, behavior knowledge space, video
content indexing and retrieval

1 Introduction

Classification is a major task in many applications from
multi-modal speech recognition to medical image analysis.
It is a particularly important step for automatic semantic-
based video content indexing and retrieval; especially to
bridge the gap between low level features, like color or
texture descriptors, and high level concepts, like mountain
or people running. Unfortunately, the complexity of the
task renders the choice of right descriptors and classifica-
tion models very challenging. And the curse of dimension-
ality [1] renders the training of a single model inefficient.
Mainly, two fusion strategies were set up to get around
these. Either descriptors are first pre-processed to simplify
their joint description [22] (descriptor fusion), either one or
many classifiers are build per descriptor and fused later on
in the process (classifier fusion).

Fusion is an old but still very active research field and
it is nowadays receiving increasingly interest to improve
classification performance. It has proved high potential in
many applications from medical image analysis to audio-
visual speech recognition. However, fusion is involved in
all stages of the classification process and because of this,
its mechanisms are difficult to understand. This challeng-
ing task is generally tackled on specific sub-problems such
as descriptor fusion [22], classifier ensemble creation [5] or
classifier fusion [14]. We focus our attention on classifier
fusion that has the advantage to be very flexible despite the

loss of correlation information between descriptors. Thus,
we assume that an ensemble of classifiers is available. The
fusion mechanism has to make a decision with respect to
classifier outputs.

Classifier fusion methods can be divided into four fami-
lies, namely classifier selection methods, probabilistic, pos-
sibilistic or belief methods, classification methods and sta-
tistical methods. First methods aim at making a static or
dynamic selection of the best classifier with respect to the
context [12, 2, 16]. A simple example of a static method is
to divide the input space into cells to which are associated
a reliable classifier. The second family of methods offer a
set of operators to be applied on classifiers outputs. Oper-
ators include the sum, maximum, minimum, mean, major-
ity voting, . . . . They were studied in [11, 13, 6]. In that
case, classifier outputs are interpreted differently depend-
ing on the framework (probabilities [11], possibilities [6]
or beliefs [9]). The difficulty is then, to find optimal op-
erators. Third methods consist in solving another classifi-
cation problem. However, the situation is particular since
the distribution of classifier outputs is concentrated around
two values, usually 0or − 1 and 1. The variance is, then,
very low and some classification models are not appropri-
ate [14]. Fourth methods rely on a knowledge space that
drives the behavior of the classification. These methods are
called Behavior Knowledge Space (BKS) methods [8] and
they have the property to avoid making any assumption on
classifier output distributions. In this paper, we propose to
extend them to continuous classifier outputs.

BKS methods were originally designed to deal with a
multi-class problem. A cell is defined as a combination of
classifier decisions and a training set is used to compute the
link between cells and the final decision. This approach re-
quires a decision to be first taken by classifiers before the
fusion. In order to avoid this early decision procedure that
results in a loss of information, we introduce Continuous
Behavior Knowledge Space that works directly on continu-
ous classifier outputs.

The paper is organized as follows. We first present the
Behavior Knowledge Space model. Then, we propose our
extension to continuous classifier outputs and evaluate this
new approach in the framework of semantic video content
indexing and retrieval. Finally, the last section draws our
conclusion.



2 Behavior Knowledge Space

2.1 Problem formulation

Let X be the descriptor space,C = {Ci , i = 1 : Nc} be the
output classes and{ek, k = 1 : Ne} the expert ensemble.ek

is a functionek : X → C such that ifx ∈ X is a unknown
pattern, thenek(x) = ci means thatx belongs to the class
ci . Let yx denote the true class ofx. The research focus of
classifier fusion is then to find the functionF : CNe → C

that produces the best final decision.

2.2 BKS principle

The idea behind the Behavior Knowledge Space (BKS)
model is to avoid making unjustified assumptions on the
classifier ensemble such as classifier independency. For this
purpose, the information is derived from a knowledge space
which can concurrently record the decisions of all classi-
fiers on each learned sample. BKS is aNe dimensional
space where each dimension corresponds to the decision
of one classifier. A point in this space corresponds to the
decision of all classifiers. Each pointP contains three in-
formation, the total number of incoming samplesPi , the
best representative classPc and the total of samples from
each classPc

i . These statistics are computed on a training
set, then they are used to make the final decision as follows:

F(P) =

 Pc , when Pi > 0 and
PPc

i

Pi
≥ λ;

Nc + 1 ,otherwise.

Whereλ is a threshold that controls the reliability of the
final decision,PPc

i is the total of training samples from the
classc in the unit andPi is the total number of training
samples in the unit.

3 Continuous Behavior Knowledge
Space

3.1 Problem formulation

Let X be the descriptor space,C = {Ci , i = 1 : Nc} be the
output classes and{e′k, k = 1 : Ne} the expert ensemble.
e′k is a functione′k : X → <Nc such that ifx ∈ X is a
unknown pattern, thene′k(x) measures the membership ofx
to each classci . The research focus of classifier fusion is
then to find the functionF′ : <NexNc → C that produces the
best final decision. Comparing to the original formulation
any intermediate decision is taken and it is the role ofF′

to make the final decision with respect to a more accurate
information.

3.2 CBKS principle

As for the BKS method, CBKS aims at making final de-
cisions from an expert ensemble without making any as-
sumption on this latter. Working directly with expert out-
puts has the advantage to avoid making preliminary deci-
sions that remove the information on the decision quality.
We propose a knowledge space where each dimension cor-
responds to the output of a given expertek for a given class

ci . The difficulty now is to find the right units. In this new
space, units as described in the original method, are not well
identified and they must be obtained using vector quanti-
zation techniques. We propose to compare two methods
and some derivatives to get units: first uniform and non-
uniform quantization by histogram computation, second k-
means clustering. For each unit, the same statistics as BKS
method are computed to make the final decision.

3.3 Histogram computation

We propose to determine unit boundaries by computing his-
tograms. Uniform and non-uniform quantization strategies
are studied.

The uniform quantization consists in splitting each di-
mension intos parts of the same length. It has the advan-
tage to provide data independent units, therefore it is not
sensitive to the training data set. However this approach is
only optimal if data are uniformly distributed and it is rarely
the case since we expect data to be distributed around some
specific values (usually 0 or 1). Moreover, it is not scal-
able with respect to the number of dimension. Non-uniform
quantization is then a better solution.

Unfortunately, it is a difficult problem on multiple di-
mensions. Non-uniform quantization is usually applied in-
dependently on each component (a given expertek for a
given classci) thanks to histogram equalization technique.
At the end, each bin has approximatively the same num-
ber of samples. Unfortunately, this simple approach dis-
card the correlation information between dimension and it
will simply fail on too many dimensions. We, thus, imple-
ment the well-known MHIST-p algorithm [15] that allows
to efficiently build multi-dimensional histograms. It is an it-
erative process that loops over the two following steps until
the desired number of units is obtained:

Step 1: We choose a unitU that contains a dimensiond
whose marginal distribution is the most in need of par-
titioning,

Step 2: Split U alongd into a small numberp of units.

The method has been proved efficient with p = 2 and the
MaxDiff splitting method. It select the marginal distribu-
tion (U andd) with the largest difference in frequency val-
ues between adjacent values on a dimension. This approach
does not fit to our problem since it approximates the prob-
ability density function of the data. Therefore, we propose
a new splitting strategy that minimizes the squared error
when elements of a unit are approximated by their mean
value. Its selects the marginal distribution (U andd) with
the highest squared error and splits the unit to minimize the
quantification error:

Step 1: We choose a unitU that contains a dimensiond
where the squared error is the highest,

Step 2: Split U alongd into a two units such that the quan-
tification error is minimized.

This approach reminds the technique used to build deci-
sion trees and we find interesting to implement a goal ori-
ented splitting strategy:



Step 1: We choose a unitU that contains a dimensiond
where the entropy reduction can be the highest,

Step 2: Split U alongd into two units such that the entropy
is minimized.

3.4 Clustering

Another intuitive way to determine units is given by clus-
tering techniques. K-means clustering algorithm is applied
on training data. In this case, data points are gathered by
proximity. CBKS statistics are computed over each clus-
ter. We also propose to apply a fuzzy approach to compute
statistics and classify new samples. UnitsUi are character-
ized by their centermi . Training samples are clustered and
we compute the probabilitiesPi(x) that the samplex be-
longs to unitsUi . Statistics computed on units are then: the
number of incoming samplesNi =

∑
x Pi(x), the best repre-

sentative class defined asPc = argmaxci (
∑

x Pi(x)|yx = ci),
and the total number of samples from each classPc

i =∑
x Pi(x) whereyx = ci . Then, they are used to make the

final decision as follows:

F′(P) =

 Pc , when Pi > 0 and
PPc

i

Pi
≥ λ;

Nc + 1 ,otherwise.

Whereλ is a threshold that controls the reliability of the
final decision.

4 Video Content Retrieval

The continuous behavior knowledge space was designed
for the task of video shot classification. The objective is
to identify shot content for information retrieval purposes.
The system is organized as depicted in figure1. First the
content of shot is captured by some descriptors presented
in subsection4.1. These descriptors are then processed as
explained. From these descriptors and a reference database,
classification models, presented in subsection4.2, are built
per semantic concept. Finally, the fusion mechanism is ap-
plied on classifier outputs to provide a detection score per
concept. The evaluation is then presented in subsection4.3.

4.1 Descriptors

It is far from trivial to identify the right features to extract
for a general purpose application such as video content in-
dexing. Many features were proposed in the literature dur-
ing the last two decades. In some of our recent work on
video content indexing [18], we proposed to use a region-
based approach with color and texture information. At the
end, an image vector space model (IVSM) is obtained to
efficiently represent video shot content.

First key-frames of video shots, that are provided by
TRECVID [20], are segmented thanks to the algorithm de-
scribed in [7]. The algorithm is fast and provides visually
acceptable segmentation. Its low computational require-
ment is an important criterion when we need to process a
huge amount of data like the TRECVID database. Sec-
ondly, normalized HSV color histograms as well as mean
and variance of 24 Gabor’s filter response energies are com-
puted for each region. Thirdly, the obtained vectors over

the complete database are clustered to find the N most rep-
resentative elements. The clustering algorithm used in our
experiments is the well-known k-means. Representative el-
ements are then used as visual keywords to describe video
shot content. To do so, computed features on a single video
shot are matched to their closest visual keyword with re-
spect to the Euclidean distance or an other distance mea-
sure. Then, the occurrence vector of the visual keywords in
the shot is build and this vector is called the raw signature
of the shot.

The same process is applied on regions around salient
points. They are detected thanks to the Haar wavelet trans-
form as presented in [17]. The idea is to track and keep
salient pixels at different scales. We then propose to build
two rectangular regions around each salient point, one re-
gion on the left and the other on the right for vertical edges
and one on the top and the other on the bottom for hor-
izontal edges. The depth of rectangles is proportional to
the scale level at which corresponding points were detected.
We propose to have smaller rectangles for high frequencies.
An illustration of both segmentation approaches is provided
on figure2.

(a) Region segmentation (b) Salient segmentation

Figure 2: Example of segmentation outputs.

Starting from an IVSM, one can build the occurrence
matrix of visual keywords in training shots. The singu-
lar value decomposition of this matrix provides a new rep-
resentation of video shot content where latent relation-
ships can be emphasized. Image Latent Semantic Analysis
(ILSA) is an adaptation of a method (Latent Semantic In-
dexing) used for text document indexing. It was originally
introduced in [4] and it has now demonstrated its efficiency.
In [19], the LSA is efficiently adapted into the so-called
ILSA to deal with image content.

The number of singular values kept drives the ILSA per-
formance. On one hand, if too many factors are kept, the
noise will remain and the detection of synonyms and the
polysemy of visual terms will fail. On the other hand, if
too few factors are kept, important information will be lost,
resulting in performance degradation. Unfortunately, no so-
lution has yet been found and only numerous experiments
allow to find the appropriate factor number.

Now, video shots have their visual content described by
ILSA signatures on color, texture for both regions types
(homogenious and salient). As far as the experiments re-
ported in this paper are concerned, four signatures are used.
The objective is then to deduce the semantic content of
shots. Classification methods are appropriate tools for this
task. They consist on automatically assigning labels to a
given input vector. For this purpose a model is firstly cre-
ated with respect to a training set. We propose to use sup-
port vector machines to solve our classification problem.
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Figure 1: General framework of the application.

4.2 Classification

Support vector machines were widely used in the past ten
years and they have been proved efficient in many classifi-
cation applications. They have the property to allow a non
linear separation of classes with very good generalization
capacities. They were first introduced by Vapnik [21] for
the text recognition task. The main idea is similar to the
concept of a neuron: separate classes with a hyperplane.
However, samples are indirectly mapped into a high dimen-
sional space thanks to a kernel function that respects the
Mercer’s condition [3]. This allows one to lead the classi-
fication in a new space where samples are assumed to be
linearly separable. To this end, we use the implementation
SVMLight detailed in [10]. The selected kernel, denoted
K(., .) is a radial basis function which normalization param-
eterσ is chosen depending on the performance obtained on
a validation set. Let{svi}, i = 1, ..., l be the support vectors
and{αi}, i = 1, ..., l corresponding weights. Then,

HS VM(x) =
k=l∑
k=1

αkK(x, svk)

We take advantage of the validation procedure to find both
SVM parameters and the best number of factors to be kept
by the ILSA.

4.3 Evaluation framework

In the framework of information retrieval, the system does
not need to make a hard decision, i.e. to tell if a class is
present or not, but only to provide a detection score that is
useful to rank shots. For this purpose the CBKS method,
as presented in the previous section, is slightly modified.
First we assume that semantic concepts to be detected are
independent. Classification and fusion are, then, conducted
on binary problems, i.e. the concept is present in the shot
or not. Second we don’t really need to select an optimal
value forλ that is required to make a decision. Thereby, we
define the detection score per classc for a unitUi as :

Di,c(P) =
PPc

i

Pi

WherePPc
i is the total of training samples from the classc

in the unit andPi the total number of training samples in the
unit. Finally, performance of the fusion is measured by the
mean precision of retrieved shots, i.e. ordered shots with
respect to detection scores.

5 Experiments

Experiments are conducted in the context of TRECVID
2005. Fusion algorithms are evaluated on the task of high-
level feature extraction which aims at ordering shots with
respect to their relevance to a semantic class. Proposed
semantic classes in 2005 are building, car, fire/explosion,
U.S. flag, map, mountain, sport, people walking/running
and waterscape/waterfront. The quantitative evaluation is
given by mean precision values of retrieval results limited
to 2,000 retrieved shots. The training data set of TRECVID
2005 is composed of about 80 hours of news programs from
American, Arabic and Chinese broadcasters. The set is split
in three equal parts, chronologically by source, in order to
train the SVM models, find the best fusion function and
evaluate our system performance.

This section presents two types of experiments. First,
CBKS method and its different quantization methods are
studied. Then, CBKS performance is compared to k-nearest
neighbor and decision tree performance.

5.1 CBKS study

In this section, we propose to compare the performance
provided by the four quantization methods : uniform and
MHIST-p presented in section3.3 and the two version of
k-means presented in section3.4. Performance is presented
with respect to the number of units in order to emphasize
the effect of this parameter. Other quantization forms were
also studied and their performance was not achieving as
good as MHIST-p or k-means approaches.

Figure3 shows the performance of CBKS when units are
obtained by uniform quantization of the input space. We
notice that only few bins are necessary : between 2 and 4
per input, i.e. between 16 and 256 units. Differences of per-
formance with respect to the number of bins can be high and
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Figure 3: Uniform quantization, from 16 to 10.000 bins.
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Figure 4: MHIST non-uniform histogram computation by
minimizing squared error, from 5 to 3.000 bins.

localized as it is the case for semantic concepts two, four
and seven. A validation procedure is highly recommended
through it won’t insure good generalization properties. The
proposed MHIST quantization procedure allows to obtain
more stable performance (see figure4) with respect to the
number of bins. It means that we can expect better gener-
alization capacities contrary to the previous method. Fur-
thermore, performance is very similar or higher if we have
a look in details.

K-means algorithm is another way to create units. Fig-
ure 5 shows the performance when units are obtained
thanks to it. As we can see, performance is highly improved
for most of features. We also proposed to compute detec-
tion scores with respect to the distance to all units in order
to soften the classification procedure. This method revealed
efficient for most features (figure6).

To conclude this part, CBKS is the most efficient when
units are computed with k-means algorithm and the fuzzy
approach is used to compute classification scores. However,
this method does not lead to the best performance in some
few cases (concepts three (car), four (US flag) and seven
(sports)). It is mainly due to particular conditions that al-
lows other methods to provide very good results. We think
that these results are marginal since they correspond to iso-
lated picks. In these particular cases, we do not expect good
generalization properties.
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Figure 5: K-means clustering, from 5 to 3.000 clusters.
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Figure 6: K-means clustering and fuzzy statistics, from 5 to
3.000 clusters.

5.2 Comparison of CBKS, K-NN and deci-
sion trees

This subsection compares our fusion method to related ex-
isting fusion techniques using the semantic ground-truth,
namely k-nearest neighbors and decision trees. Figure7
shows that many neighbors (around 500) are required for
an optimal fusion, and still, it does not lead to the best fu-
sion system. Results provided by decision tree are worst
(see figure8). We notice that the over-fitting phenomenon
occurs quickly.

The difficulty of the task and the limited number of posi-
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Figure 7: KNN fusion, from 25 to 800 neighbors.



1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

Semantic Concepts (1..9) and mean performance (10)

M
ea

n 
Pr

ec
is

io
n

Figure 8: Decision Tree fusion, from 5 to 3.000 decisions.

tive samples make the fusion very challenging. Data driven
quantization procedure are more efficient when the seman-
tic ground-truth is not used. Indeed, it results in better gen-
eralization capacities due to the averaging operation applied
on units.

6 Conclusion

We presented a new classifier fusion method, named con-
tinuous behavior knowledge space (CBKS). It is mainly
designed for binary classification tasks (or semantic con-
cept detection) while taking the original idea of behavior
knowledge space. CBKS is an efficient fusion technique
that builds a knowledge space, composed of units, with
respect to the data distribution. The system automatically
identifies units of interest on which classification scores are
computed. The advantage is to avoid making any assump-
tion on the classifier ensemble. Then, it does not required
decision making by classification systems of the first level.
Thus, it avoids to impose an early trade-off between false
positives and true positives.

We proposed different strategies to compute optimal
units and k-means algorithms, especially the fuzzy version,
provides the best performance. Moreover, obtained perfor-
mance is stable with respect to the number of bins and we
expect good generalization properties. We further evaluated
our system by comparing its performance to K-NN and de-
cision tree methods and our system revealed its efficiency to
deal with a complex problem where the number of positive
samples is limited.

The next step is to address multi-class problems in order
to study the capacity of CBKS to take advantage of inter-
class relationships. Another direction is to look at the relia-
bility of the method when many features are involved.

Acknowledgement

The work presented here was funded by France Telecom
R&D, France.

References

[1] K. Beyer, J. Goldstein, R. Ramakrishnan, and
U. Shaft. When is “nearest neighbor” meaningful?
Lecture Notes in Computer Science, 1540:217–235,
1999.

[2] E. Brill and J. Wu. Classifier combination for im-
proved lexical disambiguation. InProceedings of the
17th international conference on Computational lin-
guistics, pages 191–195, Morristown, NJ, USA, 1998.
Association for Computational Linguistics.

[3] N. Cristianini and J. Shawe-Taylor.An Introduction
to Support Vector Machines, chapter Kernel-Induced
Feature Spaces. Cambridge University Press, 2000.

[4] Scott C. Deerwester, Susan T. Dumais, Thomas K.
Landauer, George W. Furnas, and Richard A. Harsh-
man. Indexing by latent semantic analysis.Jour-
nal of the American Society of Information Science,
41(6):391–407, 1990.

[5] T.G. Dietterich. Ensemble methods in machine learn-
ing. Lecture Notes in Computer Science, 1857:1–15,
2000.

[6] D. Dubois and H. Prade. Possibility theory and its ap-
plications: a retrospective and prospective view. In
Proceedings of IEEE ICFS, volume 1, pages 5–11,
2003.

[7] P. Felzenszwalb and D. Huttenlocher. Efficiently com-
puting a good segmentation. InProceedings of IEEE
CVPR, pages 98–104, 1998.

[8] Y.S. Huang and C.Y. Suen. A method of combining
multiple experts for the recognition of unconstrained
handwritten numerals.IEEE Trans. PAMI, 17(1):90–
94, 1995.

[9] R.A. Hummel and M.S. Landy. A statistical view-
point on the theory of evidence.IEEE Trans. PAMI,
10(2):235–247, 1988.

[10] T. Joachims. Advances in Kernel Methods - Sup-
port Vector Learning, chapter 11 (Making large-Scale
SVM Learning Practical). MIT Press, 1999.

[11] J. Kittler, M. Hatef, R.P.W. Duin, and J. Matas. On
combining classifiers.IEEE Trans. PAMI, 20(3):226–
239, 1998.

[12] L.I. Kuncheva. Switching between selection and fu-
sion in combining classifiers: An experiment.IEEE
Transactions On Systems Man And Cybernetics, Part
B-cybernetics, 32(2):146–156, 2002.

[13] L.I. Kuncheva. A theoretical study on six classifier
fusion strategies.IEEE Trans. PAMI, 24(2):281–286,
february 2002.

[14] L.I. Kuncheva, J.C. Bezdek, and R.P.W. Duin. Deci-
sion templates for multiple classifier fusion.Pattern
Recognition, 34(2):299–314, 2001.



[15] V. Poosala and Y.E. Ioannidis. Selectivity estima-
tion without the attribute value independence assump-
tion. In 23rd International Conference on Very Large
Databases, pages 486–495, 1997.

[16] F. Provost and T. Fawcett. Robust classification for
imprecise environments.Mach. Learn., 42(3):203–
231, 2001.

[17] N. Sebe and M.S. Lew. Salient points for content-
based retrieval. InBritish Machine Vision Conference
(BMVC’01), pages 401–410, 2001.

[18] F. Souvannavong, B. Merialdo, and B. Huet. Video
content modeling with latent semantic analysis. In
3rd International Workshop on Content-Based Mul-
timedia Indexing (CMBI’03), 2003.

[19] F. Souvannavong, B. Merialdo, and B. Huet. La-
tent semantic analysis for an effective region-based
video shot retrieval system. In6th ACM SIGMM In-
ternational Workshop on Multimedia Information Re-
trieval, ACM Multimedia, 2004.

[20] TRECVID. Digital video retrieval at NIST.
http://www-nlpir.nist.gov/projects/trecvid/.

[21] V.N. Vapnik. The Nature of Statistical Learning The-
ory. Springer, 1995.

[22] Y. Wu, E. Y. Chang, K. C.-C. Chang, and John R.
Smith. Optimal multimodal fusion for multimedia
data analysis. InProceedings of ACM MM, pages
572–579, 2004.


	Introduction
	Instructions for authors

	Formatting instructions
	Length
	Title
	Section and subsection headings
	Subsubsection

	Spacing
	Main text
	Tables
	Including figures
	Mathematical formulas
	References
	Fine tuning
	Final version

	Conclusions

