
STEADY-STATE PERFORMANCE COMPARISON OF BAYESIAN AND STANDARD
ADAPTIVE FILTERING

Tayeb Sadiki, Dirk T.M. Slock

Eurecom Institute
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ABSTRACT

It has been known for a long time that for best track-
ing results adaptive filtering should be formulated as a
Kalman filtering problem, leading to Bayesian Adaptive
Filtering (BAF). BAF techniques with acceptable com-
plexity can be obtained by focusing on a diagonal AR(1)
model for the time-varying optimal filter settings. The
hyper-parameters of the AR(1) model can be adapted
by introducing EM techniques and one sample fixed-lag
smoothing at little extra cost. Standard AF techniques
such as the LMS and RLS algorithms are equipped with
only one hyper-parameter (stepsize, forgetting factor) to
optimize their tracking behavior. In this paper we com-
pare the steady-state tracking performance of Bayesian
and standard AF techniques.

Index Terms—— Bayesian Adaptive Filter (BAF), LMS,
RLS and Kalman algorithms, Tracking Ability, Time-
varying system, Steady state analysis

1. INTRODUCTION

Adaptive filtering have been extensively studied for a large
range of applications including channel estimation, adaptive
equalization, echocancelation, etc in a variety of stationary
environment. For the nonstationary environments, two dif-
ferent classes of input have been studied for adaptive fil-
tering algorithms. It has been shown that the Wiener solu-
tion has a time-varying characteristic. In contrast to adap-
tive filter convergence, which is a transient phenomenon, the
tracking characteristics of the adaptive filter are sknown be
to a steady state property of the filter. Consequently, good
convergence properties do not ensure good tracking perfor-
mance, and a compromise between the two properties are
required for applications in a non-stationary environment.
The standard adaptive filtering (SAF) such as the least mean-
square (LMS) algorithm , and the recursive least-squares
(RLS) algorithm are established as the principal algorithms
to track for linear adaptive filtering. The convergence behav-
iors of both of these algorithms can be found in the litera-
ture ([1]), ([2]), ([3]). The RLS algorithm has a faster rate
of convergence than the LMS algorithm and is not sensitive
to variations in the eigenvalues of correlation matrix of the
input signal. However, when operating in a non-stationary
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environment, they pocess only one parameter to adjust the
tracking. Most of the work on adapting trackive capability
has focused on adapting one tracking parameter. In RLS,
it doe cost any computational complexity to make the for-
getting factor time-varying. Modifications to fast RLS algo-
rithms to allow a time-varying forgetting factor, as well as
algorithms to adjust this forgetting factor on the basis of cor-
relation matching have been pursued in [4]. The equivalent
development for LMS algorithms concerns Variable Step-
Size (VSS) algorithms. Important developments were pre-
sented in [5],[6],[7],[8],[9] [10],[11]. Most of the VSS al-
gorithms use the steepest-descent strategy and the instanta-
neous squared error cost function of the LMS algorithm to
adjust the additional parameter, which is the step-size. A re-
lated but different approach consists in running various adap-
tive filters with different time constants and selecting or com-
bining their outputs, similarly to what is done in model order
selection, see [12],[13],[14],[15].

A further refinement is to allow different tracking band-
widths for different filter components as is done in [16] with
a VSS per filter coefficient and in [17] where the tracking
capacity increases with frequency for the various frequency
domain components of the filter. The work in [16] essen-
tially shows that a ”diagonal” state-space model may allow a
simplification of the Kalman Filter (KF) to a LMS algorithm
with a VSS per tap, but no attempt is made to automatically
adjust the resulting stepsizes.
Besides the statistical modeling of the parameter variation,
another important ingredient in Bayesian adaptive filtering is
the incorporation of prior knowledge on the coefficient sizes.
The influence of the prior distribution on Bayesian estima-
tion, depends on the confidence on the observation, which
in turn depends on the length of the observation, and on the
SNR. In general, as the number of the observation samples
and the SNR increase, the variance of the estimate, and the
influence of the prior, decrease. In estimating a Gaussian
distributed parameter observed in AWGN, as the length of
the observation N increases, the importance of the prior de-
crease, and the MAP estimate tends to the ML estimate.
Indeed, when tracking time-varying filters, it becomes pos-
sible to learn the variances of the filter coefficients. This as-
pect has been exploited for a while in a rudimentary, binary
form for sparse filters: filter coefficients are either adapted or
deemed to small and kept zero (for each filter coefficient, the
stepsize is either 0 or a constant). More recently, a smoother
evolution of the stepsize has been introduced, leading to the
Proportionate LMS (PLMS) algorithm, motivated e.g. by
acoustic echo cancellation in which the adaptive filter has
many coefficients, but their value tapers off, see [18],[19].



Similar prior information is starting to be taken into account
for (LMMSE) channel estimation in wireless communica-
tions [20], where the evolution of the channel coefficient
variances along the impulse response is called the power de-
lay profile.

The time variation of the optimal filter can be described
by either expanding the filter coefficients into fixed time-
varying (e.g. sinusoidal) basis functions (basis expansion
models (BEMs)) [1], or by modeling [3], [21] them as sta-
tionary processes. The latter approach is perhaps better
suited for minimum delay online processing. This case of
constant slow variation of the filter coefficients (”drifting”
parameters) is to be contrasted with another possible case of
only occasional but significant variation (”jumping” param-
eters) which shall not be considered here. A lot of work has
been done on optimizing the single parameter regulating the
tracking speed of classical LMS or exponentially weighted
RLS algorithms [22],[23],. For LMS, such an adaptive op-
timization leads to the class of Variable Step-Size (VSS) al-
gorithms, see e.g. [24] and references therein. Adaptive fil-
tering algorithms with a single adaptation parameter do not
take into account that different portions of the filter may have
different variation speeds and/or different magnitudes and
hence can be quite suboptimal. One noteworthy attempt to
overcome this limitation is the introduction of a coefficient-
wise VSS, but the automatic adaptation of these VSSs is
a difficult task. In Bayesian Adaptive Filtering (BAF)[25],
prior information on the filter coefficient variances and vari-
ation spectra is exploited to optimize adaptive filter perfor-
mance. A straightforward way to implement BAF is to use
the Kalman filter. However, the complexity of the Kalman
filter is much higher compared to that of the popular LMS
adaptive filtering algorithm. Furthermore, the Kalman filter
needs to be augmented with a state-space model identifica-
tion technique.
A non-stationary process can be defined as one whose statis-
tical parameters are a time-varying. In our case the state con-
trol process model can be described as an AR(1) The hyper-
parameters of the AR(1) model can be adapted by introduc-
ing EM techniques and one sample fixed-lag smoothing at
little extra cost [25] what carries out has an optimal solution
(Kalman filter), leading to Bayesian approach, with special
consideration for the complexities. The comparison between
BAF and standard AF is done in terms of the steady-state ex-
cess mean-square estimation error (EMSE). The remainder
of this paper is organized as fellows.
Section II, we develop the Kalman filter on the Bayesian
point of view, and establishes the relevant notation that will
be used in the sequel. Section III, we derives a new analytical
expression of the excess mean square error (EMSE) of BAF
and SAF . Section IV presents experimental results of com-
puter simulations that verify the developed theory. Finally,
section V is a brief conclusion.

2. KALMAN FILTER IN A BAYESIAN POINT OF
VIEW

Consider now the prototype adaptive filtering set-up, which
is the system identification set-up, in which the desired re-
sponse signal yk is modeled as the output of the optimal filter,
which can be time-varying, plus independent (white) noise.
The adaptive system identification Fig. ?? is designed for de-
termining a (typically linear FIR) model of the transfer func-

tion for an unknown, time-varying digital or analog system.
The time-varying optimal filter coefficients is given by the
equation:

Hk � A Hk � 1 � Wk (1)

where Wk is a random vector of size N of covariance Q.
The complexity of Kalman filter can be limited to O � N2 � by
taking A and Q diagonal, the adaptive filter order, in physical
terms, the tap-weight vector Hk may be viewed as originating
from the noise process Wk, whose individual elements are
applied to a bank one-pole low-pass filters. Each such filter
has a transfer function equal to 1 ��� 1 	 Aiq

� 1 � where q � 1 is
the unit-delay operator and Ai is the ith diagonal element of
A. It is assumed that A 
 I where I is identity matrix , the
significance of this assumption is that the bandwidth of the
low pass filters is very much smaller than the incoming data
rate.
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Figure 1: System identification block diagram

Let consider the system driven by noise, with noisy ob-
servation

Hk � AHk � 1 � Wk

yk � XH
k Hk � 1 � vk (2)

where XH
k �� xkxk � 1 ����� xk � N � 1 � is the input signal vector .

The input vector Xk is known up to time k and is assumed
stationary with zero mean and nonsingular covariance ma-
trix R � E � XkXH

k � . In this section we derive the Kalman filter
from the Bayesian point of view. For the Bayesian approach,
we assume that the noise processes are Gaussian distributed.
Then the Bayes estimate of Hk amounts to finding the condi-
tional mean of Hk, given the observations.
The key equation in the Bayes derivation is the time update
step,

f � Hk � Yk
� � � f � Hk � Hk � 1

� f � Hk � 1 � Yk
� dHk � 1 (3)

from which the estimate is propagated using the state update
equation into the future; and

f � Hk � Yk � 1
�� ��� �

posterior

� f � yk � 1 � Hk
�

f � yk � 1 � Yk
� f � Hk � Yk

�� ��� �
prior

(4)

Yk � � yk � ����� � yk � M �
which is the measurement update step.
We will begin by finding explicit formulas for the time-
update in (3).



1. The density f � Hk � 1 � Yk
� corresponds to the estimate of

Hk � 1, given the measurements up to time k. Under the
assumption and using the notation just introduced, the
random variable Hk � 1 conditional upon Yk is Gaussian,

Hk � 1 � Yk � N � Ĥk � 1 � k � 1 � Pk � 1 � k � 1
� (5)

2. The density f � Hk � Hk � 1
� is obtained by noting from (2)

that, conditional upon Hk � 1, Hk is distributed as

Hk � Hk � 1 � N � AHk � 1 � Q � (6)

Inserting (5) and (6) into (3) and performing the in-
tegration (which involves expanding and completing the
square ), we find that Hk � Yk is Gaussian, with mean

Ĥk � k � 1 � AĤk � 1 � k � 1 (7)

and the error covariance is given by

Pk � k � 1 � APk � 1 � k � 1AH � Q (8)

The estimate of the state is updated using the following steps
(for mor details see the appendix )

Ĥk � k � 1 � AĤk � 1 � k � 1 �
Pk � k � 1 � APk � 1 � k � 1AH � Q �

K f
k � Pk � k � 1Xk � XH

k Pk � k � 1Xk � σ2
v
� � 1 �

Ĥk � k � Ĥk � k � 1 � K f
k
� yk 	 XH

k Ĥk � k � 1
� �

Pk � k � � I 	 K f
k

XH
k
� Pk � k � 1 � (9)

3. STEADY-STATE EXCESS MEAN-SQUARE
ERROR (EMSE)

Approximate analysis by RLS tracking analysis, assuming
relatively slow variation see (2):

P � E � P � and E � P � 1 � ��� E � P � � � 1

is still difficult if Q, R and A do not have the same eigen-
vectors. In our model A is diagonal, since Q is diagonal, in
order for R to have the same eigenvectors need R be diagonal
then R � σ 2

x  I, with I is identity. Then P will be diagonal
if initialized with diagonal matrix, in any case, P diagonal in
steady-state. The time constant and the power delay profile
are givens by τ � 1

1 �!�Ai � 2 and Qi � Q1β i respectively. The

state estimate update is given by Kalman as :

Ĥk � k � AĤk � 1 � k � 1 � Kk � yk 	 XkAĤk � 1 � k � 1
�

� AĤk � 1 � k � 1 � KkXH � Hk � 1 	 AĤk � 1 � k � 1
�

� Kkeopt� AĤk � 1 � k � 1

� Pk � kXkXH
k

σ2
v

� Hk � 1 	 AĤk � 1 � k � 1
�

� Kkeopt (10)
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Figure 2: Comparative tracking performance results between
misadjustement given by exact and approximate EMSEs for
slow (Ai � 0 � 99 τ � 5N) and Medium (Ai � 0 � 90 τ � 0 � 5N)
variations at SNR = 15 dB and β � 0 � 9

Where Kk � Pk " kXk

σ 2
v

and eopt represents the minimum(in a mean square sense) er-
ror at time k. In studying tracking behavior, we may exclude
the influence of the estimation noise, since the deviation of
E �Hk � k � from Hk determines the response of the BAF algo-
rithm to the non-stationarity of the environment. Taking ex-
pected values on both sides of (10), we get

E � Ĥk � k �#� AE � Ĥk � 1 � k � 1 �
� Pk � kE � XkXH

k �
σ2

v

� � Hk � 1 	 AE � Ĥk � 1 � k � 1 � �
� AE � Ĥk � 1 � k � 1 �

� Pk � kR

σ2
v
� Hk � 1 	 AE � Ĥk � 1 � k � 1 � � (11)

the lag-error is given by

H̃k � E � Ĥk � k � 	 Hk

H̃k � AE � Ĥk � 1 � k � 1 � 	 Pk � kRA

σ2
v

� H̃k � 1
�

� Pk � kR

σ2
v
� Hk � 1 	 AHk � 1

� 	 Hk � AHk � 1

� AE � Ĥk � 1 � k � 1 � 	 Pk � kRA

σ2
v

� H̃k � 1
�

� � Pk � kR

σ2
v
� I 	 A � � A � Hk � 1 	 Hk

� � I 	 Pk � kR

σ2
v

� AH̃k � 1 � AHk � 1 	 Hk (12)

The input is considered to be white (R � σ 2
x I), note that, each

element of the lag-error vector is determined by the following
relation:

h̃i � k � � � 1 	 pi $ k � kσ2
x

σ2
v

� Aih̃i $ k � 1 � Aihi $ k � 1 	 hi $ k � (13)



where h̃i � k � is the ith element of H̃k. By properly interpreting
the equation above, we can say that the lag is generated by
applying the transformed instantaneous optimal coefficient
to a first-order discrete-time filter denoted lag filter

H̃i � z � � Aiz
� 1 	 1

1 	%� 1 	 σ 2
x pi & k " k
σ 2

v

� Aiz
� 1

Hi � z � (14)

Using the inverse z-transform, the variance of the ele-
ments of the vector H̃ � k � can then be calculated by

E � h̃i � k � h̃H
i � k � ��� 1

2π j ' H̃i � z � H̃i � z � 1 � Qiz
� 1dz

The BAF excess mean square error due to lag is then given

by Eq. (18)

EMSE � N

∑
i ( 1

EMSEi (15)

where

EMSEi ) σ2
x pi ) σ2

x *�+ Qi
SNRi , Qi - , Qi . + 1 , 1

SNRi
- 2 , 4 σ2

x
σ2

v / Ai / 2
2 / Ai / 2 (16)

where SNRi � σ 2
x Qi

σ 2
v 0 1 �!�Ai � 2 1 . The SA excess mean square error

due to lag is then given by Eq. (18)

EMSE � E � H̃ � k � RH̃H � k � � (17)� E � tr � H̃ � k � RH̃H � k ��� �
EMSERLS � Nσ 2

v
� 1 	 λ �
1 	 λ � σ2

x

2

N

∑
i ( 1

Ai � 1 	 Qi
�

Ai 	 λQi

The EMSE for LMS is obtained by using µ � 1 � λ
1 � λ .

where λ and µ are the forgetting factor and stepsize re-
spectively. For an optimum value of the forgetting factor and
stepsize the RLS and LMS are the same, then EMSE lms

opt �
EMSErls

opt .

3.1 Simplified Expression for Bayesian Adaptive Filter-
ing

In simplified scenarios (e.g. high SNR, slow variation) we
can write

pi � 1 	 � Ai � 2
1 � SNRi

� 4πβi

1 � SNRi

where 1 	 � Ai � 2 � 4πβi
The misadjustement of BAF is given by

M � EMSE
MMSE

� 2π
σ2

x

σ2
v

N

∑
i ( 1

βi

1 � SNRi

If all βi are the same, then ∑N
i ( 1

1
1 � SNRi

is the inverse of the

harmonic mean of 1 � SNRi and 10 ∑N
i 2 1

1
1 3 SNRi

154 ∑N
i ( 1 � 1 �

SNRi
� (the arithmetic mean) And βi can be lows if Ai is

complex Ai � � Ai � e j2π fi , where fi is Doppler shift and� Ai � � 1 	 2πβi (if � Ai � is sufficiently close to one) Then

in this case the EMSE of Kalman, depend only on the PDP
βi, while the EMSE in the SAF case depend on the PDP and
fi.

4. NUMERICAL RESULTS

In this section the behavior of BAF and standard adaptive
filters are compared for non-stationary environment in a sys-
tem identification setup. The performance of the both algo-
rithms are selected to produce a comparable level of mis-
adjustement. In all simulations presented here, the desired
signal yk is corrupted by zero mean, (iid) Gaussian noise of
σ2

v variance.
The proposed algorithms are implemented with the model
parameters Ai � 1 	 α � N, with α � 0 � 4 , Qi is chosen such

as
QN
Q1 6 1, the length of BAF is N � 20. In Fig. 3, the

total excess mean square error (EMSE) has been plotted for
a BAF and SAF for SNR varying from 10 to 48 and the input
signal is assumed to be white . ‘
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Figure 3: Comparison between the steady-state misadjuste-
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5. CONCLUSION

In this paper, we studied the steady-state performance of
BAF and standard AF algorithms with optimized parame-
ters. Analytical expressions for the steady-state excess mean-
square error (EMSE) were calculated and verified by com-
puter simulations. Results show that the BAF algorithm over
those algorithms in a non-stationary environment in terms of
misadjustement in both high and low SNR.
As Fig. 3 show, the BAF given clearly outperforms than the
classical approaches for different SNR. Fig. 4 show, the BAF
is close to Kalman filter with known parameters.7 Accurate approximate steady-state analysis of BAF pro-

vides simple expressions in simplified scenarios (e.g.
high SNR, slow variation)7 BAF allows significant performance gains over RLS at
comparable complexity.
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