
Power Allocation under Quality of Service
Constraints for Uplink Multi-User Systems
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Abstract— In this contribution, we derive the optimal power
allocation policy in the case of an uplink multiuser system under
quality of service constraints. Interestingly, using asymptotic
results (in the number of users and dimensions) of random matrix
theory and under the assumption of Minimum Mean Square
Error Successive Interference Cancellation (MMSE-SIC) at the
base station, the results show that the users requested rate can be
satisfied based only on the knowledge of the statistical nature of
the environment and not the channel realization as it is commonly
assumed. Moreover, a framework is provided to determine the
decoding order of users which minimizes the overall transmitted
power. The results are then validated through simulations.

I. INTRODUCTION

With the increasing importance of multiuser communication
systems, one of the main issues is to satisfy the different
users’ rates under multi-user interference. In its full generality,
this problem can be solved through proper power allocation
(when the rate regions are achievable). However, the power
allocation scheme depends on the channel realization, the type
of receiver structure as well as the requested rates, as devised
in contributions [1]–[7]. Moreover, the complexity of such a
scheme increases with the number of users.

In this contribution, for a given target rate and using
the Minimum Mean Square Error (MMSE) and Minimum
Square Error Successive Interference Cancellation (MMSE-
SIC) receivers, explicit expressions of the power allocated to
different users are derived based on asymptotic random matrix
theory results [8], [9]. Moreover, the decoding order for fixed
requested rates in order to minimize the total required power
is obtained. The results are applied for random systems (K
users and a spreading length of N for CDMA type systems,
or K users and N receiving antennas at the base station for
multiuser MIMO systems) where the system entries are i.i.d.
Gaussian variables.

In section II, the system model is presented. Section III
addresses the general derivation of MMSE and MMSE-SIC
receivers. Section IV deals with the power allocation formula-
tion of these receivers, and in section V asymptotic expressions
are provided based on random matrix theory. Finally in section
VI numerical results are presented to validate the theoretical
claims.

II. SYSTEM MODEL

We consider a system composed of a base station with N
transmit/receive dimensions and K users to be covered by
the base station (N could be either the number of antennas
in a MIMO system or the spreading length in the CDMA
case). We are interested in the uplink scenario. Each user k is
supposed to send a signal at a requested rate Rk. The input
output relationship of the system is then given by:

y = HP
1
2 s + n, (1)

where y, s, n, H and P
1
2 are respectively the received

signal, transmitted signal, additive white Gaussian noise
(AWGN) of variance σ2, channel matrix, and diagonal ma-
trix of transmitted powers. These terms are written out
as: y = [y1, y2, . . . , yN ]T , s = [s1, s2, . . . , sK ]T , n =
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We suppose that users can have different power allocations in
order to satisfy their different (or equal) requested rates.

III. MULTIUSER RECEIVERS

A. MMSE receiver

The Minimum Mean Square Error (MMSE) receiver has
several attributes that make it appealing for use. It is known
to generate a soft decision output that maximizes the output
Signal-to-Interference-plus-Noise Ratio (SINR) [10].

As far as the MMSE SINR is concerned and considering
Eq.(1), the output of the MMSE detector, denoted by ŝ =



[ŝ1, . . . , ŝK ]T , is given by

ŝ = E
(
syH

) [
E(yyH)

]−1
y

= P
1
2 HH

(
HPHH + σ2IN

)−1
y

= P
1
2 HHA−1y,

with A = HPHH + σ2IN . Each component ŝk of ŝ is
corrupted by the effect of both thermal noise and “multi-user
interference” due to the contributions of the other symbols
{sl}l 6=k. Let us now derive the expression of the SINR at one
of the K outputs of the MMSE detector. Let hk be the column
of H associated to element sk, and U the N×(K−1) matrix
that remains after extracting hk from H. The component ŝk

after MMSE equalization has the following form:

ŝk = ηhk
sk + τk,

where

ηhk
= p
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2
k hk, (2)
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1
2
k hH

k A−1HP
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2 [s1, . . . , sk−1, 0, sk+1, . . . , sK ]T (3)

+ p
1
2
k hH
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The SINRk at the output k of the MMSE detector can be
shown to be expressed as:

SINRk =
E[|ηhk

xk|2 | H]
E[|τk|2 | H]

=
(ηhk

)2

ηhk
(1− ηhk

)

=
ηhk

1− ηhk

.

Writing HHH = UUH + hkhH
k and invoking the matrix

inversion lemma1, we get after some simple algebra another
useful expression for this SINR (see e.g. [11]):

SINRk = pkhH
k

(
UPkUH + σ2IN

)−1
hk,

where Pk is the power matrix, from which the k-th column
and row have been removed. Note that in practical coding
schemes, after applying the MMSE receiver, one will minimize
|ŝk − ηhk

sk|2 with respect to the alphabet in use sk.

B. MMSE SIC receiver

The MMSE receiver has the advantage of a very low
complexity implementation. This feature (due in part to its
linearity) has triggered the search for other MMSE based
receivers such as the MMSE Successive Interference Cancel-
lation (MMSE-SIC) [12], [13], which is at the heart of very
famous schemes such as BLAST [14].

The algorithm relies on a sequential detection of the re-
ceived block [15]. Recall that y = HP

1
2 s+n. At the first step

1The matrix inversion lemma states that for any invertible matrix F and
E: (D−1 + FE−1FH)−1 = D−DF(E + FHDF)−1FHDH .

of the method, an MMSE equalization of matrix TN,K = H
is performed by a multiplication of y by matrix

F1 = P
1
2 TH

N,K(TN,KPTH
N,K + σ2I)−1.

Suppose that the algorithm starts by decoding symbol sK .
The estimated symbol goes through a turbo-decoder chain
in order to improve the reliability of the detection process.
Assuming a perfect decision (this is possible if the information
sK has been encoded at a rate of log2(1 + SINRK)), the
resulting estimated symbol ŝK is subtracted from the vector
of received samples in the following manner:

r2 = r1 − p
1
2
K ŝKtK ,

where ti represents the ith column of TN,K and vector
r1 = y. This introduces one degree of freedom for the next
cancelling vector choice which enables to reduce the noise plus
interference influence and yields an increase in the decision
process reliability.

The second step can be virtually represented by a com-
pletely new system of K − 1 symbols (s1, . . . , sK−1) trans-
mitted with powers (p1, . . . , pK−1) by an N× (K−1) matrix
TN,K−1 on the same flat frequency fading channel. Equalizing
with matrix

F2 = P
1
2
K−1T

H
N,K−1(TN,K−1PK−1TH

N,K−1 + σ2IN )−1,

one can retrieve symbol sK−1 which has been encoded at a
rate of log2(1+SINRK−1). The same process described at the
beginning can be re-iterated. The advantage of such a scheme
is that

SINR
SIC

(K−1) ≥ SINR
MMSE

(K−1),

which means that one is able to convey more information
on the second symbol (since the SINR increases) than with
MMSE equalization.

The complete detection algorithm can thus be summarized
in table I, where TN,K−i denotes the matrix obtained by
suppressing columns (K, . . . ,K − i + 1) of TN,K and f (i)

i

is the ith row of Fi (the MMSE filtering matrix) at step i.
Once the symbol is detected (Eq. (5)), a decision modeled by
operator D̂ is made (Eq. (6)). In our case, D̂ is the decision
operator made after equalization. When coding is applied, D̂
will simply represent the soft decision operator.

IV. POWER ALLOCATION FORMULATION

In general, the users achievable rates depend on their
channel energy as well as their decoding orders. In many
applications, users request a target rate whatever the channel
conditions may be. In this case, the base station has to allocate
the adequate power to the users to satisfy their requirements
as well as to make the system decodable. In its full generality,
the problem is still an open issue and has not been solved [1]–
[7]. For a fixed number of users and in the case where one
would like to minimize the total power, the decoding ordering



- Initialization:

i← 1;

r1 = y;

F1 = P
1
2 TH

N,K(TN,KPTH
N,K + σ2I)−1;

- Recursion:

s̃i = F
(i)
i ri; (5)

ŝi = bD(s̃i); (6)
ri+1 = ri − ŝimi;

Fi+1 = P
1
2
K−iTN,K−i

H

(TN,K−iPK−iT
H
N,K−i + σ2I)−1;

i← i + 1;

TABLE I
DETECTION ALGORITHM FOR MMSE-SIC

of the users is a NP complete problem. As a typical example,
suppose in the following that the K users request target rates
Rk for which the target SINR γk is thus given by (supposing
Gaussian at the output of the receiver): γk = 2Rk − 1.

A. MMSE receiver

In this case the SINR at the output of the receiver for user
k is given by

pk =
γk

hH
k

(∑K
l=1,l 6=k plhlhH

l + σ2I
)−1

hk

For a given power budget P =
∑

pk, the system may not
have a solution, depending on the targeted rates of the users.

B. MMSE-SIC receiver

Let us now derive for the MMSE SIC receiver the SINR
expression for a given decoding order. Suppose that all the
K − 1 users have been successively decoded using the SIC
approach (for the moment, no decoding order is specified for
the users, which is certainly an important issue). In this case,
at the last iteration, we have:

rK = hKp
1
2
KsK + n.

The SINR at the output of the MMSE filter for user K is
given by:

SINRK = γK =
hH

KhKpK

σ2
.

Therefore,

pK =
γKσ2

hH
KhK

.

This analysis can be extended to iteration i obtaining the
corresponding SINR as

SINRi = γi = pihH
i

(
K∑

l=i+1

plhlhH
l + σ2I

)−1

hi,

and the power

pi =
γ

hH
i

(∑K
l=i+1 plhlhH

l + σ2I
)−1

hi

.

As one can observe, the same problems as in the MMSE
case arise, additionally having to choose an adequate decoding
order to minimize the total required power.

V. ASYMPTOTIC ANALYSIS

In order to provide a suitable power allocation scheme, we
suppose the number of users K and the number of dimensions
N very high, such as N,K → ∞ but the ratio K

N tends to a
fixed constant α. Moreover, we suppose the entries hik of the
matrix H to be i.i.d zero mean gaussians. In this case, using
result of random matrix theory and based on the results of
[16] and [17], one can show that:

Result: For a high number of users the SINR γk at the
output of

• the MMSE receiver is given by:

γk = pk
1

σ2 + 1
N

∑K
l=1

pl

1+γl

.

• the MMSE-SIC receiver is given by:

γk = pk
1

σ2 + 1
N

∑K
l=k+1

pl

1+γl

.

Interestingly, irrespective of the channel realization and
based only on the target rates, one can determine the optimal
power allocation. From a practical stand point, this result is
very interesting as it reduces the computational complexity
since the powers assigned to the different users need only to
be computed with respect to the statistical environment and
not the channel realization.

1) MMSE receiver:

a) General rate requirements: In this section each user
is supposed to have a (possibly) different rate requirement.
Each user will allocate the power such as:

pk = γkξ, (7)

where

ξ = σ2 +
1
N

K∑
l=1

ξγl

(1 + γl)
, (8)

As a consequence, ξ is solution of

ξ =
σ2

(1− 1
N

∑K
l=1

γl

1+γl )
. (9)

Hence, the rate requirements are always satisfied if K −∑K
l=1

l
1+γl < N and in particular if K ≤ N . For different rate

requirements (linked to the different SINR γl requirements)
one can determine the different powers using Eq. (7) and



Eq. (8)).In the case of equal rates requirements, γl = γ for
all l, the previous expression particularizes to ξ = σ2 +α ξγ

1+γ

which yields ξ = σ2(1+γ)
1+γ(1−α) . Therefore,

pk =
σ2γ(1 + γ)

1 + γ(1− α)

is a constant depending only on the same required rate for all
the users, the system load and noise variance.

b) High rate requirements: For high rate requirements,
γl >> 1, we have, ξ = σ2 + αξ which yields

ξ =
σ2

1− α
.

This equation has a solution only for α ≤ 1. Interestingly, if
the rates are high, each user can allocate his power depending
only on his requested rate and not the requested rates of all
the other users.

2) MMSE-SIC receiver: One of the main issues of the
MMSE-SIC receiver is to find the decoding order that min-
imizes the total required power for a given set of requested
rates.

a) General rate requirements:

Result: Let us assume, without loss of generality that we
have ordered the users according to increasing requested rates
γ1 ≤ γ2 ≤ ... ≤ γK . Then, for the MMSE-SIC receiver,
the users should be decoded in precisely that order and the
assigned power to each of them is given by

pk = γkσ2
K∏

i=k+1

[1 +
1
N

γi

1 + γi
]. (10)

Proof: We can write pk = αkγk , where

αk = σ2 +
1
N

K∑
l=k+1

pl

1 + γl

hence,

αk−1 = αk(1 +
1
N

γk

1 + γk
),

αj = αk

k∏
i=j+1

(1 +
1
N

γi

1 + γi
). (11)

It can be seen that if we exchange the decoding order of
two consecutive users, the powers assigned to all the remaining
ones will be kept constant. Without loss of generality, let us
consider users decoded in arbitrary consecutive positions j and
j−1. In this case the required powers to be allocated to them
is:

pj = αjγ
j and pj−1 = αj(1 +

1
N

γj

1 + γj
)γj−1,

whereas if the order of these two users is exchanged

p∗j = αjγ
j−1 and p∗j−1 = αj(1 +

1
N

γj−1

1 + γj−1
)γj ,

resulting in a difference in needed power

∆ = pj + pj−1 − (p∗j + p∗j−1) =
αj

N
(
γjγj−1

1 + γj
− γjγj−1

1 + γj−1
),

which is positive whenever γj−1 > γj . As a consequence, by
exchanging the decoding order of consecutive users in order of
increasing required SINR, we reduce the needed power. Since
this does not affect the remaining ones, the same happens
for the total power. The procedure can be repeated starting
from any given order and therefore it has been shown that
the ranking is indeed optimal. The expression for the power
allocation derives directly from Eq. (11) and the fact that
αK = σ2

b) High rate requirements: At high rate requirements,
γl >> 1, we have,

γK =
pK

σ2
,

γK−1 =
pK−1

σ2 + 1/Nσ2
.

Taking into account that the asymptotically high number of
dimension, higher negative powers of N can be neglected,
obtaining

γk =
pk

σ2 + K−k
N σ2

.

Interestingly, the powers of each user can be determined
without the need of the base station but only depending on the
rank of decoding, which as seen previously would be in order
of increasing SINR requirements to minimize the total power
required. The power needed for each user can be obtained by
particularizing the result of Eq. (10).

VI. SIMULATIONS

In this section, numerical results are given to illustrate the
theoretical claims. Fig. 1 and Fig. 2 show the comparison
between the requested rates (achieved with the asymptotic
assumption), with the ones achieved with 40 instantaneous
realizations of the channel for a system with N=16 and K=6
users and N=128 and K=48. It can be seen that the perfor-
mance is quite close to theoretical values, and it is acceptable
even for rather small systems. Of course, as expected, the
average error reduces with increasing number of users and
dimensions. In Fig.3, comparative results for MMSE and
MMSE-SIC receivers are shown, with curves plotting the
required power as a function of the requested rate, equal for
all users. Different cases in terms of the ratio α = K

N are
considered. The gain in performance obtained by the use of the
MMSE-SIC algorithm becomes significant when the system is
sufficiently loaded, i. e., when α approaches 1.



Fig. 1. Comparison between the asymptotic and real rate for a system with
N=16 and K=6

Fig. 2. Comparison between the asymptotic and real rate for a system with
N=128 and K=48

Fig. 3. Needed powers for MMSE and MMSE-SIC for different values of
α = N/K and fixed number of dimensions N=128

VII. CONCLUSION

In this paper, the optimal decoding order for a MMSE-SIC
receiver structure is obtained under different rate requirements
by the users. Interestingly, the optimal power allocation de-
pends only on the rate requirements, variance of the noise and
load of the system and not the particular channel realizations.
Extensions of these results to the case of non i.i.d. channels
are being considered.
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