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ABSTRACT

Most of the existing speech coding and speech enhancement tech-
niques are based on the AR model and hence apply well to un-
voiced speech. These same techniques are then applied to the
voiced case as well by extrapolation. However, voiced speech
is very structured so that a proper approach allows to go further
than for unvoiced speech. We model a voiced speech segment
as a periodic signal with (slow) global variation of amplitude and
frequency (limited time warping). The bandlimited variation of
global amplitude and frequency gets expressed through a subsam-
pled representation and parameterization of the corresponding sig-
nals. Assuming additive white Gaussian noise, a Maximum Like-
lihood approach is proposed for the estimation of the model pa-
rameters and the optimization is performed in an iterative (cyclic)
fashion that leads to a sequence of simple least-squares problems.
Particular attention is paid to the estimation of the basic periodic
signal, which can have a non-integer period, and the estimation of
the amplitude signal with guaranteed positivity.

1. INTRODUCTION

Speech enhancement can be described as the processing of speech
signals to improve one or more perceptual aspects of speech, such
as overall quality, intelligibility for human or machine recogniz-
ers, or degree of listener fatigue. The need for enhancing speech
signals arises in many situations in which the speech either orig-
inates from some noisy location or is affected by the noise over
the channel or at the receiving end. In the presence of background
noise, the human auditory system is capable of employing effec-
tive mechanisms to reduce the effect of noise on speech percep-
tion. Although such mechanisms are not well understood at the
present state of knowledge to allow the design of speech enhance-
ment systems based on auditory principles, several practical meth-
ods for speech enhancement have already been developed. Several
reviews can be found in the literature [1, 2, 3].

In this study, it is assumed that i) only the degraded speech sig-
nal is available, and ii) that the noise is additive and uncorrelated
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with the speech signal. Under theses assumptions, if the statis-
tics of the clean signal and the noise process are explicitly known,
enhancement could be optimally accomplished using the estima-
tor which minimizes the expected value of the distortion measure
between the clean and the estimated signals [3]. In practice, how-
ever, these statistics are not explicitly available, and should be es-
timated. Hence, the above theoretical approach can be applied as
a two-step procedure in which the statistics of signal and noise
are first estimated, and then used together, with currently available
distortion measures, to solve the problem of interest. The opti-
mality of the two-step enhancement approach depends on the spe-
cific estimators used for the unknown statistics. For example, non-
parametric spectral estimation techniques can be used to estimate
both the noise and noisy-speech spectrum. Then, a frequency-
domain Wiener filter is constructed, which is then used to obtain
the clean speech estimate. This leads to the well-known, Spectral
Subtraction technique [4]. Spectral subtraction has been one of
the relatively successful DSP methods due to its implementation
simplicity and its capability of handling noise non-stationarity to
some extent. However, one major problem with this method is the
annoying non-stationary ”musical” background noise associated to
the enhanced speech.

A tractable alternative of non-parametric spectral estimation
is provided by parametric modeling of the probability density of
the sources (speech and noise). Enhancement based on the esti-
mation of all-pole speech parameters in additive white Gaussian
noise was investigated by Lim and Oppenheim [5], and later for
a colored noise degradation by Hansen and Clements [6]. They
propose an iterative algorithm in which we iterate AR coefficients
estimation, and Wiener filtering (based on parametric spectrum es-
timate). Spectral constraints based on the AR modeling [7], or on
the HMM phoneme class partition [8], are proposed to increase the
technique performance.

Another useful class of speech signal models, for speech recog-
nition and enhancement, are Hidden Markov Models (HMM). En-
hancement methods that are based on stochastic models (HMM’s)
have been most successful as they model both clean speech and
noise, and accommodate the non-stationarity of speech and noise
with multiple states connected with transition probabilities in a
Markov chain [9].

However, the nature of the human speech dictates that not
every short segment can be treated in the same fashion. In fact,



speech segments can be classified in terms of the sounds they pro-
duce [10]. Basically, there are two sound categories: i) Unvoiced
sounds, such as the /s/ in ’soft’, are created by air passing through
the vocal tract without the vocal cords vibrating. They exhibit low
signal energy, no pitch, and a frequency spectrum biased towards
the higher frequencies of the audio band, ii) Voiced sounds, such as
/AH/ in ’and’, are created by air passing through the glottis caus-
ing it to vibrate. And contrarily to unvoiced speech, voiced speech
has greater signal energy, a pitch, and a spectrum biased towards
the lower frequencies. In order to take advantage of the voicing in
the glottal source signal, we propose modelling voiced sounds as a
periodic signal with a global amplitude and phase modulation; and
to take into account this structure to denoise the voiced segment.

This paper is organized as follows. In section 2, the global mod-
ulation model is presented. The speech enhancement procedure
will then be derived in section 3. Performance of the algorithm
is evaluated in Section 4, and finally a discussion and concluding
remarks are provided in section 5.

2. GLOBAL MODULATION MODEL FOR VOICED
SPEECH SIGNAL

In the sinusoidal model, the signal is modeled as a sum of evolving
sinusoids:
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where ����� represents the instantaneous phase of the ��� par-
tial. As the voiced speech signal is quasi-periodic, ����� can be
decomposed into

����� � ������ � ������� (2)

where � is the harmonic index, �� denotes the pitch frequency
(normalized by the sampling frequency), and ����� characterizes
the evolution of the instantaneous phases around the ��� harmonic;
and can be assumed to be low-frequency.
The Global Modulation assumption implies that all harmonic am-
plitudes evolve proportionally in time; and that the instantaneous
frequency of each harmonic is proportional to the harmonic index:�
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In summary, we model a voiced speech signal as the superposition
of harmonic components with a global amplitude modulation and
time warping (that can be interpreted in terms of phase variations):
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where
� 
� is an additive white Gaussian noise.
� ���� represents the amplitude modulating signal. It allows

an evolution of the signal power.
� ���� denotes the phase modulating signal (that can be inter-

preted in terms of time warping). The time warping focuses
on the time evolution of the instantaneous frequency.

In [11], we have expressed the time warping in terms of an inter-
polation operation over a basic periodic signal. In matrix form, the
noisy voiced speech signal can be written as:
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where :
- � � 		�
� � � � 	����� , represents the observation vector
- � � 	��
� � � � ������ , represents the signal of interest
-  � 	
�
� � � � 
����� , denotes the noise vector
- � � 	��
� � � � ���� ���, characterizes the harmonic signature over
essentially one period
-� � ����	��
� � � ������, represents the global amplitude mod-
ulation signal
- � is an � � �� � interpolation matrix characterizing the time
warping. See [11] for a detailed description.

Note that the previous model can be interpreted in terms of
long-term prediction. Long-term prediction is typically used for
voiced-speech coding. The most basic long-term predictor is the
one tap filter given by

�	 ��� � � � ��� � � (5)

where ���� is the input signal, �	��� is the predicted signal, �
is an integer value, and � is a gain. In [13], the authors propose
a long-term scheme using fractional delay. They show that this
technique enables a more accurate representation of the voiced
speech and achieves an improvement of synthetic quality for fe-
male speakers. Our model generalizes the previous approach by
allowing tracking (slow) variations of gain and fractional delay
(global amplitude and frequency modulation variations). Such an
approach enables, not only a good tracking of the signal of inter-
est, but also the rejection of signals having a different structure
(white noise, PC noise, car noise, and human voice...), especially
if the spectrum of this colored noise is concentrated in different
frequency regions than the voiced speech.

Remark also that the described extraction technique models,
and takes advantage of the correlation between the different par-
tials. And contrary to classical sinusoidal modeling techniques, it
does not any assumption on the value of � (in (1)). Implicitely,
� is the maximum integer such that ��� � �

�
(the sampling fre-

quency satisfy the Nyquist-Shannon sampling theorem).

3. SPEECH ENHANCEMENT TECHNIQUE

The proposed enhancement algorithm (figure 1) is based on a dif-
ferent treatment of the voiced and unvoiced speech components.
The processing steps are discussed in the following sections.

3.1. Enhancement Stage

3.1.1. Voiced speech extraction

As the voiced speech signal is assumed to be quasi-periodic (fol-
lowing (4)), it can be written as

	� � 	� 	� 	�
The previous model is linear in �, �, or � (separately), � being
parameterized nonlinearly.



As the noise is assumed to be a white Gaussian signal, the Maxi-
mum Likelihood (ML) approach leads to the following least-squares
problem:
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where � and � are parameterized in terms of subsamples. Try-
ing to estimate all factors jointly is a difficult nonlinear problem.
However, The estimation can easily be performed iteratively (as in
[11, 12]).

Fig. 1. Speech Enhancement Technique

3.1.2. Unvoiced speech extraction

In our preliminary experiments, the well-known spectral subtrac-
tion is employed to the unvoiced speech segments, for simplicity
[4, 9]. In this conventional method, a frequency-domain Wiener
filter is constructed from the speech and noise spectral estimates at
each time frame, which is then used to obtain a clean speech esti-
mate. The noisy signal power spectral density (���) is estimated
(by a Periodogram technique) using the observed signal of the cur-
rent frame. Whereas the estimate of the noise spectrum (���) is
updated during periods of non-speech activity. The tracking of the
noise spectrum can be performed, also, on voiced frames (using
the noise estimate 	
 � 	 � 	�). Finally, enhanced speech is recon-
structed by Wiener filtering in the frequency domain:

	���� � ����� ��� (7)

where ���� �
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denotes the estimated square

root of the Wiener filter.

3.2. Segmentation stage

The segmentation of the speech signal, i.e. classification of speech
into voiced/unvoiced frames, is a crucial issue to ensure the perfor-
mance of the Enhancement stage. In fact, the estimation accuracy
of the quasi-periodic signal, as well as the spectrum of the noisy
speech, depends on the speech frame length. On the other hand,
the time resolution of these parameters is only as fine as the win-
dow length, itself. Since a speech signal is strongly non-stationary,
it is not always possible to find a constant frame length giving a
good tradeoff between estimation and localization accuracy.

There is a vast literature on speech segmentation with applica-
tions to speech analysis, synthesis, and coding [14, 15]. In some
speech applications, the digital signal processing techniques are
augmented by linguistic constraints or may be ”supervised” by a
human operator. However, manual phonetic segmentation is very
costly and requires much time and effort. Automatic segmentation
methods utilize from energy and zero crossings for silence and/or
endpoint detection, to much more sophisticated spectral analysis
methods for detecting changes in the speech spectrum. Each of
these methods monitors one or more indicators, such as energy,
number of zero crossings, pitch period, prediction error energy, or
a spectral distortion measure, to detect significant changes.

Note that here the segmentation stage is not designed for recog-
nition or classification applications. Its purpose is just to identify
frames having similar spectrum characteristics (essentially spec-
trum envelope, and periodicity); such that they can be treated to-
gether. This motivates the choice of a distance criterion based on
the energies of the extracted signal and the noise,
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where:
- 	�� is the quasi-periodic signal with a period � extracted as

described is section 3.1.1.
- ��

���
� ��� , and ��� represent, respectively, the power of the ex-

tracted quasi-periodic signal, the noise and the received signal.



As we have seen in section 3.1.1, for a given period � , the
proposed extraction algorithm approximates the projection of the
noisy signal onto the subspace spanned by the set of � -periodic
signals with low-pass amplitude and phase modulations. Thus,
if the received signal corresponds to a unique voiced phoneme,
�� � ��

���
���� 	 ���, then� 	 
. However, if the received signal

corresponds to an unvoiced phoneme (
� ��
���

	 �), or if it con-
tains more than one phoneme (��� �� �� � �

�
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.

Consequently, the distance � seems to be suitable for our applica-
tion.

The proposed segmentation procedure is described in figure 1.
The main idea to split speech signal into 10 ms frames; then use
of the distance � to group together frames belonging to the same
voiced phonemes.

4. EXPERIMENTAL RESULTS

We now introduce some tests to evaluate the performance of the
proposed speech enhancement scheme. The sampling rate is 8
kHz. A synthetic Gaussian white noise is added to speech signal.
We first see the performance of the proposed scheme on a speech
signal with relatively high SNR (SNR = 20 dB) in figure 2. In the
figure 2.(b), we superpose curves of the extracted voiced signal,
and the envelope of the original (noise free) signal. Obviously, the
quasi-periodic model holds (with a good accuracy) for the voiced
speech segments.
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Fig. 2. Noisy speech, extracted voiced speech, and noisefree signal
envelope (SNR=20dB)

We then test the proposed scheme in a very noisy environment
(SNR = 0 dB) (figure 3). In this second set of simulations, we treat
only voiced frames (as spectral subtraction gives poor results); un-
voiced frames are set to zero. Remark that in a noisy environment,
the speakers have a tendency to stretch voiced phonemes (Lom-
bard effect ). We observe that the quasi-periodic characteristic is
robust to the additional noise, and allows speech enhancement in a
very noisy environment.
Furthermore, we consider a global measure of signal-to-noise ratio
(������) as an objective evaluation criterion through this work
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Fig. 3. Noisy speech, extracted voiced speech, and noisefree signal
envelope (SNR=0dB)

which is consistent with previous enhancement studies [8, 9]. Fig-
ure 4 plots curves of the averaged output SNR (evaluated by Monte-
Carlo techniques) for our proposed scheme and the classical spec-
tral subtraction technique [4, 9].
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Fig. 4. Comparison of our proposed scheme and the spectral sub-
traction technique for white noise corrupted speech signal.

The output SNR has straightforward interpretation; and it can
provide indications of the perceived audio quality in some cases
[16]. Unfortunately, the output SNR shows a limited correlation
with perceived speech quality. Therefore, some speech quality as-
sessment algorithms try to include explicit models of the human
auditory perception system. The ITU P.862 PESQ (Perceptual
Evaluation of Speech Quality [18, 19]) is one of the most recently
introduced methods, that is found implemented in many commer-
cially available testing devices and monitoring systems [17].
Figure 5 plots curves of the averaged PESQ criterion (evaluated by
Monte-Carlo techniques) for our proposed scheme and the classi-
cal spectral subtraction technique.

As can be observed in the previous graphs, the proposed scheme
outperforms the spectral subtraction in low to high SNR regions.
However, at very high SNR, the achievable output SNR of the pro-
posed method is saturated due to approximation error in the peri-
odicity model.
Remark that in our simulations, the noise spectrum is assumed to
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Fig. 5. Comparison of our proposed scheme and the spectral sub-
traction technique for white noise corrupted speech signal.

be known. It could be estimated during silence periods. Note that
knowledge of the noise spectrum is required for spectral subtrac-
tion but not for the modulated periodic signal extraction. Never-
theless, the performance of this last technique is affected by the
color of the noise. In this respect, a white noise will tend to lead
to worse results than a colored noise (PC noise, car noise, human
voice), especially if the spectrum of this colored noise is concen-
trated in different frequency regions than the voiced speech.

5. CONCLUSIONS

This paper has introduced a new speech enhancement technique
based on quasi-periodic signal extraction. The proposed enhance-
ment algorithm is based on a differential treatment of the voiced
and unvoiced speech components. Unvoiced frames are treated
using the well-known spectral subtraction technique. For voiced
frames, we have considered the periodic signal model with a slow
global amplitude and phase variation. The model parameters es-
timation is performed in an iterative (cyclic) fashion that leads to
a sequence of simple least-squares problems. Simulations show
that the enhancement technique achieves quite good performance
(specially in very noisy environments).
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