
MULTI+: A Robust and Topology-Aware
Peer-to-Peer Multicast Service

Luis Garcés-Erice
�

and Ernst W. Biersack
�

�
IBM Research, Zürich, Switzerland

�
Institut EURECOM, Sophia-Antipolis, France

To appear in Computer Communication, in late
2005

Abstract

TOPLUS is a lookup service for structured peer-to-peer networks that is based on the hi-
erarchical grouping of peers according to network IP prefixes. In this paper we present
MULTI+, an application-level Multicast protocol for content distribution over a TOPLUS-
based peer-to-peer (P2P) network. We use the characteristics of TOPLUS to design an
overlay Multicast protocol that allows every peer to connect to an available peer that is
close. MULTI+ trees also reduce the amount of redundant flows leaving and entering each
network, making efficient usage of the bandwidth. We also study the resiliency of MULTI+
Multicast trees when massive failure or disconnection of peers occur. While the tree recon-
struction introduces additional hops, the end-to-end latency increases very little. At the end
we compare the trees constructed by MULTI+ with the trees constructed by Scribe, a well
known application-level Multicast system.

Key words: P2P, Multicast, Topology-aware, DHT, Content distribution
PACS:

1 Introduction

IP Multicast seems to be the ideal solution for content distribution over the Inter-
net: it can serve content to an unlimited number of recipients, and it is bandwidth-
efficient [1]. These two characteristics are strongly related. IP Multicast saves band-
width because a single data flow can feed many recipients. The data flow is only
split at those routers where destinations for the data are found via more than one
outgoing port. Thus � clients do not need � independent data streams, which allows
for IP Multicast’s scalability. However, IP Multicast was never widely deployed in
the Internet.

Preprint submitted to Elsevier Science 12 July 2005

Lately, peer-to-peer systems have attracted lots of interest. Peer-to-peer systems al-
low to implement new services at the application level to enhance the capabilities
of the network. In the last few years, various application-level Multicast protocols
have been proposed [2–6], most of which are directly implemented on top of a
P2P infrastructure (Chord [7], CAN [8] or Pastry [9]). The good scalability of the
underlying P2P network allows to serve, as in the case of IP Multicast, content to
a virtually unlimited number of clients (peers). However, P2P Multicast is imple-
mented at the application layer as an overlay on top of and isolated from the under-
lying IP network layer. Thus, P2P Multicast will never be as bandwidth-efficient
as IP Multicast: For example, a LAN hosting multiple peers that are all part of a
P2P Multicast tree may find its outbound link saturated by identical data flowing to
and from its local peers as these peers are typically not aware of the fact that they
are sharing the same network. We have based our P2P Multicast protocol, called
MULTI+, on TOPLUS because of its inherent topology-awareness. The algorithms
in MULTI+ use the locality among peers provided by TOPLUS in order to build
efficient Multicast trees, as we show later.

In the next section we provide a very brief overview of the otherwise vast literature
on application-level Multicast. Then in Section 3 the main aspects of TOPLUS are
presented. In Section 4 we describe MULTI+, which is built on top of TOPLUS. In
Section 5 we study the properties (end-to-end delay, number of hops) of the trees
constructed by MULTI+. We study the impact of peer failures on the MULTI+ trees
in Section 6 and compare MULTI+ trees to the ones built by Scribe in Section 7.
We conclude the paper in Section 8.

2 Related Work

There exist various proposals for application-level Multicast. Narada [2] organizes
peers in a fashion similar to ours, using a hierarchical clustering of peers. There are
also a number of P2P Multicast systems that use a DHT (distributed hash table),
such as M-CAN using CAN [5] and Scribe [6] using Pastry, or Bayeux [4] based
on Tapestry [10]. A comparison of these approaches can be found in [11]. Further
examples of application-level Multicast are ALMI [12] or Yoid [13].

The authors in [14] build a topology-aware Multicast overlay. The connections
among peers are optimized by detecting overlap in routes to a sender to limit the
number of identical packets on the same link and to achieve better bandwidth uti-
lization. This requires the use of traceroute and repeated probing of the net-
work for constant adaption to changing conditions, especially upon arrival of new
peers.

In Bullet [15], peers form a mesh instead of a tree for content distribution. The main
idea is to increase the available bandwidth to each peer by downloading from mul-

2

tiple parents instead of just one, as is the case for trees. Basically, each peer benefits
from parallel download [16] in a similar fashion as does SplitStream. However, the
fact that each peer is able to download different chunks of data from different peers
makes Bullet more suitable for large file distribution (like BitTorrent [17]) than for
live content streaming.

ZIGZAG [18] offers low root-to-leaf delay by building trees with few levels. This
approach organizes peers in clusters, and the arrival of new peers may cause a clus-
ter to split, with the subsequent overhead to reorganize the P2P network. ZIGZAG
is not topology-aware, and the stretch between direct IP routing paths from root to
leafs and those of the application-level Multicast is high. As many identical copies
flow through the same physical link, ZIGZAG can induce a relatively high link
stress.

3 TOPLUS Overview

TOPLUS [19] is based on the DHT paradigm, in which a resource is uniquely
identified by a key, and each key is associated with a single peer in the network.
Keys and peers share a numeric identifier space, and the peer with the identifier
closest to a key is responsible for that key. The principal goal of TOPLUS is simple:
each routing step takes the message closer to the destination.

Let � be the set of all 32-bit IP addresses. Let � be a collection of sets such that��� � for each
��� � . Thus, each set

��� � is a set of IP addresses. We refer to
each such set

�
as a group. Any group

��� � that does not contain another group
in � is said to be an inner group. We say that the collection � is a proper nesting if
it satisfies all the following properties:

(1) � � � .
(2) For any pair of groups in � , the two groups are either disjoint, or one group is

a proper subset of the other.
(3) Each

��� � consists of a set of contiguous IP addresses that can be repre-
sented by an IP prefix of the form 	�
��
���
���� � (for example, ������
�����
�����
� ��!���).

The collection of sets � can be created by collecting the IP network prefixes from
BGP tables and/or other sources [20]. The resulting tree must be downloaded by
peers, in the same manner as other P2P protocols download a list of servers to
connect to initially. In this case, many of the sets � would correspond to ASes,
other sets would be subnets in ASes, and yet other sets would be aggregations of
ASes. This approach of defining � from BGP tables requires that a proper nesting
is created. Note that the groups differ in size, and in number of subgroups (the
fanout). If � is a proper nesting, then the relation

�#"$�&%
defines a partial ordering

over the sets in � , generating a partial-order tree with multiple tiers. The set � is

3

at tier- , the highest tier. A group
�

belongs to tier 1 if there does not exist a
� %

(other than �) such that
� "�� %

. We define the remaining tiers recursively in the
same manner (see Figure 1).

tier−1

n

tier−2

tier−3

H

S2

S3

S1

=I0H

H1

2H

3

Fig. 1. A sample TOPLUS hierarchy (inner groups are represented by plain boxes)

3.1 Peer State

Let
�

denote the number of tiers in the tree, let � be the set of all currently ac-
tive peers and consider a peer � � � . Peer � is contained in a collection of tele-
scoping sets in � denoted by �����	��
��������������
������������������
�� � , where �������
 "
���!�����	��
 " ����� " ��������
 and "$# �

is the tier depth of � ’s inner group. Except for
��������
 , each of these telescoping sets has one or more siblings in the partial-order
tree (see Figure 1). Let %'&(�	��
 be the set of siblings groups of ��&)����
 at tier- * . Finally,
let %+�	��
 be the union of the sibling sets %!�����
���������,%-���	��
 .

Peer � should know the IP address of at least one peer in each group
� � %.����
��

as well as the IP addresses of all the other peers in � ’s inner group. We refer to the
union of these two sets of IP addresses as peer � ’s routing table, which constitutes
peer � ’s state. The total number of IP addresses in the peer’s routing table in tier-�

is / ��01�	��
�/324/ %.����
�/ . In [19] we describe how a new peer can join an existing
TOPLUS network. Basically, a peer needs to know a delegate in each group in its
routing table. An initial routing table is obtained from another peer in the same
group, replacing subsequently the obtained delegates with equivalent ones (i.e.,
other peers from their respective groups).

3.2 XOR Metric

Let � % be the set of all binary strings of length 5 , with 576$��� and fixed. For a given
key 8 % � � % , let 8 be the 32-bit suffix of 8 % , i.e. 8 � � and 89�:8 %; � 8 %; �

�8 % � 8 %�).
Throughout the discussion below, we will refer to 8 instead to the original key 8 % .

4

The XOR metric defines the distance between two IDs � and 8 as

� ���3��8
!�
; ��
��� � / �

��� 8 � /�� � � (1)

The metric
� �	�3��8
 has the following properties, for IDs * ,� and 8 :

If
� � *,��8
 � � ���3��8
 for any 8 , then * �
� .

Let �'���3��8
 be the number of bits in the common prefix of � and 8 .
If �-���3��8
 ��� , then

� ���3��8
 # � ;� ��� � � .
If
� � *,��8
 # � �	�3��8
 , then �-� * ��8
 6 �-���3��8
 .

The XOR metric
� ���3��8
 is a refinement of the longest-matching prefix scheme. If

� is the unique longest-matching prefix for 8 , then � is the ID closest to 8 in terms
of

� ���3��8
 . Furthermore, if two peers have the same longest-matching prefix with
respect to 8 , the XOR metric will break the tie and choose the peer that minimizes� ���3��8
 as the “responsible peer” for key 8 .

4 MULTI+: Multicast on TOPLUS

4.1 A Multicast Tree

A simple Multicast tree is shown in Figure 2. Let � be the source of Multicast group
� . Peer � is receiving the flow from peer � . We say that � is the parent of � in the
Multicast tree. Conversely, we say that � is a child of � . Peer � is at level- � of the
Multicast tree and � at level- � . It is important to note that, in principle, the level of
a peer in the Multicast tree has nothing to do with the tier the peer belongs to in the
TOPLUS hierarchy.

t

S

Level 1

Level 2

Level 3

rp

q

Fig. 2. A simple Multicast tree.

We want to construct Multicast trees where each peer (i) is close to its parent in
terms of network delay and (ii) joins the Multicast tree at the lowest possible level

5

in the tree (close to the source) as possible. For this purpose, each peer attempts at
join time to minimize the length (network delay) of the last hop and the number of
hops from the source. In the example of Figure 2, the fact that � is a child of � and
not of � , is because � is closer to � than to � . By trying to minimize the network
delay between peers at join time, we also avoid rearranging peers of the Multicast
tree, except when a peer fails or disconnects.

4.2 Building Low End-to-End Latency Multicast Trees

We use the TOPLUS network and its look-up algorithm to build the Multicast trees.
Consider a Multicast IP address � and the corresponding key which, abusing the
notation, we also denote by � . Each tier- * group

� & is defined by an IP network
prefix � ��� where � is an IP address and � is the length of the prefix in bits. Let � &
be the key resulting from the substitution of the leftmost � bits of � by those of � ,
i.e. � & ��� ; �

�� ; �)���	� � � ; �)����

 � � (see function key prefix in Figure 6).

The inner group that contains the peer responsible for � & (obtained with a TOPLUS
look-up) is referred to as the responsible inner group, or RIG, for � in

� & (note that
this RIG is contained in

� &). Hereafter, we assume a single Multicast group � , and
for that group and a given peer � we denote the RIG in ��&)����
 � tier- * simply as
RIG- * of � . This RIG – or, more precisely, the set of peers in this RIG – is the
rendezvous point for all peers in ��&(���
 . The deeper a RIG- * is in the TOPLUS
hierarchy, the fewer peers can potentially use that RIG as a rendezvous point.

In the simple 3-tier example of Figure 3, we have labeled the RIGs for a given
Multicast group (peers in gray are members of the Multicast group), where all inner
groups are at tier- � . The RIG- * of a peer can be found following the arrows. The
arrows represent the process of asking the RIGs for a parent in the Multicast tree.
For example, � and � share the same RIG- � because they are in the same tier- �
group. � ’s inner group is its RIG- � , but � would first contact a peer � (white) in
its RIG- � to ask for a parent. Note that this last peer is not in the Multicast tree
(Figure 4). Also, note that all peers are in tier- � groups, but in different levels of the
Multicast tree (Figure 2).

TIER−1

TIER−2

TIER−3

RIG−2 RIG−2RIG−2

q
r t

RIG−1p
RIG−1

RIG−2

x

S

Fig. 3. The RIGs in a sample TOPLUS
network.

S

TIER−1

TIER−2

TIER−3 p
r t

q
x

Fig. 4. Sample Multicast tree.

6

Assume a peer � in tier- � * 2#��
 (i.e., a peer whose inner group is at tier- � *�2 ��

of the TOPLUS tree) wants to join a Multicast tree with Multicast IP address � ,
which we call group � . The algorithm can be followed through the pseudo-code in
Figures 5 and 6.

(1) The peer � broadcasts a query to join group � inside its inner group (recall
that in TOPLUS a peer knows all the members of its inner group). If there is a
peer � already part of group � , � can connect to � to receive the data (Figure 5,
line 3).

(2) If there is no such peer � in the inner-most group, � must look for its RIG-
* . A look-up of � & inside � ’s tier- * group (thus among � ’s sibling groups at
tier- � * 2 ��
) locates the peer ��& in RIG- * responsible for � . � contacts peer
� & (Figure 5, line 9), and asks for a peer in Multicast group � (line 10). If
peer � & knows about a peer � that is part of � , it sends the ID of � to � , and
� connects to � . Note that � is not necessarily a member of the RIG- * inner
group. In any case ��& adds � to the list of peers listening to � , and shares this
information with all peers in RIG- * . If � % % does not exist, � proceeds similarly
for RIG- � * � ��
 : � looks up � & ��� inside � ’s tier- � * � ��
 group (i.e., among � ’s
sibling groups at tier *). This process is repeated until a peer receiving � is
found, or RIG-1 is reached. In the latter case, if there is still no peer listening
to � , peer � must connect directly to the source of the Multicast group.

function find parent(m)
Require:

� = Multicast address
� = peer looking for parent

1: *�� � .tier
2: ��� " � �!�

/ � first try to find a connected peer � in inner group � /
3: ��� � .find in inner group(�)
4: while � = " � �!� do
5: if * = � then
6: ��� Multicast source
7: else
8: � &�� � .key prefix(� , * , �)
9: � &�� � .look up(� &)

/ �!� & is responsible for � & and belongs to RIG- *�� /
10: ��� � & .ask for parent(� ,�)
11: *�� * � �
12: end if
13: end while
14: return �

Fig. 5. Find a parent in the Multicast tree.

One can see that the search for a peer to connect to is done bottom up.

7

function key prefix(m,i,p)
Require:

� = Multicast address
* = tier of � ’s current look-up
� = peer looking for parent

1: ����� � � � .prefix of tier(*)
2: � � ����� � .length
3: return ((� AND � ;� ��� � �) OR

����� �)

(a) Obtaining the modified key � & that leads to
RIG- 	 .

function ask for parent(m,p)
Require:

� = Multicast address
� = peer looking for parent
/ � �
�����35 contains a FIFO �
����� 5� ���
for each Multicast address � � /

1: ��� " � � �
2: if �������35� �������� then
3: ��� peers ��� .head
4: end if
5: peers ��� .tail � �
6: return �

(b) Asking a peer in a RIG for a parent.

Fig. 6. Auxiliary functions used in find parent.

Property 1 When a peer � in tier *-2 � joins the Multicast tree, by construction,
from all the sets ��& � ���	��
� ��&)����
��'����� ��� ���	��
 that contain � , � connects to a peer
� � ��� �	��
 where 8 �������
�� � �3�

�� *�2 ������ !� � ��� �	��
 and � is a peer already
connected to the Multicast tree. That is, � connects to a peer in the deepest tier
group that contains both � and a peer already connected to the Multicast tree.

This assures that a new peer connects to the closest available peer in the network.
Notice that even in the case of failure of a peer in a RIG- * , the information is repli-
cated in all other peers in the RIG- * . If a whole RIG- * group fails, while MULTI+
will be affected, the look-up process can continue in RIG- � * � ��
 . This property
makes MULTI+ a resilient system.

Property 2 Using Multicast over TOPLUS, the total number of flows in and out of
a group defined by an IP network prefix is bounded by a constant.

Due to lack of space, we do not further develop this important aspect of MULTI+.
We refer the interested reader to the PhD thesis [21]. However, in the experiments
below we will notice the low number of flows per network prefix.

4.3 Membership Management in MULTI+

Each peer � knows its parent � in the Multicast tree, because there is a direct con-
nection between them. Because � knows the RIG where it got its parent’s address,
if � ’s parent � at level * of the Multicast tree fails or disconnects, � directly goes to
the same RIG and asks for a new parent. If there is none, � becomes the new tree
node at level * , replacing � and � must find a parent in level * � � of the Multicast
tree, through a join process starting at said RIG. If � had any siblings that were also
children of its former parent � , those siblings will find � as the new parent when

8

they proceed like � . If more than one peer concurrently tries to become the new
node at level * , peers in the RIG must consensually decide on one of them. It is not
critical if a set of peers sharing a parent � are divided in two subsets with different
parents upon � ’s depart.

Join and leave is a frequent process in a P2P network, but we expect the churn to
be rather low due to the fact that in a Multicast tree, all peers seek the same content
concurrently, throughout the duration of the session.

4.4 Parent Selection Algorithms

From the ideas exposed before, we retain two main parent selection algorithms for
testing the construction of Multicast trees.

� FIFO, where a peer � joins the Multicast tree at the first parent found that has
a free connection. When a peer gets to a RIG to find a parent, the RIG answers
with a list of already connected peers. This list is ordered by arrival time of the
connected peers to the RIG. Obviously, the first peer to arrive connects closer
(in hops) to the source than the following ones. The arriving peer � tests each
possible peer in the list starting with the first one until it finds one that accepts a
connection.

� Proximity-aware, where, given the first parent in the list has all connections oc-
cupied, a peer connects to the closest parent in the list that still accepts one extra
connection.

Note that we do not always check if we are connecting to the closest parent in the
list. The idea behind this is that, while we implicitly trust MULTI+ to find a close
parent, we prefer to connect to a peer higher in the Multicast tree (fewer hops from
the source) than to optimize the last hop delay. If MULTI+ works as expected,
the difference between these two policies should not be significant, because the
topology-awareness is already embedded in the protocol through TOPLUS.

5 MULTI+ Performance: End-to-End Latency and Bandwidth Utilization

Obviously, the
� � �

 cost of actively measuring the full inter-host distance ma-
trix for � peers limits the size of the peer sets we can use [21]. P2P systems must
be designed to be potentially very large, and experiments should reflect this prop-
erty by using significant peer populations. Methods like [22] map hosts into a � -
dimensional coordinate space. The main advantage is that given a list of � hosts, the
coordinates for all of them can be actively measured in

� ��� �1
 time (the distances
of the hosts to a set of � landmark hosts, with � � �).

9

5.1 Simulating Internet-Scale Deployments: Tang-Crovella Coordinates

CAIDA [23] offers to researchers a set of network distance measurements from
so-called Skitter hosts to a large number of destinations. Skitter is a traffic mea-
surement application developed by CAIDA. In a recent paper [22], the authors have
used these and other data to obtain a � -dimensional coordinate space representing
the Internet. A host location is denoted by a point in the coordinate space, and the
latency between two hosts can be calculated as the distance between their corre-
sponding points. The authors of [22] have kindly provided us with the coordinates
of ����� ���!� IP addresses for our study. Hereafter we call this space the TC (from
Tang and Crovella) coordinate space. We calculate distances using a Euclidean met-
ric, defined � � � & � �
��
 �

� �
� � �	��
�
�
 � � � ��& � � �� ��
 , for any two hosts identified by

their � -coordinate vectors ��& and �� .

5.2 Studying a Multicast Tree with 5 000 Peers

In this experiment, we test the characteristics of Multicast trees built with MULTI+
for a set of 5 000 peers. We use the TC coordinate space to measure the distance
between every pair of hosts. In order to make the experiment as realistic as pos-
sible, we use a TOPLUS tree with routing tables of reduced size, obtained from
the grouping of small and medium-sized tier-1 groups into virtual groups, and this
process introduces a distortion in the topological fidelity of the resulting tree [19].
The 5 000 peers are organized into a TOPLUS tree with 59 tier-1 groups, 2 562
inner-groups, and up to 4 tiers. We evaluate the two different parent selection poli-
cies described before: FIFO and proximity-aware. We also compare these two ap-
proaches with random parent selection. In all cases we test MULTI+ for different
values for the maximum number of connections a peer can accept, which is also
referred to as outdegree. We consider unlimited outdegree and outdegree between
2 and 8. We use the following performance metrics:

� The percentage of the peers in the total system, after the full Multicast tree is
built, closer to a peer than this peer’s parent. Those figures exclude the peers
directly connected to the source (Figure 7).

� The level peers occupy in the Multicast tree. The more levels a Multicast tree has,
the more delay we incur along the transmission path and the higher the probabil-
ity that the transmission suffers from losses due to peer failure (Figure 8).

� The latency from the root of the Multicast tree to each peer (Figure 9).

From the results in Figures 7 to 10 we can draw a number of conclusions:

Individual peers do not need to support a large outdegree to benefit from MULTI+
properties: an outdegree of 3 is sufficient, the improvement for higher outdegree is
marginal.

10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Percentage

8 conn.
6 conn.
4 conn.
3 conn.
2 conn.

(a) Random parent selection.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Percentage

No restriction
8 conn.
6 conn.
4 conn.
3 conn.
2 conn.

(b) FIFO parent selection.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Percentage

No restriction
8 conn.
6 conn.
4 conn.
3 conn.
2 conn.

(c) Proximity-aware parent
selection.

Fig. 7. Percentage of peers in the whole system closer than the peer actually used (for those
not connected to the source.)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16

C
D

F

Level

8 conn.
6 conn.
4 conn.
3 conn.
2 conn.

(a) Random parent selection.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

C
D

F

Level

No restriction
8 conn.
6 conn.
4 conn.
3 conn.
2 conn.

(b) FIFO parent selection.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

C
D

F

Level

No restriction
8 conn.
6 conn.
4 conn.
3 conn.
2 conn.

(c) Proximity-aware parent
selection.

Fig. 8. Level of peers in the Multicast tree.

The proximity-aware policy performs better than FIFO in terms of end-to-end la-
tency (Figure 9) and connecting to the closest parent (Figure 7). However, with
respect to the number of flows per group (Figure 10) and level distribution in the
Multicast tree (Figure 8), they are very similar. That is because both trees follow
the TOPLUS structure, but the proximity-aware policy makes better decisions when
the optimal parent peer can accept no more child peers.

The random parent selection policy organizes the tree in fewer levels than the other
two policies (Figure 8(a)), because connections are not constrained to follow the
TOPLUS structure. However those connections are not optimized, and the resulting
end-to-end delay performance that is considerably worse (see Figure 9).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000

C
D

F

Latency (unit)

8 conn.
6 conn.
4 conn.
3 conn.
2 conn.

(a) Random parent selection.

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000 8000

C
D

F

Latency (unit)

No restriction
8 conn.
4 conn.
2 conn.

(b) FIFO parent selection.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000

C
D

F

Latency (unit)

No restriction
8 conn.
6 conn.
4 conn.
3 conn.
2 conn.

(c) Proximity-aware parent
selection.

Fig. 9. Latency from root to leaf (in TC coordinate units) in the Multicast tree.

11

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14

C
D

F

Flows

8 conn.
6 conn.
4 conn.
3 conn.
2 conn.

(a) Random parent selection.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

C
D

F

Flows

No restriction
8 conn.
6 conn.
4 conn.
3 conn.
2 conn.

(b) FIFO parent selection.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

C
D

F

Flows

No restriction
8 conn.
6 conn.
4 conn.
3 conn.
2 conn.

(c) Proximity-aware parent
selection.

Fig. 10. Number of flows through group interface.

6 MULTI+ Resilience under Peer Failure

We have already seen that MULTI+ can build static Multicast trees with low end-
to-end latency and low hop count. However, a P2P Multicast service is provided
by the users of the service, and the effect of peers failures on the Multicast tree
must be considered. We use the term “failure” as a generic term for a peer leaving
the Multicast session. We do not distinguish between peers that leave gracefully
by announcing their departure and peers leaving without announcement, since the
impact on the resulting Multicast tree will be the same. We evaluate how the prop-
erties of the MULTI+ tree are affected by the failure of 5%, 10%, 20% and 40%
of the peers. A 5-10% failure rate may correspond to failures due to a final user
leaving the Multicast group or the end system (Home PC) crashing. A 40% failure
rate may correspond to a massive attack against the P2P network (denial of service
or virus).

When a peer in the Multicast tree fails, its children will notice the failure rapidly
since the flow of data will be interrupted. The children then contact their RIG to
get a new parent and also inform the RIG about the failed parent. We choose this
approach since it avoids rebuilding the whole subtree rooted at the failed peer.

In general, a peer in MULTI+ seeks a parent that is (1) as close as possible to the
source, in terms of overlay hops, and (2) as close as possible to that peer, in terms
of latency. A peer � connected to a parent � that has failed will try to find a parent
� % close to � that is at least as close to the source in terms of hops in the Multicast
tree as � is, and can still accept one more child.

We need a metric to evaluate the “quality” of the choice of the new parent � % with
respect to the best possible choice. For this purpose, we introduce the proximity
ratio � . Let �!� � %
 denote the set of all peers with at least one available connection
that are at the same level as � % or closer to the source (in hops) in the Multicast tree
(with � % � ��� � %
). Let � � * ���
 measure the network latency between peers * and � ,
the proximity ratio � is calculated as follows :

12

� � � ���1� � %

����� ����	��
��� � � �	� ���
,
 � �

Thus, if we find no better parent for � than � % we have � � .
In Figures 11 to 13 we plot the Cumulative Distribution Function of:

� The proximity ratio � (Figure 11).
� Distribution of peers across the levels of the Multicast tree (Figure 12).
� Latency from root to leaf in the Multicast tree (Figure 13).

We plot these metrics for an unlimited number of connections per peer, and for
8 and 4 connections respectively. While not realistic, the unrestricted number of
connections gives for most metrics of the MULTI+ tree a performance upper bound.
The algorithm used for parent selection in all experiments is “proximity-aware”, as
it yielded the best results in the absence of peer failure.

We first observe that when there no failures, occur the outdegree of a peer has
no impact in the proximity metric: More than 60% of the peers connect to the
most optimal parent, that is, the closest peer higher in the Multicast tree (closer
to the source). The proximity of child to parent connection deteriorates slightly in
the presence of failures (Figure 11). This is good, but not surprising, since orphan
children use the same TOPLUS algorithm to look for a new parent. The choice of
a parent becomes less optimal, for lower values for the outdegree.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

C
D

F

Ratio

No failures
5% failure

10% failure
20% failure
40% failure

(a) Unlimited connections.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

C
D

F

Ratio

No failures
5% failure

10% failure
20% failure
40% failure

(b) 8 connections.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

C
D

F

Ratio

No failures
5% failure

10% failure
20% failure
40% failure

(c) 4 connections.

Fig. 11. Proximity ratio � between optimal parent and current one.

In Figure 12 we see that the low height of the Multicast tree is largely preserved
for a low failure rates. However, large-scale failures will push peers down the tree,
resulting in trees with up to 34 levels, as we can see for the case of maximum of
4 connections and 40% peer failure rate in Figure 12(c). The lower the outdegree
per peer, the more important the effect of peer failures: Compare the 10% failure
rate plot for an 8 connections limit in Figure 12(b) and the same failure rate for
a limit of 4 connection per peer in Figure 12(c). The unrestricted MULTI+ tree is
unaffected, because it is always possible for all the children of a peer to connect to
their grandparent in the Multicast tree.

This phenomenon is easily explained: The higher the failure rate, the higher the
probability of failure of a peer close to the Multicast source. The closer to the

13

source a peer is in the tree, the more difficult it is to find an available connection
at the same level. In the worst case, a peer that is directly connected to the source,
when failing, will force its direct children (except the one that takes its place) to
connect to leaf peers, low in the tree. Then the leaf peers under the direct children
of the failed parent may find themselves twice as far from the source! This explains
the degradation seen in Figure 12(b) and 12(c).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

C
D

F

Level

No failures
5% failure

10% failure
20% failure
40% failure

(a) Unlimited connections.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

C
D

F

Level

No failures
5% failure

10% failure
20% failure
40% failure

(b) 8 connections.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

C
D

F

Level

No failures
5% failure

10% failure
20% failure
40% failure

(c) 4 connections.

Fig. 12. Level of peers in the Multicast tree.

While the height of the tree increases quite a bit for high failure rates, the end-
to-end latency is not much affected (Figure 13). However, the lower the outdegree
per peer, the more difficult it will be to find a suitable new parent for the orphan
children of the failed peer.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000

C
D

F

Latency (unit)

No failures
5% failure

10% failure
20% failure
40% failure

(a) Unlimited connections.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000

C
D

F

Latency (unit)

No failures
5% failure

10% failure
20% failure
40% failure

(b) 8 connections.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000

C
D

F

Latency (unit)

No failures
5% failure

10% failure
20% failure
40% failure

(c) 4 connections.

Fig. 13. Latency from root to leaf (in TC coordinate units) in the Multicast tree.

Most of the connections along the root to leaf path over the Multicast tree are done
between close peers. It can be argued that even if the end-to-end latency is not
affected a lot by peer failures, fewer peers in the system should lead to a shorter
average latency from the root to each destination. However, as we have studied
before [21], if we compare the results for sets of 1 000 and 5 000 peers, MULTI+
works asymptotically better with an increasing number of participants.Indeed, MULTI+
relies on the properties of TOPLUS in order to determine how close two peers are.
The more peers in the system, the higher the probability that two or more peers
are in the same lower-tier group of the TOPLUS tree, where the locality is very
high [19]. When these peers connect to each other, the total end-to-end latency in-
creases by very little. On the other hand, if a only a few peers are present, most
connections are made between tier- � groups of the TOPLUS tree, adding with each
hop a considerable latency. The system is always in this last situation when it starts
building up. But after that, when more and more peers join, neither increasing the
number of peers increases a lot the average end-to-end latency, nor reducing the

14

number of peers reduces it significantly.

In Figure 14 we plot the CCDF (Complementary Cumulative Distribution Func-
tion) of the portion of the root-to-leaf latency represented by the two longest hops in
the end-to-end path. Notice that our experiments do not consider the first hop com-
ing directly from the source. We see that the more connections we allow, the larger
fraction of the total latency is due to the largest two hops. This agrees with the fact
that restricting the outdegree increases the number of levels in the tree (Figure 12).
For an unrestricted outdegree, the two largest hops are responsible for at least 70%
of the total end-to-end latency (Figure 14(a)), which is not very surprising since
most peers are in level 2 or 3 of the Multicast tree (Figure 12(a)). However, the
degeneration due to failed peers, increasing the number of levels, does not change
the latency share due to the two largest hops. This means that the additional levels
are not adding a lot of latency since the new connections are being made to close-
by peers, thanks to the topology-awareness MULTI+ has inherited from TOPLUS.
Similar phenomena can be observed when we restrict the outdegree per peer. As an
extreme case when 40% of the peers fail, for a maximum outdegree of 4, the num-
ber of levels can get as high as 34 (Figure 12(c)). Yet (Figure 14(c)), the two largest
hops for any peer make still for more than 30% of the end-to-end latency. Any ad-
ditional hops to the 8 hops the MULTI+ tree features when no failures occur, must
thus be between close peers. The same effect is observed in the topology-aware
TOPLUS routing, where a first large hop leads to a destination group, and each
successive hop takes a query closer and closer to the destination peer.

We already knew that MULTI+ is able to make topology-aware tree constructions
inside TOPLUS groups,since the network latency among peers inside a group is
typically smaller than among peers in different groups. However, TOPLUS alone
cannot assume anything about peers in different sibling groups. In that case, MULTI+
proceeds connecting to the closest available parent using the proximity-aware par-
ent selection.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
C

D
F

Two largest hops fraction of the total latency

No failures
5% failure

10% failure
20% failure
40% failure

(a) Unlimited connections.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
C

D
F

Two largest hops fraction of the total latency

No failures
5% failure

10% failure
20% failure
40% failure

(b) 8 connections.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
C

D
F

Two largest hops fraction of the total latency

No failures
5% failure

10% failure
20% failure
40% failure

(c) 4 connections.

Fig. 14. Fraction of the end-to-end latency due to the two largest hops.

15

7 End-to-end latency: A Comparison of Scribe and MULTI+

Finally, we perform a comparative study between MULTI+ and one of the best
known P2P application-level Multicast systems, Scribe [6]. Scribe is a P2P appli-
cation that runs on top of a structured P2P network called Pastry [9]. Like TOPLUS,
Pastry aims to create a topology-aware overlay. Each Pastry peer maintains a num-
ber of links to other peers called neighbors, which require permanent checking to
assure that they are indeed the closest peers in the network.

In Scribe, a peer � that wants to join a Multicast group issues a query to look up
the key that identifies the Multicast group. When the query reaches a peer � that is
already part of that Multicast group, the new peer � connects as a child of � in the
Multicast tree. If the outdegree is not restricted, some peers will end up having a
disproportionate number of children. This is normal, because the routing paths of
the different join requests have little chance of converging, except at peers whose
ID is close to the key identifying the Multicast group. In MULTI+, the number of
connections to each peer is always bounded by a constant: In the worst case, a peer
parent to the peers in all its sibling groups at each tier of the TOPLUS tree inside
the peer’s tier- � group (see Figure 1). The number of these groups is limited by the
size of the TOPLUS routing table. By Property 1 (see above), it can be shown [21]
that only one inbound connection is needed in each group in order to build the
Multicast tree, and thus the number of connections to a peer in the worst case is
bounded by a constant.

On the other hand, peers in Scribe must limit the outdegree of the Multicast tree,
which is done through a process called bottleneck remover [6]. When a parent �
can only accept a limited number of connections and a new peer � finds all of them
occupied, � suggest as a new parent for � its child � , whose added latency toward
� and � is minimal. In this sense, Scribe tries to build minimal end-to-end delay
Multicast trees.

The peers in the Pastry overlay network are organized in a ring. As a result, loops
can be formed when building the Multicast trees with Scribe. In this case, two peers
attempting to connect to the same Multicast group can find themselves connected
to each other in a loop (through other intermediate peers). In order to avoid the
formation of those loops, Scribe introduces a per-group organizer mechanism that
checks for loops. Notice that loops cannot happen in MULTI+ by construction,
because of the nature of TOPLUS (which is not a cyclic overlay).

In order to evaluate Scribe, we downloaded the FreePastry [24] source code. FreeP-
astry (as of October 2004) contains, among other things, the Java code for a full
implementation of Pastry and a basic implementation of Scribe in FreePastry. We
have modified the source code so that Pastry can read a list of nodes with their TC
coordinates and use these coordinates to calculate latencies among peers. This way,

16

both MULTI+ and Scribe will work with the same data and the results obtained will
be comparable. We simulate a single Multicast tree on a 5 000 peer population, ran-
domly selected from the TC address space. However, the current implementation
of Scribe lacks the mechanism that avoids loops in the Multicast trees. As a result,
the trees built by Scribe do not contain all the 5 000 peers. To compare Scribe and
MULTI+, we first build the tree under Scribe with as many of the 5 000 peers as
possible. We then take the peers included in the Multicast tree formed by Scribe
and use them as the peer population for the MULTI+.

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000

C
D

F

Latency (TC units)

Scribe
MULTI+

(a) Unlimited connections
(5 000 peers).

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000
C

D
F

Latency (TC units)

Scribe
MULTI+

(b) 8 connections (3 651
peers).

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000

C
D

F

Latency (TC units)

Scribe
MULTI+

(c) 4 connections (2 261
peers).

Fig. 15. Root-to-leaf latency in Scribe and MULTI+.

The metric that interests us the most is the distribution of the end-to-end latency
obtained with both approaches. The results are shown in Figure 15, for trees with
an unlimited outdegree, or an outdegree of 8 and 4 respectively.

� With an unlimited outdegree (Figure 15(a)), both approaches perform in a similar
fashion for most of the peers except for about 20% of the peers experience lower
end-to-end latency using Scribe than MULTI+. Please remember that there is
no limit in Scribe for the number of connections a peer can have. Thus, shorter
delays can be obtained by connecting many children to the same parent, even if
this parent may not be able to sustain the resulting load. For MULTI+, however,
there is an implicit bound on the outdegree of a peer.

� If we limit the outdegree to 8 children per parent (Figure 15(b)), Scribe succeeds
building a tree with 3 651 peers out of the total 5 000. The resulting tree of Scribe
offers superior performance for about half of the peers.

� Finally, if the outdegree is limited to 4, Scribe can build a tree with only 2 261
peers. MULTI+ (Figure 15(c)) achieves a performance similar to that of Scribe
for most of the peers. However, the worst case end-to-end latency perceived by
any peer is much higher in MULTI+ than in Scribe.

For the experiments we conducted, Scribe provides for a subset of all peers a lower
end-to-end latency than MULTI+. However, for most peers MULTI+ comes close,
in particular in case of low outdegrees. The improved performance of Scribe on
top of Pastry has an additional cost. Pastry obtains topology information through
constant measurement and search for close-by neighbors, while TOPLUS does not
need any measurement in order to provide a sense of topology-awareness to the
applications on top. Also, MULTI+ trees are created as the peers arrive and no

17

additional optimizations are made later to adapt the trees. We have considered in our
experiments only the peers that Scribe was able to manage without creating loops;
introducing the organizer in Scribe to undo loops will introduce extra complexity.
MULTI+ on the other hand could have built trees containing all 5 000 peer without
any problem. In conclusion, we can say that MULTI+ builds Multicast trees with
slightly higher end-to-end delay for a subset of the peers than Scribe, but introduces
no traffic for measurements and does not need to check for loops as does Scribe.

8 Conclusion

We have presented MULTI+, an application-level Multicast service for P2P sys-
tems. MULTI+ relies on TOPLUS in order to determine the parent in the Multicast
tree. MULTI+ is able to create topology-aware Multicast trees without introduc-
ing any extra traffic for active measurement. Admittedly, out-of-band information
regarding the TOPLUS routing tables must be calculated offline (a simple pro-
cess) and downloaded. The proximity-aware parent selection in MULTI+ further
improves the end-to-end latency. MULTI+ also decreases the number of redundant
flows that must traverse a given network (even when only few connections per peer
are possible), which allows for better bandwidth utilization. MULTI+ remains ro-
bust under massive peer failure, and it is able to maintain low end-to-end delay even
in case of a limited outdegree per peer.

Luis Garcés-Erice (lge@ieee.org) obtained his MSc in Telecommunication Engineering
(EE+CS) in the Public University of Navarra (Spain) in 2001. He obtained his PhD in 2004
from Télécom Paris University (France) working at Institut EURECOM. Currently he is
at IBM Research Zürich (Switzerland) as a Post-Doc. His research interests are mainly in
P2P and distributed systems, network protocols and more recently middleware and sensor
networks.

Ernst Biersack (erbi@eurecom.fr) received his M.S. and Ph.D. degrees in Computer Sci-
ence from the Technische Universität München, Munich, Germany and his Habilitation à
diriger la Recherche from the University of Nice Sophia Antipolis, France.
Since March 1992 he has been a Professor in Telecommunications at Institut Eurecom, in
Sophia Antipolis, France. For his work on synchronization in video servers he received in
1996 (together with W. Geyer) the Outstanding Paper Award of the IEEE Conference on
Multimedia Computing & Systems. For his work on reliable Multicast he received (together
with J. Nonnenmacher and D. Towsley) the 1999 W. R. Bennet Price of the IEEE for the
best original paper published 1998 in the ACM/IEEE Transactions on Networking.

18

References

[1] S. E. Deering, D. R. Cheriton, Multicast routing in datagram internetworks and
extended LANs, ACM Transactions on Computer Systems 8 (2) (1990) 85–110

[2] S. Banerjee, B. Bhattacharjee, C. Kommareddy, Scalable application layer Multicast,
in: Proceedings of SIGCOMM, ACM Press, Pittsburgh, PA, USA, 2002, pp. 205–217.

[3] Y. hua Chu, S. G. Rao, S. Seshan, H. Zhang, A case for end system Multicast, IEEE
Journal on Selected Areas in Communication, Special Issue on Networking Support
for Multicast 20 (8) (2002) 1456–1471.

[4] S. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, J. Kubiatowicz, Bayeux:
An architecture for scalable and fault-tolerant wide area data dissemination, in:
Proceedings of the 11

���
International Workshop on Network and Operating System

Support for Digital Audio and Video (NOSSDAV), Vol. 2429, ACM, Port Jefferson,
NY, USA, 2001, pp. 11–20.

[5] S. Ratnasamy, M. Handley, R. M. Karp, S. Shenker, Application-level Multicast
using content-addressable networks, in: Proceedings of the 3

���
Third International

COST264 Workshop on Networked Group Communication, Vol. 2233 of LNCS,
Springer, 2001, pp. 14–29.

[6] M. Castro, P. Druschel, A.-M. Kermarrec, A. Rowstron, Scribe: a large-scale and
decentralized application-level Multicast infrastructure, IEEE Journal on Selected
Areas in Communications 20 (8) (2003) 1489–1499.

[7] I. Stoica, R. Morris, D. Karger, M. Kaashoek, H. Balakrishnan, Chord: A scalable
Peer-to-peer lookup service for Internet applications, in: Proceedings of SIGCOMM,
ACM Press, San Diego, CA, USA, 2001, pp. 149–160.

[8] S. Ratnasamy, M. Handley, R. Karp, S. Shenker, A scalable content-addressable
network, in: Proceedings of SIGCOMM, ACM, San Diego, CA, USA, 2001, pp. 161–
172.

[9] A. Rowstron, P. Druschel, Pastry: Scalable, distributed object location and routing
for large-scale Peer-to-peer systems, in: Proceedings of the IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware), Vol. 2218 of LNCS,
Springer, Heidelberg, Germany, 2001, pp. 329–350.

[10] B. Y. Zhao, J. Kubiatowicz, A. D. Joseph, Tapestry: An infrastructure for fault-tolerant
wide-area location and routing, Tech. Rep. UCB/CSD-01-1141, Computer Science
Division, University of California, Berkeley (April 2001).

[11] M. Castro, M. B. Jones, A.-M. Kermarrec, A. Rowstron, M. Theimer, H. Wang,
A. Wolman, An evaluation of scalable application-level Multicast built using Peer-
to-peer overlays, in: Proceedings of INFOCOM, IEEE, San Francisco, USA, 2003,
pp. 1510–1520.

[12] D. Pendarakis, S. Shi, D. Verma, M. Waldvogel, ALMI: An application level
Multicast infrastructure, in: Proceedings of the 3

���
USENIX Symposium on Internet

Technologies and Systems (USITS ’01), San Francisco, CA, USA, 2001, pp. 49–60.

19

[13] P. Francis, Yoid: Extending the Multicast Internet architecture, white paper,
http://www.icir.org/yoid/ (1999).

[14] M. Kwon, S. Fahmy, Topology-aware overlay networks for group communication, in:
Proceedings of NOSSDAV, ACM, Miami Beach, Florida, USA, 2002, pp. 127–136.

[15] D. Kostic, A. Rodriguez, J. Albrecht, A. Vahdat, Bullet: High bandwidth data
dissemination using an overlay mesh, in: Proceedings of the 19

���
ACM Symposium

on Operating Systems Principles (SOSP-19), Bolton Landing, NY, USA, 2003, pp.
282–297.

[16] P. Rodriguez, E. W. Biersack, Dynamic parallel access to replicated content in the
Internet, IEEE/ACM Transactions on Networking 10 (4) (2002) 455–465.

[17] M. Izal, G. Urvoy-Keller, E. Biersack, P. Felber, A. Al Hamra, L. Garcés-Erice,
Dissecting BitTorrent: Five months in a torrent’s lifetime, in: Proceedings of Passive
and Active Measurements, Vol. 3015 of LNCS, Springer, Juan-les-Pins, France, 2004,
pp. 1–11.

[18] D. Tran, K. Hua, T. Do, ZIGZAG: An efficient peer-to-peer scheme for media
streaming, in: Proceedings of INFOCOM, IEEE, San Francisco, USA, 2003, pp.
1283–1292.

[19] L. Garcés-Erice, K. W. Ross, E. W. Biersack, P. A. Felber, G. Urvoy-Keller, TOpology-
centric Look-Up Service, in: Proceedings of COST264/ACM 5

���
International

Workshop on Networked Group Communications (NGC), Vol. 2816 of LNCS,
Springer, Munich, Germany, 2003, pp. 58–69.

[20] B. Krisnamurthy, J. Wang, On network-aware clustering of Web sites, in: Proceedings
of SIGCOMM, ACM, Stockholm, Sweden, 2000, pp. 97–110.

[21] L. Garcés-Erice, A hierarchical P2P network: Design and applications, Ph.D. thesis,
Télécom Paris, Institut EURECOM, Sophia-Antipolis, France (December 2004).

[22] L. Tang, M. Crovella, Virtual landmarks for the Internet, in: Proceedings of the Internet
Measurement Conference (IMC), ACM, Miami Beach, Florida, USA, 2003, pp. 143–
152.

[23] CAIDA, http://www.caida.org/

[24] Freepastry,
http://www.cs.rice.edu/CS/Systems/Pastry/FreePastry/
(October 2004).

20

