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ABSTRACT

In this paper a deterministic PARAllel FACtor (PARAFAC)
receiver is proposed, for Multiple Input Multiple Out-
put (MIMO) Orthogonal Frequency Division Multiplexing
(OFDM) systems. We show that the received signal forms
a 4-way tensor whose dimensions are space, time, and fre-
quency, and can be written as a sum of tensor products (over
paths and users) of four tensors representing the channel
(for two of them), the symbols, and the modulation. Param-
eters of this model are identified via an Alternating Least
Squares (ALS) algorithm, called DEBRE, whose identifia-
bility conditions are pointed out.

1. INTRODUCTION

The use of multiple antennas at both transmitter and receiver
sides has gained great interest, since it increases the spec-
tral efficiency in wireless transmissions. Some of the well
known MIMO techniques are STBC and STTC [1] [2], that
improve power efficiency by maximizing spatial diversity,
the V-BLAST system proposed by Foschini et al. in [3], or
SVD-based methods, just to name a few.

OFDM has become very popular in MIMO systems as
it transforms a frequency-selective channel to a range of
non-selective (flat fading) channels, hence reducing the In-
ter Symbol Interference (ISI) and improving the robustness
against large delay spreads. The frequency spacing between
subcarriers is chosen in such a way that the orthogonality of
their corresponding time domain waveforms is maintained.
Then, at the frequency where the received signal is evalu-
ated, all other signals are zero.

OFDM is a block modulation scheme whereF block
symbols are transmitted overF orthogonal subcarriers. A
Cyclic Prefix (CP) of lengthD is added to the beginning
of each transmitted sequence to remove ISI caused by the
channel time spread. The addition of the CP converts the
linear convolution to a circular one. The channel length
should be smaller than the CP, otherwise the orthogonality
between subcarriers is affected, which causes Inter Carrier
Interference (ICI).

OFDM modulation is adopted in three normalization
standards of Local Area Network (LAN) systems: ETSI
BRAN HIPERLAN12, IEEE 802.11a, and ARIB MMAC.
The IEEE 802.11a LAN standard, for example, operates at

raw data rates up to 54 Mb/s with a 20 Mhz channel spacing,
thus yielding a bandwidth efficiency of 2.7 b/s/Hz.

Most of the existing MIMO OFDM models rely on ma-
trix representations, with the two dimensions generally be-
ing space and time. Here, we fully exploit the multidi-
mensional structure of the received signal and form a 4-
way tensor whose dimensions are space, time, and fre-
quency. The obtained 4-way tensor can be decomposed
using PARAFAC decomposition, which was independently
introduced by Harshman [4] and Caroll and Chang [5] in
1970. The PARAFAC model is very popular in Psychomet-
rics and Chemometrics where it was first used along with its
extension to higher orders [4] [5] [6]. It also finds applica-
tions in Signal Processing [7] [8] [9].

While the 2-way model suffers a rotational indetermi-
nacy that yields an infinite set of solutions, the PARAFAC
model enjoys a uniqueness property under simple condi-
tions summarized in the Kruskal theorem [10], hence its im-
portance. Moreover, the model being deterministic, smaller
data blocks can be used without affecting the performance
of the solution.

Some PARAFAC receivers for OFDM systems have been
proposed in the literature. In [11], the authors proposed
a blind receiver for SIMO OFDM systems, that estimates
the Carrier Frequency Offset (CFO) in order to restore the
orthogonality between subcarriers, and recovers the trans-
mitted symbols. A model was also proposed for the MIMO
case but simulations were not carried out. In [12], a unified
tensor modeling for wireless communication systems was
proposed. The general Parafac model particularly applies
to MIMO OFDM systems by making appropriate choices in
the structure of its matrix components, but once again, si-
mulations were not carried out for the MIMO OFDM case.

Here, a tensor modeling is derived for MIMO OFDM
systems. The DEterministic Blind REceiver (DEBRE) is
computed via an ALS algorithm, which differs from the
usual PARAFAC because of coupling between terms in the
decomposition.

Other results in the same spirit have been presented in
the case of CDMA systems [13] [14]. Those systems are
similar to MIMO OFDM ones. In fact, the spreading code
replaces the frequency in the third dimension; coupling is
however different.

The paper is organized as follows: Section 2 presents the
MIMO OFDM model along with the notation used through-
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out the paper. Parafac and DEBRE algorithms are presented
in Section 3. Identifiability conditions are stated in section
4; a bound on the model parameters is given, and induces
identifiability necessary conditions. Computer experiments
eventually show that the latter necessary conditions are not
always sufficient.

2. MODEL AND NOTATION

For the sake of simplicity we start with a Single Input Mul-
tiple Output (SIMO) OFDM system. The MIMO case will
be addressed at the end of this section. Noise is ignored in
the remaining, except when running computer experiments.

As stated in the introduction, OFDM is a block modula-
tion scheme, where every sequence ofF symbolss[m, n] =
[sF−1[m, n], ..., s1[m, n], s0[m, n]]T, with m representing
the number of the time interval (of size NF) (m = 1, ..., M ),
andn representing the OFDM block number (n = 1, ..., N ),
is converted from serial to parallel before being transmitted
overF orthogonal subcarriers as shown in figure 1.

The symbolss[m, n] are modulated via IFFT (In-
verse Fast Fourier Transform) to producex[m, n] =
[xF−1[m, n], ..., x1[m, n], x0[m, n]]T, and a CP, built from
the D last samples ofx[m, n], is added to the beginning of
x[m, n]. Then, the transmitted sequence is:xCP [m, n] =
[xF−1[m, n], ..., x0[m, n], xF−1[m, n], ..., xF−D[m, n]]T.

In the present framework, the channel is assumed
narrowband, non stationary due to the mobile motion, and
haveP resolvable paths. Hence, the sequenceyk[m, n] re-
ceived on thekth antenna, and obtained fromyCP

k [m, n] =
[yk,F−1[m, n], ..., yk,0[m, n], yk,F−1[m, n], ..., yk,F−D[m, n]]T

by ignoring theD first samples in order to remove ISI, has
the following form :

yk[m, n] = hk,mxCP [m, n] (1)

with: (for space reasons we denote byi the pairk, m, e.g.
hi,p = hk,m,p)

hi =










hi,0 . . . hi,P−1 0 . . .

0 hi,0 . . . hi,P−1 0
...

...
. . .

. . .
. . .

. . . 0D−P+1

0 . . . hi,0 . . . hi,P−1

...










hk,m,p = ρk,pexp(−
jωf

c
vk,m

Tuk,p)exp(−jωfτp)

where:

• ρk,p denotes thepth path gain to receive antennak.
In most applications, the antenna spacing∆ is con-
sidered to be less than half the wavelength, such that
ρk,p does not depend on the antenna (ρk,p = ρp)

• ωf is thef th subcarrier pulsation. As the channel is
assumed narrowband,ωf ≈ ωc, whereωc is the cen-
tral carrier pulsation. Hence,hk,m,p does not depend
onωf
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Fig. 1: OFDM Modulation. Index[l] = [m, n]

• vk,m is thekth antenna position at epochm. Its value
is : vk,m = vk+∆d = vk+v∆t = vk+v(m−1)(F+
D)N , wherevk is the initial mobile position,v is the
mobile speed that causes the change in distance∆d
over time interval∆t = (m − 1)(F + D)N

• uk,p denotes the direction of arrival of thepth path to
antennak

• τp is the delay due to the distance traveled along the
pth path

Expression (1) can alternatively be written as :

yk[m, n]=








hi,0 . . . hi,P−1 0 . . .

0 hi,0 . . . hi,P−1

...
...

. . .
. . .

. . .
...

hi,1 . . . hi,P−1 0F−P hi,0








x[m, n]

After IFFT/FFT transformations, we obtain :

zk[m, n] =










HF−1,i 0 . . . 0

0 HF−2,i 0
...

... 0
. . .

...
...

... 0 H0,i










s[m, n]

where Hf,k,m =
∑P−1

p=0 hk,m,pe
−

j2πfp
F is the overall

channel frequency response for thef th subcarrier and
the kth receive antenna at epochm. With rk,p =

ρk,p, tk,m,p = exp(− jωc

c vk,m
Tuk,p), and af,p =

exp(−jωcτp)exp(− j2πfp
F ), the received signal forms a 4-

way tensor, whose(f, k, m, n)th element is :

zf,k,m,n = Hf,k,m sf,n =

P−1∑

p=0

rk,p tk,m,p af,p sf,m,n



Now, consider the case of a MIMO OFDM system with
Q users. Then, thenth symbol of themth epoch, received
on thekth antenna, at the subcarrier frequencyf is:

zf,k,m,n =

Q
∑

q=1

Hf,k,m,q sf,m,n,q

zf,k,m,n =

Q
∑

q=1

P−1∑

p=0

rk,p,q tk,m,p,q af,p,q sf,m,n,q (2)

We are interested in estimating, from the receiver out-
putszf,k,m,n, the above parameters under the constraints :

C1 the path gainrk,p,q is real positive
C2 the phase delaytk,m,p,q is of unit modulus, and de-

pends on the antenna geometry
C3 the time delayaf,p,q is of unit modulus
C4 the transmitted symbolssf,m,n,q belong to a finite al-

phabet

3. PARAFAC DECOMPOSITION

For any pair of indices(p, q), with 1 ≤ p ≤ P and1 ≤ q ≤
Q, define index[p, q] ranging from 1 toPQ by :

[p, q] = (p − 1)Q + q

With this definition, the[p, q]th entry of a vectoru ⊗ v,
whereu is 1 × P andv is 1 × Q, is upvq, ⊗ being the
Kronecker product. Equivalently, for any triplet of indices
(m, p, q), with 1 ≤ m ≤ M , define index[m, p, q] ranging
from 1 toMPQ by :

[m, p, q] = (m − 1)PQ + (p − 1)Q + q

Equation (2) is almost a 4-way PARAFAC model, ex-
cept for the fact that, bothrk,p,q andtk,m,p,q depend onk,
bothtk,m,p,q andsf,m,n,q depend onm, and bothaf,p,q and
sf,m,n,q depend onf . The most popular algorithm to fit the
PARAFAC model is the ALS algorithm. It consists of es-
timating, in the Least Squares (LS) sense, one of the four
loading matrices, e.g.S, with the three remaining matrices,
e.g.R, T , andA, being fixed to previously obtained values.
The same steps are repeated until a convergence criterion is
met.R (resp.T ) is theK ×PQ (resp.KM ×PQ) matrix
whose(k, [p, q])th (resp. ([k, m], [p, q])th) entry is rk,p,q

(resp. tk,m,p,q). Entries of theF × PQ matrix A are de-
noted byaf,p,q, and those of theMFN × Q matrix S are
denoted bysf,m,n,q.

The DEBRE receiver proposed is based on an ALS al-
gorithm, but differs from the usual PARAFAC since matrix
S depends onf andm, andT depends onk. With matrices
T , A, andS set to random initial values, DEBRE performs
the four following steps at every iteration.

1. Estimate R : For every fixedk, 1 ≤ k ≤ K, the
matrix unfolding of theK ×M ×F ×N tensorZ in
the first mode is :

Z1×FMN (k) = [rk,1,1, ..., rk,P,Q]B(k)

whereB(k) is a PQ × FMN matrix for everyk,
whose([p, q], [f, m, n])th entry isb[p,q],[f,m,n](k) =

tk,m,p,qaf,p,qsf,m,n,q. The estimateR̂(k, :) of the
kth line of R is obtained by minimizing in the LS
sense the error :

Υ = ‖Z1×FMN (k) − [rk,1,1, ..., rk,P,Q]B(k)‖2
F

where‖•‖F is the Frobenius norm. WithB(k) fixed,
R̂(k, :) is given by :

R̂(k, :) = Z1×FMN (k)B+(k)

where (+) denotes the Moore-Penrose pseudo-
inverse. We perform the same operations for every
value ofk to obtain successive lines of̂R. In order
to achieve uniqueness of̂R, B(k) should be fat for
every value ofk, hencePQ ≤ FMN .

2. Estimate T : For every fixedk andm, 1 ≤ m ≤ M ,
unfold tensorZ in the second mode :

Z1×FN (k, m) = [tk,m,1,1, ..., tk,m,P,Q]C(k, m)

whereC(k, m) is aPQ×FN matrix for everyk and
m, whose([p, q], [f, n])th entry isc[p,q],[f,n](k, m) =
rk,p,qaf,p,qsf,m,n,q. We use updated value ofR
obtained from the previous step. The estimate
T̂ ([k, m], [:, :]) of the ((k − 1)M + m)th line of T ,
in the LS sense, is then given by :

T̂ ([k, m], [:, :]) = Z1×FN (k, m)C(k, m)+

The same operations are performed for every values
of k andm in order to obtain successive lines ofT . In
order to achieve uniqueness, we should havePQ ≤
FN .

3. Estimate A : For every fixedf , 1 ≤ f ≤ F , the
matrix unfolding of tensorZ in the third mode is :

Z1×KMN (f) = [af,1,1, ..., af,P,Q] D(f)

whereD(f) is a PQ × KMN matrix for everyf ,
whose([p, q], [k, m, n])th entry isd[p,q],[k,m,n](f) =
rk,p,qtk,m,p,qsf,m,n,q. We use updated values ofR
andT , obtained from the previous steps. The esti-
mateÂ(f, :) of thef th line of A, in the LS sense, is
then given by :

Â(f, :) = Z1×KMN (f)D+(f)

We perform the same operations for every value off

to obtain successive lines of̂A. To achieve unique-
ness, we should havePQ ≤ KMN .

4. Estimate S : For every fixedf andm, unfold tensor
Z in the fourth mode :

ZN×K(f, m) =





sf,m,1,1 . . . sf,m,1,Q
...

...
...

sf,m,N,1 . . . sf,m,N,Q



E(f, m)



whereE(f, m) is a Q × K matrix whose(q, k)th

entry is eq,k(f, m) =
∑

p rk,p,qtk,m,p,qaf,p,q. We
use the updated values ofR, T , andA, from the
previous steps. The estimatêS([f, m, :], :) of the
((f − 1)M +m)th block of sizeN ×Q of S is given
by :

Ŝ([f, m, :], :) = ZN×K(f, m)E+(f, m)

The same operations are performed for every values
of f andm in order to obtain successiveN×Q blocks
of S. To achieve uniqueness,Q should verifyQ ≤
K.

Once we update the four loading matricesR, T , A, and
S, we check for convergence by comparing the change in
the error,|Υit − Υit−1|, to a predefined threshold.

4. IDENTIFIABILITY

4.1. Necessary conditions

The previous ALS algorithm may deliver a unique solution
at every iteration if the following necessary conditions

PQ ≤ min(FMN, KMN) (3)
Q ≤ K (4)

are satisfied. Inequality (3) can be easily satisfied by tak-
ing large numberF of subcarriers, or large time intervalN .
However, (4) is more constrained as it imposes more sensors
than users.

Another necessary condition for the ALS algorithm is
that the number of parameters to be identified in model (2)
does not exceed the number of degrees of freedom of the
data tensor, which yields:

KMFN ≥ KPQ+KMPQ+FPQ+MFNQ−2P−2Q

For identifiability of the DEBRE model,
let’s first consider the 3-way PARAFAC model:
zi,j,k =

∑R
r=1 hi,r aj,r sk,r. Kruskal showed in [10]

that the model is essentially unique if (sufficient condition):
kH + kA + kS ≥ 2R + 2, wherekA is the Kruskal rank of
matrixA defined in [10].

Essential uniqueness is understood up to a multiplica-
tion by a permutation and a diagonal matrix, which means
that, under Kruskal condition, any other decomposition
(H̄ , Ā, S̄) of Z verifies : H̄ = HΠΛH , Ā = AΠΛA,
and S̄ = SΠΛS , whereΠ is a permutation matrix, and
ΛH , ΛA, andΛS areR × R diagonal matrices with ele-
mentsλH

r , λA
r , andλS

r (r = 1, ..., R) respectively in their
diagonal, and verifying :ΛHΛAΛS = I (I is theR × R
identity matrix).ΛH , ΛA, andΛS introduce a scale factor
ambiguity on the columns of matricesH , A, andS respec-
tively, which can be written as :

zi,j,k =

R∑

r=1

(
hi,r

λH
r

)(
aj,r

λA
r

)

(sk,r λH
r λA

r
︸ ︷︷ ︸

=1/λS
r

)

If both A andS depend onj, for example :

zi,j,k =

R∑

r=1

hi,raj,rsj,k,r (5)

we have an additional indeterminacy, which is a scale factor
on lines ofA andS. In fact, expression (5) can be written
as :

zi,j,k =

R∑

r=1

(
hi,r

λH
r

)(

aj,r

γA
j λA

r

)

(
sk,r γA

j λH
r λA

r

)

Hence, any other triplet(H̄, Ā, S̄), such that :

h̄i,r =
hi,r

λH
r

, āj,r =
aj,r

γA
j λA

r

, s̄j,k,r =
sj,k,r

γS
r λS

r

with
(

γS
r = 1

γA
r

, λS
r = 1

λH
r λA

r

)

is also a decomposition of

tensorZ .
Now, by generalizing to the model of expression (2), we

have the following indeterminacies :

zk,m,f,n =
P−1∑

p=0

Q
∑

q=1

(

rk,p,q

αR
k γR

p λR
q

)(
tk,m,p,q αR

k

βT
mγT

p λT
q

)

(

af,p,q γR
p γT

p

δA
f λA

q

)

(
sf,n,m,q δA

f βT
mλR

q λT
q λA

q

)

All those indeterminacies can be fixed by imposing con-
straintsC1, C2, C3, andC4, presented in section 2.

4.2. Generic sufficient conditions

In accordance withC1-C4, and considering a stationary
channel during one OFDM symbol, we obtain:

zk,f,n =

P−1∑

p=0

Q
∑

q=1

hk,p,qe
jfθpsf,n,q (6)

Another way to assess uniqueness is to check whether
the number of free parameters in the model for a given
value of the pair(P, Q) is smaller than the dimensional-
ity of the set generated by the parametric model (6). Yet
the latter can be obtained as the dimension of the tangent
space, that is, by the rank of the Jacobian [15]. For instance,
for (F, K, N)=(4,5,4), the dimensionality of the set and the
number of free parameters are given as a function of(P, Q)
by table 1. This shows that for(P, Q)=(2,2), there are in-
finitely many solutions, whereas for(P, Q)=(3,1), there ex-
ists an essentially unique LS solution.

5. COMPUTER RESULTS

We run simulations under the conditions stated before, with
the sourcessf,m,n,q being QPSK. When initial values for



Q = 1 Q = 2 Q = 3 Q = 4
P = 1 0 2 6 12
P = 2 -1 1 7 29
P = 3 0 4 20 46
P = 4 3 13 33 63

Table 1: Dimentionality of the set of solution as a function
of (P, Q).
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Fig. 2: The errorΥ as a function of the number of iterations,
with initial matrices close to the original ones.

matricesR, T , A, andS are taken close to the original
ones (figure 2), the ALS algorithm provides good estimated
matrices as shown by table 2. At the opposite, when we ini-
tialize randomly, the ALS algorithm still converges (figure
3) but the estimated matrices are wrong.

Initialization vs. Gap R T A S
Neighborhood of 0.013 0.028 0.009 0.012
original matrices
Random 1.279 2.049 0.976 1.484

Table 2: The gap between estimated matrices and original
ones for different initializations.

This means that the necessary conditions stated in sec-
tion 4 are not sufficient for uniqueness of the DEBRE. This
was expected by results of section 4.2.
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