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Abstract— Future generations of wireless systems require op-
portunistic spectrum access techniques to effectively detect
and access temporarily unused spectrum bands. Cognitive
radios, with their ability to learn and adapt to their
environment, promise to possess such powerful capabilities.
As a consequence, the spectrum allocation of a wireless
system could quickly and appropriately auto-adapt to react
to a sudden traffic variation.
In this article, we propose an innovative and efficient
distributed spectrum allocation algorithm, whose objective
is to maximize the system UL capacity by exploiting multi-
user diversity. The algorithm is capable of learning over
time and of adapting the spectrum allocation when changes
occur in the radio environment. Such an algorithm finds
its application in the scope of future WLAN systems (e.g.:
802.11x).

Index Terms— swarm intelligence, distributed optimization,
OFDMA, multi-user diversity, multi-channel opportunistic
scheduling, cognitive radio

I. INTRODUCTION

Several spectrum measurements campaigns have shown
that in many countries, most of the spectrum bands are
already allocated for use by wireless systems, but with-
out being effectively used all the time and everywhere.
Accordingly, to succeed in the introduction of future
generations of wireless systems, we need to transition
from a "spectrum scarcity" in the allocation to a model
of "opportunistic spectrum availability". In collaboration
with necessary modifications in the current rigid regula-
tory rules, technical progresses are also expected. Espe-
cially, intelligent Dynamic Spectrum Allocation (DSA)
algorithms shall be developped with the capability to
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opportunistically identify and occupy "spectrum holes",
and then release spectrum resources according to the
needs.

Progresses in terminal equipments will soon make it
possible to consider Cognitive Radio (CR)s [1] with
the potential to observe their environment, orient their
decisions, create plans, take decisions, and then act. CRs
could cooperatively negotiate for spectrum access with
others, thus creating a network of nodes dynamically
using and releasing spectrum with no external guidance,
except some spectrum policy rules.

A. Related Work

Assuming a pool of spectrum resources [2] (typically,
a spectrum band shared by several entities), how can
we best organize the transmission schedule and the as-
signment of spectrum channels to each user? We are
dealing with researching intelligent Medium Access Con-
trol (MAC) algorithms, that would not waste spectrum
resources by inappropriate reservations or by generating
damaging interferences. We are interested in the study
of Orthogonal Frequency Division Multiplexing (OFDM)-
based standards (e.g.: IEEE 802.11a/g, etc) due to their
possibility to slice a spectrum resource in closely packed
elements not necessarily contiguous, and belonging to
several different users (Orthogonal Frequency Division
Multiple Access (OFDMA)). Previous works exist in
trying to achieve a centralized OFDMA (for both the
DownLink (DL) and the UpLink (UL)) [3] [4], but little
work was found about distributed allocation of Sub-
Carriers (SC)s.

We use biologically-inspired optimization and control
methods offering a distributed design approach at the
user level without external guidance. In this article, we
design a multi-user cooperative algorithm achieving DSA
in a Wireless Local Area Network (WLAN) cell. Specif-
ically, our proposed algorithm achieves a dynamic and



flexible UL OFDMA SC allocation between users, while
exploiting multi-user diversity. Users cooperate using a
distributed approach, to maximize the UL cell sum ca-
pacity. As multi-user diversity is taken into account in the
spectrum allocation, the system sum capacity increases
with the number of nodes [5]. To our knowledge, no prior
attempt of using the swarm intelligence meta-heuristic for
SC allocation in this context was published, thus making
it a new application of this very powerful generic method.

B. Organization

The remainder of this paper is organized as follows.
The optimization problem is described in section II. Sec-
tion III presents the advantages of a distributed optimiza-
tion algorithm. Then, section IV describes the mechanism
used to exchange information during the SC negotiation.
Section V is dedicated to the variable threshold model
description. Section VI contains the simulation scenarios
and results. Finally, we conclude the article in section VII
and discuss the future work.

II. OPTIMIZATION PROBLEM

First note that, in this article, we will refer to "users"
as "nodes". Also, let us define as "central node" the
infrastructure equipment (Access Point (AP)), and as
"nodes" the user equipments (Mobile Terminal (MT)).
Finally, we refer to "sum capacity" as the sum of the
capacity per allocated SC over all the system SCs.

The optimization problem that we consider in this
article can be described as follows (index i refers to the
nodes and index j to the SCs). Given N available SCs
to allocate among M nodes, each node i having a Signal
to Noise Ratio (SNR) value γij on SC j, finds the best
UL allocation of nodes on SCs, to maximize the cell sum
capacity, subject to some constraints described hereafter.
Let us define cij as the Shannon capacity achievable
by node i on SC j (for a unit bandwidth) which is:
cij = log2(1 + γij). Let us define aij as the value used
to indicate whether or not node i has selected SC j, with
aij = {0; 1}. We are interested in the case of continous
coding and modulation, independent between SCs. If we
define ni as the number of allocated SCs to node i, an
"allocated node" has ni 6= 0.

Using all these notations, the optimization problem
can be formulated in mathematical terms as follows. The
objective of the optimization problem is to:

max
∑

i

∑

j

aijcij ,

s.t.:



















































(1) {nmin, nmax} ∈ [0; N ],

(2) ∀i, ni = 0⇔
∑

j

aij = 0,

(3) ∀i, ni 6= 0⇔

nmin ≤
∑

j

aij ≤ nmax,

(4) ∀j,
∑

i

aij ≤ 1.

(1)

In other words, the objective is to find the final system
allocation vector maximizing the system sum capacity,
assuming all the constraints are respected.

Regularly, the central node updates the amount and
position of the cell acquired SCs. This operation is based
on the knowledge, at the central node as well as at the
nodes, of the channel statistics for all the SCs in the
band. To exchange spectrum resource (augmentation or
reduction), each central node can negociate with other
central nodes. Then, the central node broadcasts within
the cell the positions of the new set of SCs to use. N

is the spectrum size acquired/negociated by the central
node. The values of nmin and nmax are controlled by
the central node and can be tuned according to the entire
available spectrum resource, channel statistics, etc.

We assume there exists link adaptation capabilities per
SC such that nodes with good channel conditions will
have a higher capacity than those with worst channel
conditions. The ni constraints (refer to equation 1) are
requirements on the spectrum budget per allocated node
with an objective to maintain a certain level of sum
capacity per allocated node: nmin ensures a minimum
sum capacity per allocated node, whereas nmax limits
the overdimensioning of the necessary spectrum resource
to run a given service in the best channel conditions. As
such, each allocated node is ensured to have at least nmin

SCs corresponding to a minimum sum capacity to run
a given service. However, the algorithm does not try to
equalize the capacity between the nodes.

As the considered optimization problem is NP-
complete, there exists no algorithm to find the optimal
solution in all cases in a polynomial time. Accordingly,
to find a "good" sub-optimal solution we used an heuristic.
In designing the algorithm, the compromise between the
quality of the found solution (distance to the optimal
solution) and the speed of convergence (time to obtain
it) was taken into account.

III. DISTRIBUTED OPTIMIZATION

Distributed optimization methods possess many inter-
esting properties including: scalability, robustness, adapt-
ability to varying conditions. Also, distributed agents can
be equiped with learning capabilites such as Reinforce-
ment Learning (RL) [6] (see section V-B). Each agent
runs the algorithm separately and by interacting with other
agents, they all contribute to create a globally optimal
solution, without the need for a central controller.

Solving the resource allocation problem with a dis-
tributed approach for the optimization has the advantage
of parallelizing the optimization task among all the nodes.
It reduces the complexity per node. Our algorithm is
scalable with the number of nodes and able, without any
prior knowledge of the number of nodes, to dynamically
adapt to all the following scenarios: N = M , N < M

and N > M , as well as to any nmin and nmax values.
The scenarios envisaged consist in a single cell with a

central node and several geographically dispersed nodes
in the cell. The nodes have full responsibility in choosing



their set of SCs to use for transmission, whereas the
central node does not influence the nodes’ allocation. In
that sense, the algorithm is distributed and the power of
decision is spread between the nodes. The optimization
is achieved by cooperation between geographically sepa-
rated nodes. Such a distributed approach is of particular
interest when the number of attached nodes becomes
large.

We assumed a low mobility of the nodes, a known
channel at the receiver, a synchronized UL reception of
the messages and a symmetric channel with not too rapid
variations. This is reasonable for WLAN systems with
small cell sizes.

A SC reallocation is achieved (if necessary) for every
data packet, but the frequency of SC reallocation can be
varied by the operator, depending on the rate of change
of: the channel, the availability of new SCs, the cell
traffic, etc. The optimization algorithm consists in an
opportunistic spectrum access at the node level.

The time is decomposed into frames of variable dura-
tion TF = TN +TD. Each frame comprises a negotiation
part (variable duration TN ) and a data part (fixed duration
TD). The negotiation part consists in searching for the
optimized allocation, whereas the data part consists in the
transmission of data frames. We assume that SNR values
do not change during TF . Figure 1 presents the timeframe
context of the optimization algorithm.

The negotiation part consists in a succession of UL
(phase (1)) and DL (phase (2)) messages between the
nodes and the central node. During phase (1), each node
contending for a given SC transmits to the central node an
UL burst message on that SC. All UL burst messages are
simultaneously sent. Then, during phase (2), the central
node broadcasts in the cell a DL feedback message (using
a dedicated channel) solely containing the minimum and
maximum capacity value found on each SC. These two
phases are repeated during the negotiation part until the
allocation is finished. Then, the data part takes place,
during which a data frame can be transmitted by the nodes
using their ON SCs.

The next section develops the wireless communication
mechanism used to achieve an efficient distributed control.

IV. MECHANISM OF INFORMATION EXCHANGE

DURING NEGOTIATION

This section explains the principles and the practical
implementation of the inter-node communication mecha-
nism, and the conflicts resolution.

A. Aggregation Mechanism

In a distributed system, the following questions have to
be answered to exchange information between entities: (1)
what information to include in the messages? and (2) how
to communicate (inter-node communication mechanism)?

To answer question (1), a simple but efficient duration-
coding technique was used: each cij value is coded as the
duration Tij of a burst message (transmitted in UL) such
that: Tij = a

cij
+ b. Thus, the greater cij , the shorter Tij .
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Fig. 2. Capacity Duration-Coding with 3 Nodes on SC j

To answer question (2), all contending nodes simul-
taneously (same Tx start time) use an UL transmission
scheme. Even though figure 2 presents an example with a
single SC, 3 nodes, a = 1, b = 0, and fictitious numerical
values, the explanation suffers no loss of generality.

As shown in figure 2, 3 users contend for SC j, each
with a different signal level at the receiver and cij value
(refer to the table located at the top of the figure). The
left part of the figure indicates the time-coding of cij into
Tij , and the Received Signal Strength (RSS). The right
part of the figure shows the resulting signal aggregation
at the receiver, with the detection of the minimum and
maximum values.

All UL signals sent aggregate independently per SC.
Then, the central node uses the aggregated signals to
extract the minimum and maximum coded cij values.
In practice, the central node easily finds the maximum
value by detecting the first drop (simple gap detection
rule) in the aggregated signals. The duration between the
start of the UL reception and the first drop gives the
corresponding transmitted value. By detecting the longest
message duration, the central node finds the minimum
value. As the optimization progresses, only the best values
remain. A DL message is sent only after the end of the
longest burst message. An advantage of our method is the
simplicity of the coding and decoding, simultaneous and
parallel exchange of information on the same radio re-
source, robustness against interference (if constant during
the UL time slot) and collisions, and it does not require an
orthogonal coding to separate nodes or capacity values.

To coordinate their allocation, the nodes do not com-
municate directly with each other, but only require to
exchange information with the central node. The central
node acts as a "filter" extracting the maximum and the
minimum values out of all the received values, and
sending it back to the nodes for information sharing.

WLAN systems with a distributed control (e.g.: IEEE
802.11 in DCF mode) suffer performance loss due to the
hidden node problem. Out of range nodes are said to be
hidden nodes. They have no possibility to communicate to
avoid UL collisions on a shared channel. Our mechanism
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of inter-node exchange of information is built to encour-
age and manage message overlap (aggregation of signals)
even between hidden nodes. The consequence is no more
collision during the data transmission. Accordingly, the
problem of hidden nodes is completely removed and there
is no risk of performance degradation due to collisions.

This method has the advantage of being robust and
simple, thus perfectly fitting in the swarm intelligence
context.

B. Variable Quantification Step

We now show the practical implementation aspects
of our communication mechanism. Before reaching the
final SC allocation, several UL/DL time slots are usually
necessary. The UL and DL negotiation time slots have a
respective duration of TUL and TDL. To bound the UL
burst messages duration, the cij values were quantified
into a fixed number K of elements. However, the resulting
precision is not sufficient to differentiate close values.
Accordingly, to increase the precision, we used a variable
quantification step per SC with a zoom window. The
principle is explained in figure 3 (each triangle and cross
represents the non-quantified cij value of node i on SC
j).

Figure 3 represents the evolution over time (iteration
after iteration) of the range of expressed quantified cij

values (i.e. q(cij) values) in which the final best values
will be located. At each iteration, the central node:

1) Collects the UL received quantified extreme values
(minimum and maximum) per SC. In figure 3,
the minimum (resp. maximum) value corresponds
at each iteration to the left (resp. rigth) corner
of the more at the left (resp. right) square. A
square representing the range of different cij values
having the same quantified value q(cij) due to the
quantification step.

2) Adjusts the extreme window limits around these
extreme values.

Total cij coded range

q

Iteration 1

Iteration 2

Iteration 3

Existing value not Tx in UL (SCij = OFF)

Existing value Tx in UL (SCij = ON)

Fig. 3. Variable Quantification on SC j

3) Broadcasts to the nodes the new window limits and
quantification step q. Indeed, q is changed after each
zoom/dezoom operation.

This variable quantification process uses a zoom window
to ensure a shorter negotiation duration, and to concen-
trate the precision of the quantification only for the current
expressed values.

If after a period of time Ttimeout no final convergence
was obtained, the central node imposes to stop the opti-
mization process and forces all the nodes to apply a quick
solution. Thus, this technique bounds the negotiation
duration. After the timeout was reached, an acceptable
solution can be found in two UL/DL time slots.

The next section describes the meta-heuristic used to
solve the optimization problem.

V. VARIABLE THRESHOLD MODEL FOR ALLOCATION

The objective of this part, the most important one, is to
achieve the distributed optimal allocation of SCs among
the nodes.

We assume SNR values do not change during the
negotiation part, which is reasonable if the frame duration



is not too long. It is to be noted that even if SNR values
would change, the algorithm would still work properly,
but the convergence time might be longer.

At the end of the optimization phase, there is only a
single specialized node per SC, but a node can be special-
ized in several SCs. During the optimization process there
is both an inter-node negotiation (to respect constraint
4) and an intra-node negotiation (constraints 2 and 3).
Indeed, each node would want to use all the nmax SCs
but by means of local interactions it must be optimally
shared among all the nodes to globally maximize the cell
UL sum capacity.

A. Introduction

To solve the considered optimization problem we im-
plemented a general heuristic inspired from a model of di-
vision of labor used by social insects such as ants, wasps,
etc. This heuristic comes from the domain of biology
(studies of social insects) then modeled by the domain of
artificial intelligence, improved and successfully applied
to solve real world optimization problems, using a set of
cooperating agents. This heurisitic was proven to be very
efficient to optimize real life problems of dynamic and
distributed tasks allocation in the industry [7], [8].

This method was found to give good results for the
dynamic and distributed task allocation problem. Even
though the obtained results on well-known optimization
problems are very good, the underlying theory is still
in its infancy [9] (theory of cooperating agents). All the
agents use the same finite set of simple rules to interact
with each other. The result of this cooperation is an auto-
organization at the system level. A modelling challenge is
to find the appropriate set of local rules that will globally
create the desired behavior.

We managed to successfully adapt and use this heuristic
in our problem with good results, thus showing its great
potential for optimization and control of cooperating
agents.

The method is inspired from social insects where the
ability of an agent to perform a task depends on its
ability for this task, as well as the number and ability
of other agents willing to perform this task. Thus, agents
"specialize" over time in the tasks where they are best
fitted for, by means of a variable threshold, as well as by
inter-agent conflicts (dominance contests).

This model of variable threshold is able to appropri-
ately adapt to very dynamic environments. An improved
version [10] uses a moving threshold with time of use.
Agents receive stimuli from tasks in order to perform
a task. They effectively perform the task according to
a given probability, function of their threshold regarding
this type of task.

The more an agent becomes specialized in a given type
of task, the greater the probability to engage in doing it
for future stimuli of this type. Each agent maintains and
updates over time a threshold per type of job to be done.

B. Modelling and Description of the Heuristic

A node contains (1) a constraint controller and (2) a set
of N cooperating agents (one by SC). The constraint con-
troller ensures that the contraints in number of active SCs
per node are always ensured. On the contrary, the main
objective of an agent is to stay active (ON) at the end of
the optimization process. Agents interact internally (with
other SC-agents within the same node) and externally
(with agents representing the same SC index but from
other nodes). The rules of interactions of agents between
them, are build to reach a global optimum by using local
interactions, as in auto-organisation. While they interact,
agents exchange information about capacity values (see
section IV).

To become stronger and have better chances to stay
active, agents organize in groups (within each node) and
try to find the best other members of their group, for them
to be ON at the end. Groups are an aggregation of each
agent force: the group capacity is the sum of the capacities
from all agents engaged in this group. The weakest agents
are left apart and groups are reconstructed until the end
of the optimization process. Groups are organized and
re-organized dynamically and autonomously to reach the
best final configuration for the system. Thus, groups have
a variable size over time.

We assume that a node is able to simultaneously
perform nmax tasks out of a total of N tasks. An agent
is able to perform only a single task, and it can either
perform it (ON status for that SC) or not.

In our model, an agent’s threshold value changes over
time and its value depends on (1) its previous history, (2)
its ability to perform its task better than the agents from
the same node (intra-node contests) and (3) its ability to
perform its task better than the agents from other nodes
for that same task (inter-node contests for the same SC).

The amplitude of change of an agent’s activity thresh-
old is variable and is a function of the agent’s force
compared to others agents for this task. The threshold
value modifies the probability of an agent to perform its
task in the future, such that: a low threshold leads to a high
probability to perform its task, whereas a high threshold
means a low probability to perform its task.

In optimization, there is an important trade-off between
the exploitation of the current solution and the explo-
ration of new solutions. The chosen heurisitic, owing to
its variable threshold model, adapts well to a dynamic
environment and leads to faster convergence (but not
premature) than other heuristics. It is also very efficient
in avoiding local optima. It uses a simple RL algorithm
described hereafter. In addition, our model is able to
adapt to a large set of constraints. As a result, the same
algorithm solves the problem of SC allocation for a range
of SCs per node from 1 up to N . The particular case
where a single node can capture all N available SCs can
be interpreted as a new allocation method for a single
channel system.

The optimization starts with each node setting to ON
its nmax SCs with the best capacity values and then, the



algorithm tries to improve this solution. Then, we repeat
Steps 1 to 4 (see below) until all the optimization con-
straints are enforced, and the found solution is considered
as the final one. These steps are presented hereafter:

Step 1: The threshold variation ∆θij is updated after each
DL time slot for each node i on SC j, as follows (using
a modified Fermi-Dirac distribution).

∆θij = 2ϕ ·

(

1

1 + eβθ(xij−xmax j)
−

1

2

)

. (2)

This function was chosen for its similar characteristics as
in [10]. Either smooth or abrupt probability transitions can
be flexibly generated by tuning βθ (varies the transition’s
steep which impacts the amplitude of ∆θij variations)
and ϕ (varies the user’s memory depth which impacts his
learning and forgetting speeds).

In DL, the central node broadcasts cmax j (the max-
imum quantified capacity value extracted among all UL
contenders on SC j) such that: cmax j = max

i
{q(cij)},

where cij and q(cij) are respectively non-quantified and
quantified capacity values. Only quantified values are
transmitted in UL by the users, and returned in DL by
the central node.

To transform cmax j into xmax j (see figure 4), a scal-
ing operation is performed between [cl, cu] and [xl, xu]
using: xij = ∆x

∆c
(c − cl) + xl, with ∆x = xu − xl and

∆c = cu − cl. Note that ”.”l stands for "lower possible
value" and ”.”u for "upper possible value" and applied to
both xij and cij values.

To update threshold variations between the users,
each SC uses its separate function (refer to equation
2), centered at the maximum returned value such that:
∆θarg{cmax j} j = 0 corresponding to xmax j . Finally,
each node transforms its cij value into xij , and then
computes its threshold variation using equation 2. The
total capacity range [cl, cu] is given by the system and
the [xl, xu] x range is calculated.

This is best explained through an example. Thus, figure
4 will illustrate all these concepts. As an example, and
without any loss of generality, we take the following
numerical values: ϕ = 5, α = 1, β = 1 and ε = 0.001.
Accordingly, we obtain: [xl : xu] = [−9.21 : 9.21].

Figure 4 shows the variation of the thresholding func-
tion with cmax j , and presents an example of ∆θij

calculation for cmax j = 8 and cij = 7.5. This figure
also includes several curves corresponding to different α

values.
Using a threshold variation based on the maximum

value is a very efficient and scalable method for discrimi-
nating a large number of values. As described in [11],
there can be an important gain in using an optimized
exchange of information when using multi-user diversity.
Accordingly, we obtain:

∀i, on SCj:







cij < cmax j ⇒ ∆θij > 0,

cij = cmax j ⇒ ∆θij = 0,

cij > cmax j ⇒ ∆θij < 0.

(3)
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By properly adjusting the numerical values of ϕ and βθ

we can control the speed of convergence and the quality
of the solution. As a result, Step 1 is responsible for
performing an update of the immediate threshold value
for SC j of user i.

Step 2: Once the threshold variation is known (amplitude
and sign) it is aggregated with the previous threshold
value such that:

θij ← θij + ∆θij . (4)

Step 2 is responsible for updating and storing the history
of each θij value by compressing all the previous values
by aggregation into a single new θij value.

Step 3: Each agent updates its status (ON or OFF)
as a function of its threshold θij using a Fermi-Dirac
distribution. The probability pij that an agent i performs
its task j is given by equation 5:

pij =
1

1 + αseβsθij
. (5)

with αs and βs some adjustable parameters.
Figure 5 presents some examples of resulting curves for

various sets of combined {αs; βs} values. For each SC j,
a node i draws a random value z ∈ [0; 1]. If z ≤ pij ,
then SC j will be ON at the next negotiation iteration,
otherwise it will be OFF. In other words, Step 3 acts as a
gate for SC status: its decides whether or not a given SC
will become or stay active. In the following studies good
results were obtained with these values set to: αs = 0.5
and βs = 2.0.

Having the possibility to reshape (by tuning some
control parameters) both the function controlling the ∆θij

amplitude variations (Step 1) and the function controlling
the SC status change (Step 3) brings flexibility to the
algorithm.

Step 4: The constraint controller controls if ni is within
the acceptable values. If ni < nmin and ni 6= 0: all the
agents in node i set their SCs to OFF. On the contrary, if
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ni > nmax: node i chooses the best nmax SCs with the
greater probability of being ON.

Then go back to Step 1 until the end of the optimization
process. Our algorithm contains several global and easy
to control parameters, allowing to tune the quality of the
solution as needed. The variable threshold model offers
a great dynamicity in the optimization process, even in
changing conditions, and is well adapted to a distributed
implementation.

VI. SIMULATION SCENARIOS AND RESULTS

The numerical values used to obtain the following
examples are modified values taken from an IEEE 802.11a
system. However, other values could be taken without
altering the conclusions.

Taking as an example an 802.11a system [12] in the
band [5.25−5.35] GHz, we calculated the maximum range
of SNR values for any cell node. The maximum range of
capacity values per SC was deduced. After calculations
and taking into account the maximum transmit power
regulations, the SC bandwidth and the set of possible
transmit modes, we obtained that all SNR values γij

(∀i, j) are within: [γmin; γmax] = [13.5; 78.07] dB . In
our study, only the continuous case is considered. We can
now transform these SNR values to find out the maximum
capacity range cij (∀i, j) are within: [cmin; cmax] =
[4.54; 25.9] b/s/Hz (for a SC bandwidth of 1 Hz). All
cij values are uniformly drawn within [cmin; cmax]. Note,
that the aim of this study was not to focus on the
channel model, but rather to demonstrate the benefit of
the proposed algorithm.

A. Comparison with Other Methods

Our method is compared with other methods in terms
of total reached UL sum capacity after completing an
allocation, for a varying M in the cell. The following
methods are used for comparison:

• Max-Total: this method is intended to give an upper
bound for the total sum capacity. Indeed, it is a fixed
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level of sum capacity corresponding to N×cmax, as
if you could allocate N nodes each one having the
maximum allowable capacity value cmax. However,
this level cannot be reached in reality.

• OFDMA: this is our distributed method.
• Random: for each SC, a random node is taken to

be allocated to this SC. In other words, there is
absolutely no intelligence in this choice. It is similar
to doing a "blind" choice.

• Max-PerNode-OverAllNodes: for each SC we allo-
cate the user having the maximum cij value over
all the other users. Then, this user is removed from
the future choices, and the decision goes on with the
next SC until the complete allocation of all the SCs.

The following numerical values are used: M = 20 :
10 : 100, N = 20 and nmin = nmax = 1. A total of K =
1000 DATA frames are transmitted for each M value. For
each M value, all the methods calculate the mean total
UL sum capacity as a result of the K transmitted DATA
frames.

Figure 6 presents the obtained results.
As expected, the Random method constantly gives the

worst results (lower bound for the total sum capacity).
In addition, both the Max-PerNode-OverAllNodes and the
OFDMA methods result in an increasing capacity as M

increases due to having more users with better channel
conditions. These two methods asymptotically tend to the
Max-Total level representing the best possible results. The
methods Max-PerNode-OverAllNodes and OFDMA give
comparable results in this scenario. However, the Max-
PerNode-OverAllNodes method would correspond to a
centralized method, whereas our OFDMA method is a
distributed method in which users do not know about
each other. Accordingly, our algorithm gives very good
results when compared to some other methods and can
be implemented in a distributed way.

B. Algorithm Adaptation to Changes in number of con-
tending nodes

In this section we show the good adaptation capabilities
of the algorithm to a load variation in terms of quality of
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the reached solution and convergence time. The number
of contending cell nodes M is abruptly changed during
the simulation.

The following parameters were used: N = 100,
nmin = 1 and nmax = 10. The total number of
transmitted DATA frames over time was D = 1200. M

was abruptly changed as follows: at D = 0, M = 20, then
at D = 400, M = 100 and finally at D = 800, M = 60,
figures 7 and 8 show the adaptation of the algorithm to
the modified cell load (in number of nodes).

Several conclusions can be derived from the results
presented in figures 7 and 8. The agents were successfully
able to adapt to a modified (increase and decrease)
number of cell nodes. The number of negotiation steps
remained small (mean value = 34.8), considering the op-
timization problem size. Also, the number of negotiation
steps remained almost independent from M variation and
constant even for a population multiplied by 5 and then
decreased by 5

3 . The number of negotiation steps does not
appear to depend on M , thus proving the scalability of
our distributed algorithm and its great interest.

In figure 8, the obtained system sum capacity was
increased with an increased value of M , proving the
multi-user diversity interest to increase the system sum
capacity.
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C. Channel Variations within Negotiation Phases

In this section we study the potential for the algo-
rithm to adapt to channel variations at random instants
during the negotiation phases, in terms of convergence
speed. The following numerical values are used: M =
100, N = 20, nmin = nmax = 1, a total of K = 1000
DATA frames are transmitted.

We vary the probability to have a channel change at the
next UL/DL timeslot. A channel change corresponds to
an abrupt change for all SCs of all the users (contending
or not). Some contending users might switch to non
contending or the contrary. The entire system changes.
In addition, the θij are not reinitialized. Rather, we let
the algorithm discover the change by itself and react to
find the new best solution as quickly as possible before
the next change occurs.

Figure 9 presents the maximum, mean, and minimum
number of negotiation steps for each value of channel
change probability.

As seen in figure 9, increasing the number of channel
changes results in a longer mean negotiation phase dura-
tion. In fact, an increased number of changes increases
the negotiation duration, which in turn increases the
probability of having another change before convergence,
etc. This is explains the important increase in maximum
negotiation length. Thus, there is an avalanche effect. In
case of an abrupt change, resetting the θij values after a
change would gain some time in negotiation, rather than
trying to fully forget and readapt to the new input values.
There is tradeoff to consider.

VII. CONCLUSIONS AND FUTURE WORK

Our algorithm is very attractive in that it has shown
the following properties: scalability with the number of
competing nodes, agents auto-adaptation (self-learning) to
react to changing conditions, robustness, simplicity of the
implemented rules at the user level, ease for the operator
to change the optimization constraints and thus the net-
work characteristics. As the swarm intelligence is a meta-
heuristic, it can be used to solve diverse problems related
to the wireless world. Especially, the swarm intelligence
is very promising in the context of dynamic spectrum



allocation. Spectrum wastefulness can thus be minimized
while the fulfilling the users’ needs. These algorithms
are intended for implementation in future cognitive radios
using next generations of WLAN systems, to opportunisti-
cally use the appropriate part of the spectrum according to
the needs. Some practical design considerations have been
presented to improve the algorithm’s efficiency compared
to existing solutions.

Accordingly, regulators should have no fear in putting
more flexibility in their rules governing spectrum alloca-
tion. Indeed, technology will soon be offering sufficient
garanties that a self-organizing spectrum planning can re-
place the rigid and under-optimized command-and-control
model.

Including a more realistic channel model and provide
the agents with the capability to anticipate the channel
variations could help in reducing the convergence duration
and improve the performance.
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