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Abstract— In the framework of audio signal analysis, there have been
recent significant advances in two directions: sparse and structured
representation. In fact, sparse decompositions of audio signals are
shown to be effective, and appear to be extremely useful in many
signal processing applications: compression, source separation, noise
reduction... A second point of view tries to take advantage of the
harmonic structure of the audio signal. It models a note signal as
a periodic signal with (slow) global variation of amplitude (reflecting
attack, sustain, decay) and frequency (limited time warping).
In this paper, we compare the two approaches through experiments
involving various audio signals. We consider particularly application
of the two approaches to noise reduction, and underdetermined Blind
Source Separation.

I. I NTRODUCTION

The majority of blind separation algorithms are based on the
theory of Independent Component Analysis. The idea is to estimate
the inverse mixing matrix using statistical independence of source
signals. However, one area of research in Blind Source Separation
(BSS), the Underdetermined BSS, is relatively unexplored. It refers
to the case when there are less mixtures than sources. The under-
determined BSS poses a challenge because the mixing matrix is
not invertible and the traditional ICA methods do not work. And,
contrary to most blind separation algorithms, the source extraction
itself requires additional assumptions on the source statistics or
structure. Several approaches in the literature are proposed to solve
the problem exploiting essentially the time-frequency sparcity of
the source signals [1], [2]. So that, they decompose the degenerate
blind separation problem into several overdetermined problems.

On the other hand, for the representation of audio signals,
there have been recent significant advances in two directions:
sparse and structured representations. In fact, audio signals contain
superimposed structures such as transients and stationary parts,
or multiple notes and instruments; and have been shown to have
sparse decompositions in a variety of time-frequency dictionaries.
The goal is to decompose the audio signal onto a small number
of basis functions, called ”atoms” (typically time-frequency atoms,
such as local cosines, or time-scale atoms, such as wavelets). The
fundamental problem is that the bigger the dictionary (i.e. the more
redundant), the more likely to have a good match between the
signal and the atoms; but the larger the set of possible solutions. As
computing the optimal solution is an NP-hard problem, sub-optimal
greedy strategies are introduced to decompose, in an iterative
fashion, any signal into a linear expansion of waveforms belonging
to the given dictionary [3], [5], [6], [7]. in the second point of
view, one tries to take advantage of the harmonically structure of
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the audio signal. For treating harmonic structured signals, Parks
et al. consider the estimation of pure periodic signals with period
equal to an integer number of samples [8], [9]. In these references,
the authors propose a Maximum Likelihood approach to analyze
pure periodic signals. They show that the resulting procedure can
be interpreted as a signal projection onto suitable subspaces. In [10],
[11], we extended the results of those references, and we merged
the modulated sinusoidal modeling and the periodic signal analysis
techniques, by considering periodic signals with non-integer period
and global amplitude variation and time warping. And, we show
that this model provides a good tradeoff between modeling and
estimation errors.

The structured vs. sparse duality considered here is one of
parametric representations (in terms of periodic waveform, global
amplitude and phase) vs. partially parametric representations (am-
plitude of fixed atoms). This paper compares the performance of
structured vs. sparse representations applied to noise reduction,
and underdetermined BSS. A general presentation of the sparse
representation of audio signal, and the Matching Pursuit algorithm
are proposed in section II. In section III, audio signal extraction
based on the global modulation model is described . Finally, the
computational complexity, and performance of the two approaches
are compared in section IV.

II. A UDIO PROCESSING WITHSPARSEREPRESENTATION

A. Time-Frequency atomic decomposition

The decomposition of signals over family of functions that
are well localized both in time and frequency has found many
applications in signal processing and harmonic analysis. Depending
upon the choice of time-frequency atoms, the decomposition might
have very different properties.
A general family of time-frequency atoms can be generated by
scaling, translating and modulating a single window functiong(t) ∈
L2(R). For any scales > 0, frequency modulationξ and translation
u, we denoteγ = (s, u, ξ) and define

gγ(t) =
1√
s
g(

t − u

s
)eiξt

. (1)

The indexγ is an element of the setΓ = R+ × R2.
The family D = (gγ(t))γ∈Γ is extremely redundant. To repre-

sent efficiently any functionf(t), we must select an appropriate
countable subset of atoms(gγn(t))n∈N so thatf(t) can be written

f(t) =

+∞X
n=−∞

angγn(t)

Depending upon the choice of the dictionary, the expansion coeffi-
cientsan give explicit information on certain types of properties of



f(t). Windowed transforms (such as Windowed Fourier Transform,
Windowed Cosine Transform) and wavelet transforms correspond
to different families of time-frequency atoms, that are frames or
bases ofL2(R) [3]. In a windowed transform, all the atomsgγn

have a constant scalesn = s0 and are thus mainly localized over
an interval whose size is proportional tos0. On the other hand, the
wavelet transform decomposes signals over time-frequency atoms
of varying scales, called wavelets. A wavelet family(gγn(t))n∈N

is built by relating the frequency parameterξn to the scalesn via
ξn = ξ0

sn
, whereξ0 is a constant. The resulting family is composed

of dilations and translations of a single function.

B. Matching Pursuit (MP) for audio signal decomposition

Let us consider a family of vectorsD = (gγ)γ∈Γ included in a
Hilbert spaceH with a unit norm‖gγ‖ = 1. For a givenf ∈ H,
getting the bestM th order approximant, i.e.bfM =

MX
m=1

cmgγm = arg min
cm,γm

f −
MX

m=1

cmgγm

 (2)

is an NP-hard problem. The matching pursuit [3] is a greedy
strategy to decompose a signal into a linear combination of atoms
chosen among the dictionaryD. It iteratively defines anmth order
residualRm−1f (starting withR0f = f ) in the following way.

1) Compute for allγ ∈ Γ��
Rm−1
f, gγ

���2 (3)

2) Choose an elementgγm ∈ D which ”closely” matches the
residualRm−1f in the sense that��
Rm−1

f, gγm

���2 = sup
γ∈Γ

��
Rm−1
f, gγ

���2 (4)

3) Compute the new residual by removing the component along
the selected atom

R
m

f = R
m−1

f −


R

m−1
f, gγm

�
gγm (5)

The error
RMf

 is proved to decay to zero [4]. Thus, we obtain
the atomic decomposition of the signal

f =
∞X

m=1



R

m−1
f, gγm

�
gγm

C. Harmonic Matching Pursuit (HMP) for audio signal decompo-
sition

Gribonval and Bacry propose a variant of the MP algorithm
for audio applications [6]. They introduce the harmonic dictionary
which extends the Gabor dictionary (g(t) is Gaussian) and better
fits the harmonic structure of audio signals. At each step, an
atom and all its (approximately) harmonically related atoms get
selected. Thanks to the quasiorthogonality of the Gabor atoms�


gγp , gγq

�
≈ δ

�
, the Harmonic MP has the same structure as the

standard MP, where the inner product is replaced by the correlation
function:

C (Rm
, gs,u,ξ) =

KX
k=1

sup
|ξk−kξ|

|〈Rm
, gs,u,ξk

〉|2 (6)

whereK is the number of partials in a given harmonic atom.

III. A UDIO PROCESSING WITHSTRUCTUREDREPRESENTATION

A. Signal Model

In sinusoidal modeling, the signal is modeled as a sum of
evolving sinusoids:

s(t) =
PX

k=0

Ak(t) cos (θk(t)) . (7)

whereθk(t) represents the instantaneous phase of thekth partial.
As the music signal is quasi-periodic,θk(t) can be decomposed
into

θk(t) = 2πktf0 + 2πϕk(t) (8)

whereϕk(t) characterizes the evolution of the instantaneous phases
around thekth harmonic; and can be assumed to be lowpass.
The Global Modulation assumption implies that all harmonic am-
plitudes evolve proportionally in time; and that the instantaneous
frequency of each harmonic is proportional to the harmonic index:�

Ak(n) = Ak A(n)
2πϕk(n) = 2πk ϕ(n) + Φk

. (9)

In summary, we model an audio signal as the superposition of
harmonic components with a global amplitude modulation and time
warping (that can be interpreted in terms of phase variations):

y(n) = s(n) + v(n)
=
P

k Ak(n) cos (2πknf0 + 2πϕk(n)) + v(n)

= A(n)
P

k Ak cos
�
2πkf0

�
n + ϕ(n)

f0

�
+ Φk

�
+ v(n)

where

• vn is an additive white Gaussian noise.
• A(n) represents the amplitude modulating signal. It allows

an evolution of the note power, reflecting attack, sustain, and
decay.

• ϕ(n) denotes the phase modulating signal (that can be inter-
preted in terms of time warping). The time warping focuses
on the time evolution of the instantaneous frequency, and
allows the modeling of several musical phenomena (vibrato,
glissando...)

In [10], we have expressed the time warping in terms of an
interpolation operation over a basic periodic signal. The audio signal
can be written as:

Y = A Fθ| {z }
= S

+ V (10)

where :
- Y = [y(1) · · · y(N)]T , represents the observation vector.
- S = [s(1) · · · s(N)]T , represents the signal of interest.
- V = [v(1) · · · v(N)]T , denotes the noise vector.
- θ = [θ(1) · · · θ(⌈T ⌉)], characterizes the harmonic signature over
essentially one period
- A = diag[A(1) · · ·A(N)], represents the global amplitude
modulation signal.
- F is an N × ⌈T ⌉ interpolation matrix characterizing the time
warping. See [10] for a detailed description.

B. Audio Signal Estimation

The previous model is linear inθ, A, or F (separately),F being
parameterized nonlinearly. Trying to estimate all factors jointly is
a difficult nonlinear problem. Indeed, as the noise is assumed to be



a white Gaussian signal, the ML approach leads to the following
least-squares problem:

min
A,F,θ

‖Y − A F θ‖2 (11)

where A and F are parameterized in terms of subsamples. The
estimation can easily be performed iteratively though [10]:

1) Periodic Signature Estimation: If we assume that the matricesbA, bF are given, the periodic signatureθ can be isolated as

Y = bA bF θ + V = H θ + V (12)

Then minimizing (12) w.r.t.θ leads tobθ =
�
H

T
H
�−1

H
T
Y . (13)

Hence the periodic signature gets estimated by using the data over
the whole note duration.

2) Instantaneous Amplitude Estimation: In the same manner, the
instantaneous amplitude signal can get estimated using a Least-
Squares technique [11]. However, we have remarked that the
proposed technique is very sensitive to the initialization. Hence,
we have proposed to initialize the amplitude estimation based on
the estimated powers of the noisy data and the noise.
By assuming the instantaneous amplitude to be piecewise constant,
A(n) gets estimated using:bA(n) =

r
1

θ2



y2(n) − (y(n) − bs(n))2

�
n

(14)

where〈 . 〉n denotes temporal averaging over the piecewise interval
containingn; bS = bA bF bθ denotes the latest estimate of the signal
of interest.

3) Instantaneous Frequency Estimation: As for the instantaneous
amplitude, the instantaneous frequency gets estimated on a frame-
by-frame basis. In each frame, the instantaneous frequency is
optimized using (3):8<: min

f

Y − bA bF (f)bθ
∆f

f0
≤ αmax

(15)

where ∆f denotes the maximum relative frequency variation in
the current frame compared to the previous frame, reflecting an
assumed limited frequency variation rate. The optimal instantaneous
frequency value for the current frame gets determined from a finite
set of discrete values within the thus limited range.

C. Structured Signal Model vs. Atomic Decomposition

We model an audio signal as a superposition of harmonic
components with a global amplitude and frequency modulation:

s(n) = A(n)
X

k

Ak cos (2πk (f0n + ϕ(n)) + Φk)

The instantaneous amplitude(A(n)), and phase(ϕ(n)) are as-
sumed to be lowpass. Hence they can be downsampled. The re-
maining samples can be estimated using mathematical interpolation,
i.e.,

A(n) =
X

p

ApwA(n − pTA), ϕ(n) =
X

q

ϕqwϕ(n − qTϕ)

where{Ap, ϕq} are the degrees of freedom of the model,(TA, Tϕ)
are respectively the downsampling factors of the instantaneous
amplitude and phase, and(wA(n), wϕ(n)) are given interpolation
windows.
If we assume that the instantaneous frequency is piecewise constant

(wϕ(n) is a triangular window), the quasi-periodic signal model
can be interpreted as a sum of a scaled, translated, and modulated
harmonic atoms. The basic atom window is given by:

g(t) = wA(n)
X

k

Ak cos (2πknf0 + Φ0) = wA(n)θ(n) (16)

However, the dictionary is not fixed (as in the classic atom decom-
position approaches); the atoms are adapted to the signal.

IV. RESULTS

A. Complexity issues

In [3], the authors propose a fast implementation of the Matching
Pursuit algorithm based on a structured update of the inner product
in (3); and using FFT-based algorithms with appropriate window.
They show that the Harmonic Matching Pursuit algorithm has a
complexity of O(KN log N) per iteration (the complexity of the
MP algorithm is deduced by makingK = 1).

On the other hand, the Quasi-Periodic Signal Extraction (QPSE)
algorithm can be also be implemented in an efficient way. In fact,
interpolation matrices are structured, sparse matrices. Then one
can show that the extraction algorithm can be implemented with
a O(NT ) + O(T 3) complexity per iteration (whereT denotes the
basic period of the quasi-periodic signal).

B. Noise Reduction

The quality of an audio signal captured in real-world envi-
ronments is invariably degraded by acoustic interference. This
interference can be broadly classified into two distinct categories:
additive and convolutive. The noise reduction can be described as
the processing of audio signals to reduce the additive noise.

The QPSE algorithm can be applied to extract the audio compo-
nents of the received signal. If the noise variance

�
σ2

v

�
is available,

this information can be used to enhance the estimation of the
instantaneous amplitude

� bA(n) =
q

1

θ2
〈y2(n) − σ2

v〉n
�

.
MP-based approaches are also proposed to solve the noise

reduction problem [15]. Once the received signal is decomposed
into atoms, the noise reduction is performed by classifying the
atoms into ”noise” vs. ”signal”; then resynthesizing the enhanced
audio signal.

To compare the enhancement accuracy of the two approaches,
we have experimented with a real music signal. The proposed
signal represents a single note (pitch = 84 Hz) played by an
acoustic guitar. The record has a duration of 1s and is sampled
at 22.050 Khz. A synthetic Gaussian white noise is added to the
audio signal. Furthermore, we consider the global signal-to-noise
ratio (SNRout) (possibly limited to the steady-state portion) as an
objective evaluation criterion

SNRout = 10 log

PN

n=1 s2(n)PN

n=1 (s(n) − bs(n))2

which is consistent with previous enhancement studies [13], [14].
Fig. 1 plots curves of the averaged output SNR (evaluated by
Monte-Carlo techniques) of Matching Pursuit and Quasi-Periodic
Signal Extraction techniques.

We observe that the QPSE and MP approaches have compa-
rable enhancement performance. However, the QPSE approach
outperforms the MP in the steady-state region (where the quasi-
periodic model allows a better fit of the audio signal). The MP
is better in the transition region, where the structure of QPSE is
too constrained. We remark also that knowing the noise variance
does not significantly increase the enhancement performance for
the QPSE approach.
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Fig. 1. Noise Reduction (MP on solid line, QPSE on dotted line).

C. Underdetermined audio source separation

Blind Source separation is a problem that arises when one
or several sensor(s) record data to which can contribute several
generating physical processes. It consists in recoveringN unknown
sources from M instantaneous mixtures. One challenging problem
is the underdetermined BSS. It refers to the case when there are less
mixtures than sources. In fact, the mixing matrix is not invertible
and the traditional BSS methods do not work. And in contrast to the
overdetermined case, the source extraction itself requires additional
assumptions on the source statistics or structure.

Several authors have proposed underdetermined BSS algorithms
that are based on some time-frequency/time-scale representation of
the data followed by binary masking [12]. The key observation
is that a good data representation often makes it possible to
decompose a single underdetermined BSS problem into several
(over)determined problems. In the one microphone setting, the
underlying hypothesis is that at most one source is ”active” in each
component of the representation. The basic principle is simply to :

• decompose the observations into ”components” (atoms).
• perform separation on each atom (which becomes a classifi-

cation problem).

Another approach is introduced in [11]; where we propose an
Iterated Successive Interference Cancellation approach based on the
quasi-periodic signal extraction technique.

Using the proposed approaches, we consider separation using a
single musical record. The proposed signal represents a synthesized
mixture of three notes played by an acoustic guitar. The record has a
duration of 1s and is sampled at 22.050 kHz. Their pitch frequencies
are respectively 82 Hz, 92 Hz, 116 Hz. Separation SNR (using
Matching Pursuit and quasi-periodic signal extraction techniques)
are plotted in figure 2. We compare the best separation performance
of the different approaches (we focus on the region iteration→ ∞,
approximation order→ ∞)

We remark that Matching Pursuit fails to recover the note 3; and
that taking into account the harmonic structure of the audio signal
increases the separation performance (especially in the steady state
region). We see also that the QPSE-based approach outperforms
the MP and the HMP approaches, and produces even much better
auditive results.

2 4 6 8 10 12 14
0

5

10

15

20

iteration, approx order/100

to
ta

l 
S

N
R

Note 1
Note 2
Note 3

2 4 6 8 10 12 14
0

5

10

15

20

iteration, approx order/100

s
te

a
d

y
 s

ta
te

 S
N

R

Fig. 2. Separation SNR for mono-mixture audio source separation (MP
on solid line, HMP on dashed line, and QPSE on dotted line).
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