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ABSTRACT

The purpose of this paper is to introduce Bayesian Adap-
tive Filtering (BAF) techniques that are not immensely more
complex than the LMS algorithm. The proposed two-stage
approach consists of a first stage employing a basic fast
tracking adaptive filter, followed by lowpass filtering and
downsampling of the time-varying filter coefficients. The
second stage then applies Kalman filtering at the reduced
rate on a simplified state-space model, with an additive white
noise measurement equation. The parameters in the state
equation can be conveniently identified with an adaptive EM
algorithm. The first stage would typically employ a (Nor-
malized) LMS algorithm with a large stepsize. The main
assumption underlying the proposed two-stage approach is
that even in fast tracking applications, the bandwidth of the
optimal filter variation is typically small compared to the
signal bandwitdh, motivating the downsampling operation.
The first stage attempts to provide a bias-free filter estimate
whereas the second stage optimizes the estimation variance.
The performance of the proposed scheme is evaluated by
simulations.

1. INTRODUCTION

Adaptive filtering is essentially intended for tracking time-
varying optimal filters. The time variation of the optimal
filter can be described by either expanding the filter coeffi-
cients into fixed time-varying (e.g. sinusoidal) basis func-
tions (basis expansion models (BEMs)) [1] or by model-
ing them as stationary processes. The latter approach is
perhaps better suited for minimum delay online process-
ing. This case of constant slow variation of the filter coef-
ficients (”drifting” parameters) is to be contrasted with an-
other possible case of only occasional but significant varia-
tion (”jumping” parameters) which shall not be considered
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here. A lot of work has been done on optimizing the single
parameter regulating the tracking speed of classical LMS or
exponentially weighted RLS algorithms [2],[3]. For LMS,
such an adaptive optimization leads to the class of Variable
Step-Size (VSS) algorithms, see e.g. [4] and references
therein. Adaptive filtering algorithms with a single adap-
tation parameter do not take into account that different por-
tions of the filter may have different variation speeds and/or
different magnitudes and hence are quite suboptimal. One
noteworthy attempt to overcome this limitation is the intro-
duction of a coefficient-wise VSS, as in [5], but the auto-
matic adaptation of these VSSs is a difficult task.

In Bayesian Adaptive Filtering (BAF), prior information
on the filter coefficient variances and variation spectra is ex-
ploited to optimize adaptive filter performance. A straight-
forward way to implement BAF is to use the Kalman filter,
see e.g. [6],[7]. However, the complexity of the Kalman
filter is enormous compared to that of the popular LMS
adaptive filtering algorithm. Furthermore, the Kalman filter
needs to be augmented with a state-space model identifica-
tion technique.

Consider now the prototype adaptive filtering set-up, which
is the system identification set-up, in which the desired-
response signal dk is modeled as the output of the optimal
filter, which can be time-varying, plus independent (white)
noise:

dk = XH
k Hk + vk (1)

whereXH
k = [xk xk−1 · · ·xk−N+1] is the input signal vec-

tor and all terms are complex-valued. The input vector Xk

is known up to time k and is assumed stationary with zero
mean and nonsingular covariance matrix R = E[XkX

H
k ]

Our aim is to estimate the time-varying parameter column
vector Hk. Some general references on the tracking behav-
ior of adaptive filtering algorithms are [2], [3],[8],. In this
work we consider Bayesian Adaptive filtering based on a
two-stage approach. A first stage with a fast standard adap-
tive filter, e.g. NLMS with stepsize equal to one. After some
possible downsampling then, we consider an optimal filter



in the second stage to extractHk from the NLMS estimates,
see figure (1).
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Fig. 1. Two-stage adaptive filtering.

2. STAGE 1: NLMS ALGORITHM

The simplest choice for a fast converging adaptive filtering
(AFing) algorithm is a LMS algorithm with large stepsize,
preferably the NLMS algorithm with normalized stepsize
equal to one, or a smaller value of that order of magnitude.
The NLMS algorithm updates the adaptive filter coefficients
according to

ek = dk −XH
k Ĥk−1 (2)

Ĥk = Ĥk−1 +
µ

‖Xk‖2
Xk e

∗
k (3)

For colored input and a FIR filter of length N , NLMS con-
verges in general with N different modes that are of the
form [9]

1

1 −
√

1 − µ(2−µ) λi

tr R
q−1

(4)

where µ is the NLMS stepsize, we have assumed N � 1,
the λi are the eigenvalues of the input signal covariance ma-
trix R = RXX , and q−1 is the one sample delay opera-
tor: q−1 xk = xk−1. We shall call the variation band-
width of the optimal filter the Doppler bandwidth, which
is the customary terminology when the adaptive filter rep-
resents a wireless channel response. We are going to as-
sume that the Doppler bandwidth is much smaller than the
signal bandwidth. For simplicity, let us assume that the

input signal is not too colored so that the Doppler band-
width can be smaller than the bandwidth fi = µ(2−µ)

2π
λi

tr R

of each of the eigenmodes. In this case, the NLMS adaptive
filtering algorithm will pass the optimal filter coefficients
undistortedly (zero bias). It will only introduce an estima-
tion noise. In steady-state, this estimation noise leads to an
estimation error H̃k = Hk − Ĥk with covariance matrix

R
H̃H̃

=
µ

2 − µ

σ2
v

trR
IN . So the errors on the various filter

components are uncorrelated and of identical variance. The
errors are not temporally white however, due to the coloring
introduced by the filtering of the modes in (4). However,
due to the previous assumptions, the estimation noise can
be considered white over the Doppler bandwidth of the op-
timal filter.

A better alternative to the NLMS algorithm in the first
stage would be an adaptive filter that is less sensitive to the
input signal color. If we want no such sensitivity then a Re-
cursive Least-Squares (RLS) algorithm should be used. To
minimize the distortion (so-called ”lag noise”) on the op-
timal filter the best RLS choice would be one with a slid-
ing rectangular window, in which a delay gets introduced
equal to half the window length (non-causal adaptive filter-
ing) [10]. RLS algorithms are more complex that (N)LMS,
but fast versions exist. There is also a whole range of adap-
tive filtering algorithms in between LMS and RLS in terms
of complexity and performance, such Affine Projection Al-
gorithms, Fast Newton Transversal Filters, frequency do-
main adaptive filters, LMS with prewhitening etc.

3. SUBSAMPLING GLUE

As mentioned earlier, if the Doppler bandwidth is signifi-
cantly less than the signal bandwidth (sampling rate), then
it would be overkill to put in place an optimal tracking al-
gorithm working at the sampling rate. In that case, the out-
put of the first stage (the vector sequence Ĥk) can be low-
pass filtered and commensurate downsampled without in-
troducing distortion (lag noise) as long as the lowpass filter
does not distort the Doppler spectrum. The main goal of
this operation is to reduce complexity. Indeed further pro-
cessing in the second stage can now be performed at a re-
duced rate. And fixed lowpass filtering does not have to be
a complex operation (if a simple filter is used, for instance
first order IIR (exponential averaging)). Another reason is
that, whereas it would constitute quite an approximation to
model H̃k as temporally white, after lowpass filtering and
downsampling (with a factor D), such an approximation
becomes more accurate. The lowpass filtering operation re-
duces the estimation noise roughly with a factroD. In what
follows, we shall continue to use the same notation for the
subsampled rate and continue to denote the lowpass filtered
and subsampled NLMS output as Ĥk. This provides the



measurement data for stage two.

4. STAGE 2: ”DIAGONAL” EM-KALMAN
FILTERING

Consider the state-space model

Hk+1 = AHk +Wk (5)

Ĥk = Hk + H̃k (6)

The measurement and process noise terms are assumed to
be zero mean Gaussian with covariancesRH̃ and Q respec-
tively.The matrixA contains information about how the states
evolve. It is particularly useful in tracking applications. The
matrix A should be viewed as a mechanism to achieve di-
rected trajectories in state space. In other words, A allows
for more general jumps than the simple random walk that
would result by excluding A from the model. Despite the
fact that the data is processed in batches, the model of equa-
tion (6) allows the weights to be time varying. It is, there-
fore, possible to deal with non-stationary data sets. In the
event of the data being stationary, we should expect the pro-
cess noise term to vanish. Consequently, if we know that
the data is stationary, the estimate of the process noise can
be used to determine how well the model explains the data.
The objective is to estimate the model states (weights)Hk

and the set of parameters φ = {A,Q,R} given the mea-
surements Ĥ1:N . Then we use a Kalman smoother to es-
timate Hk and EM algorithm to estimate the set of param-
eters. Since the Kalman model is diagonal, we propose a
Component-Wise Adaptive Kalman algorithm to update the
filter coefficients, which decreases computational complex-
ity. Then the model (6) becomes:

hi+1 = a hi + wi (7)

ĥi = hi + h̃i (8)

4.1. Kalman smoother

Smoothing often entails forward and backward filtering over
a segment of data so as to obtain improved averaged esti-
mates. Various techniques have been proposed to accom-
plish this goal . This study uses the well-known Rauch-
Tung-Striebel smoother . The forward filtering stage in-
volves computing the estimates ĥk and Pk , over a segment
of I samples, with the following KF recursions:

ˆ̂
hi+1|i = a

ˆ̂
hi (9)

pi+1|i = aa∗pi + q (10)

k
f
i+1 = pi+1|i(r + pi+1|i)

−1 (11)

ˆ̂
hi+1 =

ˆ̂
hi+1|i + k

f
i+1(ĥi+1 −

ˆ̂
hi+1|i) (12)

where kf denotes the Kalman gain . Subsequently, the Rauch-
Tung-Striebel smoother makes use of the following back-
ward recursions:

Ji−1 =
pi−1a

∗

pi|i−1
(13)

ˆ̂
hi−1|n =

ˆ̂
hi−1Ji−1(

ˆ̂
hi|n − a

ˆ̂
hi−1) (14)

pi−1|n = pi−1 + Ji−1(pi|n − pi|i−1)J
∗
i−1 (15)

pi,i−1|n = piJ
∗
i−1 + Ji(pi+i|n − api)J

∗
i−1 (16)

where the parameters, covariance and cross-covariance
are defined as follows:

ˆ̂
hi+1|n = E[hi+1 | ĥ1:n]

pi|n = E[(hi −
ˆ̂
hi)(hi −

ˆ̂
hi)

∗ | ĥ1:n]

pi,i−1|n = E[(hi −
ˆ̂
hi)(hi−1 −

ˆ̂
hi−1)

∗ | ĥ1:n]

(17)

4.2. EM Algorithm

Due to lack of space we shall limit the discussion to an ex-
planation with words. The EM algorithm iterates between
an E step and an M step. In the E(stimation) step, the state
estimates and state estimation error covariances are deter-
mined recursively using tha Kalman filter equations, us-
ing the state model values of the previous iteration. The
M(aximization) (of the likelihood) step then essentially per-
forms first-order linear prediction on the estimated state co-
variances to determine the prediction coefficients A and the
prediction error covariance Q. Due to orthogonality prop-
erty of linear MMSE estimation the state covariances (at lag
0 and 1) are the sum of the (sample) covariances of the state
estimates plus the state estimation error covariances, both
quantities being produced by the Kalman filter. To make the
EM algorithm adaptive, we shall perform one iteration per
time update. The fixed-interval smoothing gets transformed
into fixed-lag smoothing. As the state model is AR(1), a
lag of one sample turns out to be sufficient (a positive lag is
nevertheless required, otherwise a chicken-and-egg problem
arises; hence pure Kalman filtering, without some smooth-
ing, does not work). See [11] for a derivation.

4.3. Model parameters adaptation

The state model parameters can be adapted according to

ψi|i = λψi,n|i−1 + (
ˆ̂
hi|i

ˆ̂
h∗i|i + pi|i)

ψi−1|i = λψi−1|i−1 + (
ˆ̂
hi−1|i

ˆ̂
h∗i−1|i + pi−1|i)

di = pi|iC
∗
i−1

= aipi−1|i−1 − k
f
i (a−1

i (1 − qixi))
∗

(18)



ψi,i−1|i = λψi,i−1|i−1 + (
ˆ̂
hi|i

ˆ̂
h∗i−1|i + di)

qi+1 =
1

γi

(ψi,|i −
ψi,i−1|i

(ψi−1|i)
(ψi,i−1|i)

∗

ai+1 = ψi,i−1|i(ψi−1|i)
−1 (19)

5. NUMERICAL RESULTS

The behavior of two-stage adaptive algorithm and the NLMS
algorithm are compared on the basis of simulation results,
as shown in Fig. 2. The concept of the two-stage adap-
tive algorithm that we introduced earlier, based on modeling
the optimal adaptive filter coefficients as a stationary vector
process. The optimal parameters are A = 0.95 ∗ I ,where
I is identity matrix, and the error covaraince matrix Q is
an exponential power delay profile, with the characteristic
parameter β = 0.9.

6. CONCLUSION

As Fig. 2 shows, the proposed two-stage adaptive algorithm
converges to the MMSE. The convergence speed of the pro-
posed is beter than NLMS algorithm and is comparable to
that of the ideal Kalman filter (known parameters).
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Fig. 2. Comparison between the proposed two-stage adap-
tive filter, NLMS and the Kalman filter with known optimal
parameters.
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Fig. 3. Zoom on the steady-state behavior.


