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ABSTRACT

Adaptive filtering is in principle intended for tracking non-
stationary systems. However, most adaptive filtering algo-
rithms have been designed for converging to a fixed un-
known filter. When actually confronted with a non-stationary
environment, they possess just one parameter (stepsize, win-
dow size) to adjust their tracking capability. In the station-
ary case of non-stationarity, the optimal filter coefficients
evolve as a stationary process. The Bayesian approach to
adaptive filtering exploits the a priori information in this
stationary parameter variation model to optimize adaptive
filtering performance. The prior information contains two
critical parameter characteristics: the variance (magnitude)
of the various filter coefficients and their variation spectrum
(power delay profile and Doppler spectrum in the case of
wireless channel tracking). The practical tool for imple-
menting Bayesian Adaptive Filtering (BAF) is the Kalman
filter, which typically models the parameter variation as an
AR(1) process. To further limit the complexity to the same
order as the complexity of the RLS algorithm, a diagonal
AR(1) model can be taken. In this paper, we analyze the
effect of power delay profile and Doppler bandwidth on the
steady-state performance of BAF and LMS and RLS algo-
rithms. The approximation effects of using a simplified state
model are also exhibited.

1. INTRODUCTION

Since the introduction of the LMS algorithm by Widrow and
Hopf in the 1960’s, most of the further work in adaptive
filtering has focused on improving the initial convergence.
The Recursive Least-Squares (RLS) algorithm was also de-
veloped in the 1960’s and provided an alternative algorithm
for adaptive system identification. The RLS algorithm is re-
cursive and not iterative as the LMS algorithm, solving a

Eurécom’s research is partially supported by its industrial partners:
BMW, Bouygues Telecom, Cisco Systems, France Télécom, Hitachi Eu-
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LS cost function exactly at each update. As a result it con-
verges very fast since it provides an unbiased solution once
the LS problem gets predetermined. This deterministic as-
pect adds up to the observation that the RLS convergence is
insensitive to the input signal correlation structure (approx-
imately, since there is some dependence on the initializa-
tion). The RLS algorithm, though providing computational
savings w.r.t. the plain solving of LS problems at each sam-
pling period, is quite a bit more expensive than the LMS
algorithm. This motivated on the one hand the development
of fast RLS algorithms, and on the other hand the devel-
opment of an intermediate category of algorithms, all less
sensitive than LMS to the input correlation structure, includ-
ing frequency or other transform domain LMS algorithms,
prewhitened LMS versions, Fast Newton Transversal Filters
and (Fast) Affine Projection Algorithms.

At the outset, all these algorithms are developed to con-
verge to an unknown optimal filter. When this optimal filter
is actual time-varying, these algorithms need to be made
adaptive. The RLS algorithms are made adaptive by the in-
troduction of a weighting function/window. The weighted
LS cost function can be viewed as the output of a filter
with the instantaneous squared filtering error sequence as
input. The filter should be such that its input-output rela-
tionship is simple and recursive. The LS cost function uses
a discrete-time integrator as filter, which can be easily mod-
ified into a first-order recursive filter for the exponentially
weighted RLS algorithm. The sliding window RLS algo-
rithm uses a moving average filter that can also be expressed
recursively. All other adaptive filtering algorithms are made
adaptive by the introduction of a scalar stepsize. In fact,
the time-varying stepsize sequence of stochastic gradient al-
gorithms [1] is made time-invariant/constant to avoid con-
vergence and permit tracking of time-varying optimal filter
settings. The tracking characteristics of the LMS and RLS
algorithms got analyzed only in the 1970’s and 1980’s, 10 to
20 years after the introduction of the algorithms, in [2] for
LMS and [3] for RLS. A further inspection of these track-
ing characteristics revealed the surprising result that in cer-
tain cases the LMS algorithm may provide better tracking



than the RLS algorithm (each with optimized stepsize or
forgetting factor), see [4] for deterministic and e.g. [1] for
random parameter variations. With hindsight, this is not at
all surprising since LMS and RLS are just two suboptimal
approaches to tracking time-varying parameters. Whereas
initial convergence is about the fast reduction of the mean
parameter error vector, tracking is about the optimal com-
promise between MSE due to estimation noise and track-
ing/lag noise. Some general references on the tracking be-
havior of adaptive filtering algorithms are [5], [6], [7], [8],
[9].

2. PROBLEM FORMULATION

Consider the problem of estimating the desired response
signal d(k) as a linear combination of the elements of X(k),
the N-dimensional input vector sequence to the adaptive fil-
ter. The popular adaptive filters (LMS and RLS) updates the
filter coefficients in the following manner:

e(k) = d(k) − XHH(k) (1)

and

H(k + 1) = H(k) + KX(k)e(k) (2)

where K = µ is the step-size parameter that controls
the speed convergence as well as the steady-state and /or
tracking behavior of the adaptive filter in the LMS case, and
K = R−1

XX for RLS algorithm.
For the performance analysis, we will assume that the adap-
tive filter structure is that of an N-point FIR filter, and the
input signal X(k) is obtained as a vector formed by the most
recent N samples of the input sequence x(k), i.e.,

X(k) = [x(k), x(k − 1), . . . , x(k − N + 1)]T . (3)

Let Ho(k) denote the optimal coefficient vector (in the min-
imum mean-squared estimation error sense(MMSE)) for es-
timating the desired response signal d(k) using X(k). We
will assume that Ho(k) is time varying, and that the time
variations are caused by a random disturbance of the op-
timal coefficient process. Thus, the behavior of the opti-
mal coefficient process can be modeled as a low pass plus a
power delay profile.
In order to make the analysis tractable, we will make use of
the following assumptions and approximations:

• X(k), d(k) are jointly Gaussian and zero-mean ran-
dom processes. X(k) is a stationary process. More-
over, {X(k), d(k)} is uncorrelated with {Xn, d(n)}
if n 6= k. This is the commonly employed inde-
pendence assumption and is seldom true in practice.
However, analysis reliable design rules in the past.

• The autocorrelation matrix RXX of the input vector
X(k) is a diagonal matrix and is given by:

RXX = σ2
xI. (4)

While this is a fairly restrictive assumption,it consid-
erably simplifies the analysis. Furthermore, the white
data model is valid representation in many practical
systems such as digital data transmission systems and
analog systems that are sampled at Nyquist rate and
adapted using discrete-time algorithms.

3. EXCESS MEAN SQUARE ERROR (EMSE)

Consider:
{

dk = HoT
k kk + vk

yk = HT
k Xk

(5)

where
- Ho

k denotes the optimal Filter
- Hk represents a given adaptive Filter(RLS, LMS and VSSLMS...)
The a posteriori error is given by:

ek = H̃T
k Xk + vk (6)

where H̃k = Ho
k − H .

The estimation of the system parameters is performed by
minimizing the cost function

Jk = F (q)e2
k (7)

The Mean Squared Error can be written as:

MSE = E
[
e2

k

]
= σ2

v + E
[
XH

k H̃∗

kH̃T
k Xk

]
(8)

Thus, the Excess Mean Squared Error becomes:

EMSE = E
[
e2

k

]
− MMSE = E

[
XH

k H̃∗

kH̃T
k Xk

]
(9)

4. MODELING OF STANDARD ADAPTIVE
FILTERING BEHAVIOR

The adaptive filter is Hk and the a priori error ek = dk −
XkHk−1. Consider the (complex) LMS algorithm first

H lms
k = H lms

k−1 + µXH
k ek

= (I − µXH
k Xk)H lms

k−1 + µXH
k vk + µXH

k Xk

= (I − µXH
k Xk)H lms

k−1 + µXH
k vk + µRHo

k

+µ(R − XH
k Xk)(H lms

k−1 − Ho
k) (10)

Then, assuming the adaptation speed is not too fast, we get
approximately

H lms
k = [I − (I − µR)q−1]−1µR(Ho

k + R−1XH
k vk) (11)



whereas the RLS filter update is of the form

Hrls
k = Hrls

k−1 + R̂−1XH
k ek

=
1 − λ

1 − λq−1
(Ho

k + R−1XH
k vk) (12)

In general

Ĥk = Flms,rls(q)(H
o
k + R−1XH

k vk) = F (q)Gk . (13)

Gradient Gk = R−1XH
k yk in fact! Then we can estimate

SGG assume RLS or LMS with white. where q−1Hk =
Hk−1. Using averaging analysis at low adaptation speed,
these results for the sysid-up hold approximately also for
the other adaptive filtering applications. Note that (Ho

k +
R−1XH

k vk) is closely related to Gk = R−1XH
k yk, which is

a mixed quantity in that it is averaged in the input covariance
but instantaneous in the input-desired-response correlation.

5. BAYESIAN ADAPTIVE FILTERING (BAF)

In this paper we focus on stationary time-varying parame-
ters, we neglect transient phenomena, and we consider the
stationary steady-state regime. Hence it is more practical
to formulate the parameter tracking problem as a Wiener
filtering problem rather than a Kalman filtering problem.
The kF’ing approach may be practical for an AR(1) model
for the optimal parameters but becomes cumbersome for
higher-order models.
We shall introduce, mostly for the purpose of analysis, a
somewhat idealized Bayesian solution which is based on the
assumption that R can be estimated well. this solution will
be based on LMMSE estimation (WF’ing) of Ho

k from the
gradient:

Gk = R−1XH
k yk = H0

k+R−1XH
k vk︸ ︷︷ ︸

G̃k

+(R−1XHX−I) H0
k

where for slow parameter variations, the last term can be
neglected since it is the product of low-pass noise Ho

k with
high-pass noise R−1XH

k Xk − I . The optimal BAF would
be to apply the kF to (11), Gk = Ho

k + G̃, which can be
considered as a measurement equation for the state Ho

k . In
steady-state, the Kf converge to the WF

Ho
k = F (q)Gk (14)

where in the non-causal case

F (q) = I − SG̃G̃(q)S−1
GG(q) (15)

Neglecting the last term in(11) and assuming that vk is white
noise (hence G̃k), we have SG̃G̃(q) = σ2

vR−1. Hence the
non-causal WF is fairly straightforward to find since SGG

can be estimated simply from the observations of Gk, though

σ2
v is somewhat trickier to derive from the observed MSE.

For the causal case, consider Nk = P (q)Gk where P (q) is
the ( length) (monic) multivariate prediction error filter for
the vector signal Gk and Nk is resulting white prediction
error with covariance matrix RNN . then the causal WF is

F (q) = I − SG̃G̃(q)R−1
NNP (q) (16)

6. PERFORMANCE ANALYSIS

In this section we will comparing the resulting EMSE with
optimized individual stepsize to the classical LMS with an
optimized global stepsize, the classical RLS with optimized
individual forgetting factor, and the optimal solution (WF).
The EMSE is defined in (9). If we make the assumption that
the system variation is a zero-mean, wide-sense stationary
process with a power spectral density matrix SHH (e−2jπf ),
and if we suppose that these variations are independent from
the input signal, the Excess MSE can be expressed in the
following form:

EMSE = tr{E(H̃kH̃H
k R)} = tr{R

∫ 1

2

−
1

2

S
H̃H̃H (ej2πf )df}

H̃k = Ho
k − Hk = (I − F (q)) Ho

k − R−1 F (q)X∗

kvk

= (I − F (q)) Ho
k − F (q)G̃k

and becomes:

EMSE = trR{

∫ 1

2

−
1

2

F (ej2πf )RG̃G̃ F H(ej2πf )df}

+ trR{

∫ 1

2

−
1

2

(I − F (ej2πf ))

×SHoHo (e−j2πf )(I − F Hej2πf )}df

Remark that the EMSE can be broken up into two terms:

• Enoise = trR{
∫ 1

2

−
1

2

F (ej2πf )RG̃G̃ F H(ej2πf )df}

characterizing the noise contribution; and can be in-
terpreted as the estimation accuracy under stationary
conditions

• Elag = trR{
∫ 1

2

−
1

2

(I−F (ej2πf )) SHoHo(ej2πf ))(I−

F H(ej2πf ))}df representing the estimation error re-
sulting from the system variations (Lag noise)

The analysis is easiest when the input is white, R = σ2
yI .

We consider the uniform dynamics plus power delay pro-
file like structured model for the optimal Doppler spectrum:
SH0H0(z) = Shh(z) D where Shh(z) is scalar and D is a
constant diagonal. To simplify, we suppose, also, that the
scalar spectrum Shh is a flat low-pass spectrum; i.e.

Shh(e−2jπf ) =



 1 if f < f0

0 elsewhere



The matrix D is arbitrary if it were diagonal (decorrelation
filter coefficients) the diagonal would represent the power
delay profile of the optimal filter
We deduce, thus, the EMSE expressions for the different
cases:
in the RLS case

F (z) =
1 − λ

1 − λz−1
I, (17)

EMSERLS = Nσ2
v

1−λ
1+λ

+ 2σ2
xtr(D)

× (λfo −
λ
π

1−λ
1+λ

arctan( 1+λ
1−λ

tan(πfo)))

in the LMS case

F (z) =
µR

I − (I − µR)z−1
(18)

EMSELMS = Nσ2
v

µσ2

x

2−µσ2
x

+ 2σ2
x(1 − µσ2

x)tr(D)

× (f −
µσ2

x

π(2−µσ2
x
) (arctan

µσ2

x

2−µσ2
x

tan(πf)))

in the LMS with Individual StepSize case (LMSISS)
The LMSISS type adaptive algorithm is a gradient search
algorithm which computes a set of weights Hk that seeks to
minimize E(dk − Y T

k Hk)2. The algorithm is of the form:

Ĥk = Ĥk−1 + MkYkek , ek = dk − HT
k Yk

and Mk is a diagonal matrix containing the different vari-
able step sizes. In the standard LMS algorithm , Mk = µk I

with µk a constant.
In the non-causal case

F (q) = I − SG̃G̃(q)S−1
GG(q) (19)

the EMSE expressions being:

EMSEncc =

N∑

i=1

1

j2π

∮
dz

z
(

1

σ2
v

+
1

σ2
x

DiiShh(z))−1

= σ2
v2fo

N∑

i=1

1

1 +
σ2

v

σ2
x

Dii
1

2fo

we compare the minimum EMSE achieved by each variant
(with optimized parameters λ ; µ). Figure 1 plots the op-
timized EMSE curves (as a function of the Doppler band-
width f0).

7. CONCLUSION

In this paper we focus on stationary time-varying parame-
ters, we neglect transient phenomena, and we consider the
stationary steady-state regime. Hence it is more practical to
formulate the parameter tracking problem as a Wiener fil-
tering problem rather than a Kalman filtering problem. This
analysis shows that, for a flat low-pass spectrum, the op-
timal RLS performs better that the optimal LMS and LM-
SIVSS, but also that the Baysian Adaptive Feltering (BAF)
given here with a causal and non-causal Wiener filter per-
forms even better.
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Fig. 1. EMSEopt curves for ideal low-pass variations.
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