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ABSTRACT

In this paper techniques are proposed for combining in-
formation about the mean and the covariance of the chan-
nel for the purpose of two applications. One is channel
estimation, possibly in a parametric or physical model
form. The other concerns (partial) channel state infor-
mation at the transmitter (CSIT), typically used in MIMO
systems for the design of spatial prefiltering and water-
filling. For the purpose of channel estimation, it has re-
cently become customary to combine mean and covari-
ance information in a Bayesian approach, leading to a
MMSE or MAP improved channel estimate. For the
purpose of generating CSIT, the cases of mean or co-
variance information are still being treated separately. A
Bayesian approach is presented here incorporating both
pieces of information. The approach yields the existing
cases of mean or covariance information as special in-
stances. We then take the unified approach one step fur-
ther by allowing not only the mean information to be
noisy but also the covariance information.

1. INTRODUCTION

In practical wireless systems, training sequences or pilot
symbols are incorporated in the transmitted signal to allow
for channel estimation at the receiver. The density of train-
ing data needs to increase as the mobility and the channel
variation increases. Nevertheless, even with training data
available, the channel estimate can only be of limited qual-
ity, and the channel estimation errors reduce the channel
capacity. Furthermore, the fact of substituting data to be
transmitted by training data obviously also limits the ca-
pacity. All this means that the channel capacity degrades
with mobile speed and to minimize this decrease, all a pri-
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ori information about the channel should be exploited for its
estimation.

In order to exploit partial Channel State Information at
the Transmitter (CSIT) in MIMO systems, most of the cur-
rent precoding schemes exploit either mean [1] or covari-
ance [2] information. A combination of the two can im-
prove exploitation of channel knowledge by weighting them
according to a certain criteria. However, mean and covari-
ance information do not necessary have to correspond to ac-
tual channel mean and covariance, i.e. to prior distributions.
They can be given by a Bayesian approach, with a certain
posterior mean and covariance.

In our work, we present different techniques to com-
bine mean and covariance information. We show how to
exploit both sources of partial CSIT to optimize the error
rate in MIMO systems, by performing linear precoding at
the transmitter.

2. (MIMO) WIRELESS CHANNEL MODEL

The impulse response of the time-varying channel is repre-
sented by the matrix h(t), which has dimension NR × NT ,
being NR and NT the number of receive and transmit an-
tennas respectively. In our work we consider both separable
and non-separabla models. In a separable channel model the
spectrum of the temporal variation in the case of a diffuse
channel can then be written as

Shh(f) = Cτ ⊗ CT ⊗ CR Sd(f) (1)

where
Cτ : covariance matrix between delays, typically diagonal
with power delay profile
CT : TX side spatial covariance matrix
CR: RX side spatial covariance matrix
Sd(f): scalar common Doppler spectrum of all impulse re-
sponse coefficients. A separable model in 4D is admittedly
unrealistic in practice.



3. PARTIAL CSIT COMBINING MEAN AND
COVARIANCE

In order to simplify the theoretical analysis, a flat MIMO
channel will be considered and we shall ignore its Doppler
characteristics. In this section, we introduce some different
cases of partial CSIT combining mean and covariance infor-
mation, both for models with separable and non-separable
covariance information.

3.1. Non-separable covariance case

When mean and covariance information are present at the
transmitter side, this information can be of different na-
ture. In the presence of a Line-of-Sight component between
transmitter and receiver, the MIMO channel may be mod-
eled as Ricean. In this first case of interest, the vectorized
channel h has a prior distribution h ∼ CN (mh, Chh), with
mean mh due to the LOS component and non-separable co-
variance Chh. A second source of partial CSIT is the case
when mean information corresponds to the channel estimate
and perfect covariance information is present at the trans-
mitter. The channel in this case is modeled as Rayleigh with
distribution h ∼ CN (0, Chh). On the other hand, the chan-

nel estimates can be modeled as ĥ = h+ h̃, where h̃ follows
a distribution CN (0, σ2

h̃
INT NR

) and could be due to a com-
bination of the following sources of error: estimation noise,
quantization noise and prediction noise. The combination of
mean and covariance information leads to a Gaussian pos-
terior distribution with posterior mean given by

̂̂h = (INRNT
+ σ2

h̃
C−1

hh)−1ĥ (2)

and posterior covariance

C̃ = (σ−2

h̃
INRNT

+ C−1

hh)−1 (3)

The same noisy mean information can be also combined
with noisy covariance information, as a result of quantiza-
tion noise (limited rate feedback) or estimation noise. De-
pending on the modeling approach, it could also lead to a
Gaussian posterior distribution with a certain mean and co-
variance. Another case of interest is the noisification of the
mean. All previous cases lead to a Gaussian distribution for

h, be it prior or posterior, with a certain mean ̂̂h and covari-

ance C̃. This information gets reduced by a noisy mean ̂̂hd
where d is CN (0, 1). This means that the mean becomes

zero and the covariance becomes R̃ = ̂̂ĥ̂hH

+ C̃, which was
the correlation matrix before the noisification of the mean.
Combined with (3) this gives

R̃ = ̂̂ĥ̂hH

+ (σ−2

h̃
INRNT

+ C−1

hh)−1 (4)

This approach may be of interest since may lead to a simpler
problem formulation.

3.2. Separable covariance case

Now consider the channel impulse response matrix h with
dimension NR × NT and separable covariance. Hence

E hhH = tr{CT }CR (5)

E hT h∗ = tr{CR}CT

In the Ricean case, the channel can be modeled as h =
mh + C

1/2
R hwC

H/2
T with ĥw distributed as CN (0, 1). A

special case can be considered in the Ricean model when
also the mean is separable. Thus, the vectorized mean can
be represented as mh = m∗

T ⊗mR and matricially as mh =
mR mH

T . In the case of noisy channel estimates and sep-
parable perfect covariance information, the posterior mean
and covariance are respectively given by

̂̂h = (INRNT
+ σ2

h̃
C−1

T ⊗ C−1
R )−1ĥ (6)

and
C̃ = (σ−2

h̃
INRNT

+ C−1
T ⊗ C−1

R )−1 (7)

If only posterior mean is present, it is due to noise-free chan-
nel estimation (σ2

h̃
→ 0) and thus ‖C‖ → 0. On the other

hand, only posterior covariance will be present if ̂̂h = ĥ = 0
or the estimation noise tends to infinity. In addition, if a rich
scattering environment is assumed at the Rx side, the covari-
ance at the receiver can be modeled as identity. In this case,
the posterior mean is given by

̂̂h = ĥ(INT
+ σ2

h̃
C−1

T )−1 (8)

and the posterior covariance

C̃ = INR
⊗ C̃T (9)

with posterior covariance seen from the transmitter

C̃T = (σ−2

h̃
INT

+ C−1
T )−1 (10)

In a simplified scenario with noisification of the mean,

assume we only have access to D
̂̂h instead of having acess

to ̂̂h directly, where the elements of the diagonal matrix D
are i.i.d. CN (0, 1). Now the distribution becomes zero

mean with transmit side covariance matrix R̃T = ̂̂hH ̂̂h +
C̃T . Under these circumstances, the mean information falls
into the covariance information, and thus the correlation be-
comes the covariance. Hence, optimal MIMO transmission
schemes with partial CSIT for the case of only covariance
information will apply for the described model that com-
bines mean and covariance infomation. If linear prefiltering



is carried out at the transmitter side (after the ST encoding
stage) to adapt the transmission to the channel knowledge,
an optimal prefilter will lead to capacity maximization or
tipically Pairwise Error Probability (PEP) minimization. If
we assume CR = INR

, the optimal prefilter that maximizes
capacity and minimizes PEP pours power along the eigen-
vectors of the posterior correlation matrix seen from the
transmitter, following a waterfilling power allocation pol-
icy for minimum PEP [2] and possibly different weighting
for the capacity maximization solution [6].

4. LINEAR PRECODING FOR ERROR RATE
MINIMIZATION

In this section, we derive an optimal precoding strategy for
error rate minimization in MIMO systems combining mean
and covariance information at the transmitter. The source
of mean and covariance information can be either prior or
posterior, as described in the previous section. We optimize
the performance of the proposed system in terms of PEP
averaged over h, prior or posterior, with a certain distrib-
ution CN (mh, Chh). In the analysis, we follow the work
developed by Jongren et al. in [4]. We assume the separa-
ble channel model described in (1) and identity covariance
matrix at the receiver side.

The PEP is defined as the error probability of choosing
the nearest distinct codeword Cj instead of Ci. The code
error matrix can be defined as Ẽ :=

[
Ci − Cj

]
. In practice,

the average PEP is limited by the minimum distance code

error matrix, given by E = arg min
Ẽ(i,j)

det
[
Ẽ(i, j)Ẽ

H
(i, j)

]
.

The average PEP is given by

P (Ci → Cj) =
∫

P (Ci → Cj |h)ph(h)dh (11)

where the complex Gaussian PDF ph(h) is

ph(h) =
e
−tr

[
(h−mh)HC−1

hh(h−mh)

]
πNRNT det(Chh)NR

(12)

By applying the Chernoff bound and averaging over the
distribution of h, an upper bound on the average PEP is
given by

P (Ci → Cj) ≤
∫

1
2
e−d2

min(Ci
,Cj

)/4ph(h)dh (13)

When concatenating the Space-Time encoder at the trans-
mitter with a linear prefilter to exploit partial CSIT, the min-
imum Euclidean distance is

d2
min(Ci, Cj) = d2(E) =

1
σ2

‖hWE‖2
F (14)

where W is the linear prefilter. On the other hand, it can be
shown that if EEH = αI, the PEP is minimized at high SNR
for a given optimal prefilter [3]. Thus, the system under
consideration has EEH = αI, e.g. orthogonal ST block
codes [7] (single stream) or ST spreading [5] (full stream).
Introducing η = α

4σ2 and Ψ = WWH , the solution to (13)
is given by

P (Ci → Cj) ≤ e
tr

[
mhC−1

hh

(
(ηΨ+C−1

hh)−1−Chh
)

C−1

hhmH

h

]
2 det(ηΨ + C−1

hh)NR det(Chh)NR

(15)
The performance criterion can be expressed logarithmically
(neglecting parameter-independent terms) as follows

J=tr
[
mhC−1

hh(ηΨ+ C−1

hh)−1C−1

hhmH
h

]
−NRlogdet(ηΨ+C−1

hh)
(16)

Assuming a normalized average power constraint, the opti-
mal Ψ that minimizes the performance criterion in (16) is
given by (see Appendix A)

Ψ=

{
1

2µ

[
NRINT +

(
NR

2INT +
4µ

η
C−1

hhmH

h mhC−1

hh

)1
2
]
−1

η
C−1

hh

}
+

(17)
where µ is the Lagrange multiplier associated with the power
constraint and {·}+ takes the positive semidefinite part. It
can be seen straightforward from (17) that as η tends to in-
finity (i.e. SNR tends to infinity), the optimal Ψ tends to
Ψ = 1

NT
INT

, since in this particular case the value of the
Lagrange multiplier is µ = NRNT . This result is equiva-
lent to transmission without CSIT, which shows that as the
SNR increases the importance of CSIT gets reduced. An-
other solution assuming full-rank Ψ is provided, to have
a more intuitive idea of the unequal power-loading policy
at the transmitter. Defining the eigenvalue decompositions
C−1

hhmH
h mhC−1

hh = UΣUH and WWH + 1
η C−1

hh = VΛVH ,
V and U unitary matrices and Σ = diag(σ1, σ2, . . . , σNT

),
Λ = diag(λ1, λ2, . . . , λNT

), the solution is given by

Ψ = UΛUH − 1
η
C−1

hh (18)

where the diagonal elements in the matrix of eigenvalues Λ
are given by (see Appendix B)

λi =
NR +

√
NR

2 + 4µσi

η

2µ
(19)

To obtain the optimal precoder either from (17) or (18),
let the eigenvalue decomposition of Ψ be Ψ = VΨΛΨVH

Ψ .
Since Ψ = WWH , the optimal precoder is W = VΨΛ1/2

Ψ .
Thus, the optimal transmission strategy as reflected in the
above equations corresponds to transmission along the eigen-
vectors of a combination of mean and covariance and a wa-
terfilling power allocation policy. The first and second term



in (18) are differently weighted depending on the SNR and
the covariance information. In the remaining of this section
we introduce some particular cases of special interest.

4.1. Zero mean information

When the mean information is zero, it can be seen from
equation (17) that in this case Ψ becomes

Ψ =
{

NR

µ
INT

− 1
η
C−1

hh

}
+

(20)

The value of the lagrange multiplier can be analitically ex-
pressed as

µ =
NRNT[

1 + 1
η tr(C−1

hh)
] (21)

It is clear from (20) and (21) that as the SNR increases the
covariance information becomes less important, and Ψ con-
verges to a scaled identity matrix.

4.2. Unit rank mean

A particular case of interest is the case when the mean in-
formation has rank one (e.g. the Ricean case). Since mh
is unit rank, also C−1

hhmH
h mhC−1

hh becomes unit rank. The
mean mh can be represented as a combination of a pair of
vectors s and t, mh = s tH . The solution for Ψ in the case
of unit rank mean derived from the full-rank solution in (18)
is given by

Ψ = [u1U2]Λ[u1U2]H − 1
η
C−1

hh (22)

where Λ = diag(1 +
C−1

hh
η , 0, . . . , 0), u1 is the eigenvector

associated with the only non-zero eigenvalue and U2 are ar-
bitrary vectors chosen such that the matrix [u1U2] forms an
orthonormal basis. It can be seen from (22) that as the SNR
increases the solution approaches to beamforming along a
single direction, defined by C−1

hhmH
h mhC−1

hh, which is a
combination of mean and covariance information.

4.3. Singular covariance information

When the covariance information is singular, it can be mod-
eled as follows

Chh =
[
X//X⊥

] [
A 0
0 0

] [
X//X⊥

]H
(23)

where ⊥ and // represent singular and non-singular parts

respectively. Let
[
mh//mh⊥

]
= mh

[
X//X⊥

]
and C// be

the non-singular part of Chh. The optimization problem in
this case becomes

J = min
Ψ

tr

[
mh//C

−1
//

(
ηΨ// + C−1

//

)−1

C−1
// mH

h//

]
−NR log det(ηΨ// + C−1

// ) − ηtr
(
mh⊥Ψ⊥mH

h⊥

)
s.t. tr(Ψ// + Ψ⊥) = 1

(24)
where Ψ = [Ψ//Ψ⊥]T . The objective function J can be
divided in two optimization problems J = J// + J⊥ mini-
mized separately. The power constraints in both cases have
to be adjusted so that P// + P⊥ = 1. Hence, each min-
imization problem has a different power constraint associ-
ated. The optimization problem for the singular part is given
by {

J⊥ = min
Ψ⊥

−ηtr
(
mh⊥Ψ⊥mH

h⊥

)
s.t. tr(Ψ⊥) = P⊥

(25)

The solution for Ψ⊥ is derived in Appendix C. The pre-
coding solution corresponds to eigenbeamforming in the di-
rection of the eigenvector of mH

h⊥mh⊥ associated with the
largest eigenvalue λm⊥,1. The result of the objective funtion
is J⊥ = −ηP⊥λm⊥,1. The remaining optimization problem
for the non-singular part is given by

J// = min
Ψ//

tr

[
mh//C

−1
//

(
ηΨ// + C−1

//

)−1

C−1
// mH

h//

]
−NR log det(ηΨ// + C−1

// ) − ηP⊥λ⊥1

s.t. tr(Ψ//) = P// = 1 − P⊥
(26)

The solution for this part is equivalent to the general solu-
tion with waterfilling shown in (17), but with reduced di-
mension and power constraint due to singularities. On the
other hand, an optimal power split solution exits (P//, P⊥)
under certain circumstances such that J(P//) = J//(P//) +
J⊥(1 − P//) is minimized. If J(P//) has an absolute min-
imum P//|Jmin

, there are three different possibilities. If
0 < P//|Jmin

< 1, the optimal power for the non-singular
part is P//|opt = P//|Jmin

and for the singular part P⊥|opt =
1 − P//|opt. The solution is a combination of beamforming
(in ⊥ part) and waterfilling (in // part). If P//|Jmin

≥ 1 then
P//|opt = 1 and P⊥|opt = 0, and the solution is given by wa-
terfilling in the non-singular part. Finally, if P//|Jmin

≤ 0
then P//|opt = 0 and P⊥|opt = 1, and the solution is given
by beamforming in mH

⊥m⊥.

5. CONCLUSIONS

In this paper, techniques for combining mean and covari-
ance information have been presented. Both sources of in-
formation can be either prior (e.g. correlated channel with
LOS) or posterior (given by a Bayesian approach). We pro-
vide a general precoding solution for PEP minimization when



combining both sources of partial CSIT at the transmitter,
and analyze some cases of special interest. The results show
how mean and covariance information should be combined
in order to exploit the available sources of CSIT.

Appendix A.

The optimization problem described in (16) can be expressed
as 

min
Ψ

tr

[
mhC−1

hh

(
ηΨ + C−1

hh

)−1

C−1

hhmH

h

]
−NR log det(ηΨ + C−1

hh)

s.t. tr(Ψ) = 1

(27)

The solution is obtained by means of the Karush-Kuhn-
Tucker (KKT) conditions. Defining the Lagrangian as

L(Ψ, µ) = tr

[
mhC−1

hh

(
ηΨ + C−1

hh

)−1

C−1

hhmH
h

]
(28)

−NR log det(ηΨ + C−1

hh) + µ [tr(Ψ) − 1]

where µ is the Lagrange multiplier associated with the equal-
ity constraint. Differentiating L(Ψ, µ) w.r.t. Ψ we get

µΦΦ − ηNRΦ − ηC−1

hhmH
h mhC−1

hh = 0 (29)

where the change of variable Φ = ηΨ + C−1

hh has been
used for clarity. The solution for Ψ to the quadratic matrix
equation described above is given by

Ψ=

{
1

2µ

[
NRINT +

(
NR

2INT +
4µ

η
C−1

hhmH

h mhC−1

hh

)1
2
]
−1

η
C−1

hh

}
+

(30)
where {·}+ takes the positive semidefinite part.

Appendix B.

Introducing the eigenvalue decompositions C−1

hhmH

h mhC−1

hh =

UΣUH and Ψ + 1
η
C−1

hh = VΛVH in equation (27) and elim-
inating constant terms, the minimization problem becomes min

Ψ
tr

(
1

η
Λ−1VHUΣUHV

)
− NR log det(Λ)

s.t. tr(Λ) = β
(31)

where β = 1+ 1
η C−1

hh and the properties tr(AB) = tr(BA)
and VHV = INT

have been used. Since the solution we
seek assumes Ψ positive semidefinite, also Λ−VHC−1

hhV is
assumed PSD. The optimum V that minimizes the first term
can be chosen as V = U [4].
Let Σ = diag(σ1, , . . . , σNT

) and Λ = diag(λ1, . . . , λNT
).

The Lagrangian in this case is given by

L(λi, µ) =

NT∑
i=1

(
1

η

σi

λi
− NR log λi

)
+ µ

(
NT∑
i=0

λi − β

)
(32)

where µ is the Lagrange multiplier corresponding to the
power constraint. Differentiating L(λi, µ) w.r.t. λi we get

λi =
NR +

√
NR

2 + 4µσi
η

2µ
(33)

Thus, the solution for Ψ is given by

Ψ = UΛUH − 1

η
C−1

hh (34)

Appendix C.

In order to minimize the objective function in (25) sub-
ject to the power constraint, introduce the following eigen-
value decompositions: mH

h⊥mh⊥ = Vm⊥Λm⊥VH
m⊥ and

Ψ⊥ = VΨ⊥ΛΨ⊥VH
Ψ⊥ . By applying the following inequal-

ity tr(AB) ≤ ∑
i λi(A)λi(B), it can be seen that (25)

is minimized (the trace is maximized) by setting VΨ⊥ =
Vm⊥ . Let Λm⊥ = diag(λm⊥,1, . . . , λm⊥,NT

) and ΛΨ⊥ =
diag(λΨ⊥,1, . . . , λΨ⊥,NT

) ordered decreasingly. The opti-
mization problem becomes J⊥ = min

λΨ⊥,i

−η

NT∑
i=1

λΨ⊥,iλm⊥,i

s.t.
∑NT

i=1 λΨ⊥,i = P⊥

(35)

Clearly, the function described above is minimized (the sum-
mation is maximized) if all the power is transmitted along
the strongest eigenvalue, λm⊥,1. Hence, the solution is given
by choosing λΨ⊥,1 = P⊥ and λm⊥,i = 0, i = 2, 3, . . . , NT .
With this choice, the value of the objective function be-
comes J⊥ = −ηP⊥λm⊥,1.
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