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ABSTRACT

We have previously introduced linear precoding schemes
for spatial multiplexing, based on spatial spreading and
delay diversity. These schemes were designed for the
case of absence of Channel State Information at the Trans-
mitter (CSIT) (whereas at the receiver the coherent case
of full CSIR is assumed). These spatiotemporal spread-
ing schemes have been shown to allow to attain the op-
timal rate-diversity trade-off at high SNR. On the other
hand, the capacity achieving solution for the case of full
CSIT is based on spatial prefiltering with water filling
on the streams. Extensions of this scheme have been pro-
posed recently for the case of partial CSIT, but like the
full CSIT schemes, they do not take advantage of max-
imal diversity. In this paper a combination of the solu-
tions described above for no and full CSIT is proposed
for the general case of partial CSIT, exploiting diversity
sources in all cases of CSIT.

1. INTRODUCTION

The growing demand for multimedia services in wireless
communications has steadily increased the demand for ca-
pacity. On the other hand, spectral efficiency is necessary
due to a limited radio spectrum. Multiple-Input Multiple-
Output (MIMO) channels have shown good spectral effi-
ciencies over the past years, growing approximately linearly
with the number of antennas under ideal propagation [1].
Multiple data streams can be transmitted over the multi-
ple paths between a transmit-receive antenna pair, which
are generally considered independent. The MIMO wire-
less channel is usually described by a matrix H with ran-
dom complex entries and dimension NRxNT , being NT

and NR the number of transmit and receive antennas, re-
spectively. At the receiver, the multiple data streams sent
over the channel can be linearly recovered if rank(H) ≥
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m , where m represents the number of transmitted streams.
The presence of severe correlations has important detrimen-
tal effects on the capacity and performance of MIMO sys-
tems. In fact, most Space-time code designs assume inde-
pendent Rayleigh fading for each stream, which in practice
is not true as shown in [2]. The problem has been addressed
by transmitting on the eigen-modes of the transmit antenna
correlation matrix [3], which provides performance and ca-
pacity gains. In [4], a prefiltering approach is proposed as-
suming partial Channel State Information at the Transmitter
(CSIT), where knowledge of the transmit antenna correla-
tions is successfully exploited to improve the Pairwise Error
Probability (PEP) of a ST coded system.

MIMO channels allow to increase capacity by introduc-
ing spatial multiplexing. This consists of transmitting mul-
tiple data streams simultaneously. A scheme like V-BLAST
puts these streams directly on the transmit antennas. If these
streams form a spatiotemporally white Gaussian vector sig-
nal, then such spatial multiplexing allows to attain the MIMO
ergodic capacity. Let us now focus on the vector channel
seen by each transmitted stream, called transmit channel for
short. The transmit channels in V-BLAST are the columns
of the MIMO channel H. Partial channel knowledge at the
transmitter will typically lead to differences in power of the
different transmit channels and possible dependencies be-
tween them. To exploit this information, a weighting ma-
trix W gets introduced to weigh and transform the trans-
mit channels. The modified transmit channels are then the
columns of H W.

Another important aspect of multi-antenna channels is
an increase of diversity due to the multiplicity of links. The
original transmit channels may have equal or different diver-
sity orders. If the weighting matrix W has all elements non-
zero, then the transformed transmit channels are all combi-
nations of all original transmit channels and hence their di-
versity order will tend to increase. The diversity orders may
get modified more substantially if W depends on the chan-
nel H directly. Consider the SVD of the original channel
matrix H = U Σ VH where the diagonal matrix Σ contains
the singular values

√
λi in decreasing order. The weighting

matrix W that transforms the MIMO channel in orthogonal



transmit channels (eigenmodes) is W = V. It is proba-
bly well-known that the strongest eigenmode (correspond-
ing to λ1) exhibits full diversity in the sense that it combines
the diversity orders of all transmit channels: the strongest
eigenmode does better than the strongest transmit channel
(selection diversity) which is known to exhibit full diversity.
So a stream can be put directly into the strongest eigenmode
and be received with full diversity. However, achieving ca-
pacity requires spatial multiplexing and hence streams need
to be input also to the other eigenmodes. Perhaps it may
be mistakingly believed that all eigenmodes exhibit this full
diversity. It is true that the question actually does not arise
in capacity achieving transmission for the case of full Chan-
nel State Information at the Transmitter (CSIT) because in
that case the various eigenstreams get an adjusted power as-
signed, according to the well-known water-pouring princi-
ple, which in fact gives all streams infinite diversity (fast
power control). Now consider a case of partial CSIT in
which V would be perfectly known (eigenmodes perfectly
defined) but only the mean of the λi (mean power of each
eigenmode) would be known (this is related to the scenario
considered in [12] where quantization of (only) the eigen-
values is considered). So continue considering W = V.
Then the diversity orders of the different eigenstreams are
those of the channel eigenvalues λi. If the various channel
(H) entries have an i.i.d. distribution, then the diversity or-
der of eigenstream i is (NT−i+1)(NR−i+1), which shows
that consecutive eigenmodes have decreasing diversity. So,
in order to maximize the diversity of all streams, spatiotem-
poral precoding is required before entering the weighted
channel H W. In this paper, we propose to perform this pre-
coding linearly via a space-time spreading (STS) scheme we
have introduced earlier. The overall scheme is a linear pre-
coding scheme combining STS and weighting, to optimize
probability of error with full diversity.

The paper is organized as follows. Section 2 introduces
the system model with transmitter and channel. The lin-
ear precoder is described in Section 3. Section 4 shows
the weighting matrix evaluating the performance in terms
of PEP. A capacity analysis is shown in section 5. Finally,
conclusions are drawn in Section 6.

2. SYSTEM DESCRIPTION

The MIMO system model is shown in Fig. 1. The binary in-
formation data sequence xk is fed to an ST channel encoder,
which generates Ns symbol sequences (streams) at symbol
rate. The ST channel encoder spatially demultiplexes bk

(S/P conversion), either before or after the coding-mapping
operation. The generated coded sequence bk contains Ns

symbols per symbol period k . The Ns streams are lin-
early mapped into the NT output streams by applying linear
Space-Time precoding, which will be studied in detail later

+

NTNT NTNS

T(q) W H
ak sk ykbk

vk

Figure 1: MIMO Transmission with Convolutive Linear
Precoding and Adaptive Antenna Weighting.

on. After ST precoding, a constellation symbol bm,k of a
given stream m appears in different time periods and output
streams (spatiotemporal spreading). Thus, ST spreading let
us take advantage of spatial diversity and frequency diver-
sity (for channels with delay spread), while some coding
gain can also be provided. Once spatiotemporal spreading
has been applied, the transmitter exploits the CSIT, namely
the transmit antenna correlation matrix, to improve the sys-
tem performance. The precoded sequence ak is transformed
by a linear NT xNT stationary weighting matrix W, to adapt
the signal to the channel state. The linearly prefiltered and
weighted sequence sk is transmitted over a MIMO wire-
less channel H with NR receive antennas, represented by
the channel matrix H. Each entry Hij of the channel matrix
H represents the channel response between the j-th trans-
mit antenna and i-th receive antenna. The MIMO channel
presents antenna correlation at the BS, due to limited local
scattering. In the case of covariance (partial) CSIT, assum-
ing uncorrelated receive antennas, the MIMO channel can
be modeled as

H = HwRH/2
T (1)

where RT = E HHH is the NT xNT transmit antenna cor-
relation matrix (assumed stationary over time) and Hw is a
NRxNT i.i.d. complex matrix. The channel entries Hw,ij

are considered zero-mean complex Gaussian variables with
unit variance (Rayleigh flat-fading MIMO channel model).
In the presence of additive white Gaussian noise, the re-
ceived signal is

yk = H sk + vk = H W T(q) bk + vk (2)

where the noise power spectral density matrix is Svv(z) =
σ2

v I , q−1 bk = bk−1. After sampling the received signal,
the channel output yk contains NR symbol streams at sym-
bol rate, which are passed on to a MIMO receiver. The
transmitted data can be recovered by a ML receiver. In our
analysis, we focus on the transmitter side, and specifically
in the design of the linear ST precoder and weighting ma-
trix. At the receiver side we assume perfect CSI.



3. LINEAR PRECODER

The linear precoding considered here consists of a modifi-
cation of VBLAST, obtained by inserting a square matrix
prefilter T(z) before inputting the vector signal bk into the
weighting matrix W. The Ns = NT (”full rate”) component
signals of bk are called streams or layers. The suggested
prefilter is

T(z) = D(z) Q , |Qij | = 1√
NT

D(z) = diag {1, z−1, . . . , z−(NT−1)} , QHQ = I
(3)

Q is a Vandermonde matrix with dimension NsxNT . As
shown in [5], it minimizes an upper bound to the pairwise
error probability at high SNR.

Q =
1√
NT


1 θ1 . . . θ1

NT−1

1 θ2 . . . θ2
NT−1

...
...

...
1 θNT . . . θNT

NT−1

 (4)

which is unitary and has equal magnitude components and
where θi are the roots of θNT − j = 0 , j =

√−1. Note
that for a channel with a delay spread of L symbol periods,
the prefilter can be immediately adapted by replacing the
elementary delay z−1 by z−L in D(z). It is important that
the different columns of the channel matrix H get spread
out in time to get full diversity (otherwise the streams just
pass through a linear combination of the columns, as in
VBLAST, which offers limited diversity). The delay diver-
sity only becomes effective by the introduction of the spatial
spreading matrix Q, which has equal magnitude elements
for uniform diversity spreading. The specific Vandermonde
choice for Q shown in (4) corresponds to the DFT matrix
multiplied by a diagonal matrix containing the elements of
the first row of Q. This choice for Q can be shown to lead to
maximum coding gain in case of QAM symbols [7], among
all matrices with normalized columns.

The STS scheme discussed here has been introduced
in [5] and further analyzed in [6] as a full (symbol) rate
full diversity scheme without CSIT. It achieves the optimal
diversity-vs-multiplexing tradeoff.

4. WEIGHTING MATRIX

The weighting matrix W is designed so that an upper bound
on the average Pairwise Error Probability (PEP) is mini-
mized, as described in [4]. In the following, we drop the
time index k for clarity. The PEP is defined as the error
probability of choosing the nearest distinct codeword al in-
stead of an. For the case here described, a convolutional lin-
ear precoder is applied to obtain a, which can be interpreted
as a block code of infinite length. The code error matrix can

be written as Ẽ(l, n) := [an − al]. If Ẽ(l, n) is full-rank
for all distinct l, n, maximum diversity is obtained [8]. The
coding gain is dictated by the minimum distance code error
matrix given by

E = arg min
Ẽ(l,n)

det
[
Ẽ(l, n)Ẽ

H
(l, n)

]
(5)

As shown in Appendix A, the minimum distance code error
matrix is paraunitary for the proposed STS scheme:

EEH = αI (6)

where α is a scalar. EEH is called a Gram matrix. As
proven in [8], the PEP over a Rayleigh flat-fading MIMO
channel can be upper-bounded by

PEP ≤ e−d2
min/2 (7)

where d2
min is defined as

d2
min =

1
σ2

v

||HwRH/2
T E||2F (8)

The effective minimum distance error matrix is E = WE,
and ||.||F is the Frobenius norm. Let A be

A =
Es

σ2
v

RH/2
T WEEHWHR1/2

T , (9)

where Es is the energy per symbol. An upper-bound on the
average PEP can be obtained by taking expectation of the
PEP w.r.t. Hw [8].

PEP ≤ [det(I + A)]−N (10)

Therefore, the weighting matrix W that minimizes the
average PEP can be found by solving the optimization prob-
lem given by max

W
det

(
I +

Es

σ2
v

RH/2
T WEEHWHR1/2

T

)
subject to: Tr(WWH) = P0

(11)

By introducing the following singular value decomposition
(SVD)

RH/2
T = UrΣVH (12)

and taking into account (6), the optimal weighting matrix
W that maximizes (11) in the proposed system is [4]

W = VΛw , Λ2
w =

[
γI − NT

(
Es

σ2
v

)−1

Σ−2

]
+

(13)

where [.]+ means max(., 0) and γ is a constant that is com-
puted from the trace constraint. The weighting matrix de-
scribed in (13) corresponds to a statistical eigenbeamformer.



The rotation matrix V ensures that W transmits on the eigen-
modes of RT .

One may wonder about the optimal structure of the er-
ror Grammian EEH from the point of view of average PEP.
One may remark that the E considered corresponds to an
error on one symbol when interpreting the linear precoding
scheme as a linear dispersion code. So EEH is not only
the Grammian of a minimum distance code error matrix,
it is also proportional to the contribution of one symbol to
the transmit covariance matrix. Since the power should be
distributed evenly over all symbols (in a properly designed
transmission scheme), an overall power constraint leads to
a power constraint per symbol and hence to a constraint on
tr(EEH). Now, at high SNR, we have det(I+A) ≈ det(A)
and hence the average PEP is minimized when det(EEH)
is maximized. For given diagonal elements, the determi-
nant of a Grammian is maximized when all its non-diagonal
elements are zero (Hadamard inequality). So, given the
trace constraint tr(EEH) = P , det(EEH) is maximized
when EEH = P

NT
I. Hence, the proposed full-stream pre-

coding scheme has the optimal EEH structure as shown in
Appendix A. Previous works assuming ST encoding with
EEH = αI, assume in fact an O-STBC scheme, thus limit-
ing the system to the single stream case.

5. CAPACITY AND MFB ANALYSIS

The ergodic capacity with partial CSIT and perfect CSIR
is given by:

C(W)=EH
1

2πj

∮
dz

z
ln det(I +

1
σ2

v

H Sss(z) HH)

=EH
1

2πj

∮
dz

z
ln det(I+

1
σ2

v

H WT(z)Sbb(z) T†(z)WH HH)

= EH
1

2πj

∮
dz

z
ln det(I + ρ H W WHHH) (14)

where we assume that the channel coding and interleaving
per stream leads to spatially and temporally white symbols:

Sbb(z) = σ2
b I , ρ = σ2

b

σ2
v

, and since the prefilter T(z) is

paraunitary, T(z)T†(z) = I, it transforms the white vector
stream bk into the white vector stream ak at the input of the
weighting matrix W. The expectation EH is here w.r.t. the
distribution of the channel. Now, it has been shown [11] that
capacity is achieved by a weighting matrix W that transmits
on the eigen-modes of RT also. The singular values of W
though that allow to achieve capacity are found by solving a
different water filling problem from the one that optimizes
the average PEP in (13) (the two cost functions are related
by exchanging the order of the ln det and EH operations).

For the flat propagation channel H combined with the
prefilter T(z) and the weighting matrix W, symbol stream

n (bn,k) passes through the equivalent SIMO channel

NT∑
i=1

z−(i−1)H:,iQi,n (15)

where the definition H = HW has been used. The equiva-
lent channel in (15) has memory due to the delay diversity
introduced by D(z), which allows the Matched Filter Bound
(MFB) to exhibit full diversity.

6. MEAN-COVARIANCE PARTIAL CSIT

To combine mean channel information, typically modeled
as a noisy estimate Ĥ with i.i.d. estimation errors N(0, σ2

h̃
),

and covariance information RT , we can consider the poste-
rior mean Ĥ (I + σ2

h̃
R−1

T )−1 and posterior covariance

(σ−2

h̃
I + R−1

T )−1 which can be combined into the posterior
transmit correlation matrix

R̂T = (I+σ2
h̃

R−1
T )−1Ĥ

H
Ĥ(I+σ2

h̃
R−1

T )−1+(σ−2

h̃
I+R−1

T )−1

One can verify that R̂T becomes Ĥ
H

Ĥ (mean information
only) or RT (covariance information only) when σ2

h̃
−→

0,∞ respectively. For the optimization of the precoder, RT

can be replaced by R̂T . See also a companion paper for a
more detailed discussion on partial CSIT.

7. CONCLUSIONS

In this work, a new approach for linear precoding with Par-
tial Channel State Information at the Transmitter (CSIT) has
been introduced. It is based on a combination of linear pre-
coding and weighting in the transmit correlation eigenspace.
The proposed transmitter minimizes an upperbound on the
average Pairwise Error Probability (PEP) by allocating power
on the eigenmodes of the transmit antenna correlation. On
the other hand, diversity of all streams is maximized by in-
troducing delay diversity and spatial spreading in the linear
precoder. The described linear precoder has optimal Gram
matrix EEH in the full-stream case. In the literature this
property has been only shown in orthogonal ST block coded
systems, which are single stream. The proposed precoder is
also closely related to the optimization of mutual informa-
tion.

Appendix A.

The linearly precoded sequence is given by

ak = T(q) bk = D(q)Q bk = D(q) ck (16)

where ck = [c1(k) c2(k) . . . cNT (k)]T . We consider now
the transmission of the coded symbols over a duration of T



symbol periods. The accumulated precoded signal a1:T =
C has dimension NT xT . The distance between two code-
words C and C′ is defined as C − C′ =

1

σb



c1(0) − c′1(0) c1(1) − c′1(1) · · · · · · · · · · · ·

0
.
.
.

.
.
. · · · · · · · · ·

.

.

.

.
.
.

.
.
.

.
.
. · · · · · ·

0 · · · 0 cNT
(0) − c′NT

(0) cNT
(1) − c′NT

(1) · · ·



By considering a single error event i, the upper bound on
the pairwise error probability becomes maximized. Let i be
the time index of the first error, and introduce the minimum
distance code error matrix E

E = C−C′ =

 0 . . . 0 . . . e1(i) . . . . . . . . .
...

. . .
. . .

. . .
. . . . . . . . . . . .

0 . . . . . . . . . 0 eNT (i) . . . . . .


(17)

where ek = 1
σb

(ck−c′k) and it is assumed that
∏NT

1 en(i) �=
0, a condition that is well-known in the design of lattice
constellations [9][10], a field based on the theory of num-
bers. Let Q the Vandermonde matrix shown in (4). For
NT = 2nt(nt ∈ Z), Q guarantees [10] for any constel-
lation such that bn(i) − b′n(i) = a + jb ∈ Z[j] (Z[j] =
{a + jb | a, b ∈ Z), with bi − b′i ∈ (Z[j])NT /0), that
(NT

NT /2 ∏NT

n=1 en(i)) ∈ Z[j]/0, and hence:

min
ei �=0

NT∏
n=1

|en(i)|2 ≥
(

1
NT

)NT

(18)

For finite QAM constellations with (2M)2 points, any sym-
bol can be written as: bn(i) = d{(2l − 1) + j(2p − 1)}
where d ∈ R

+∗, l, p ∈ {−M + 1,−M + 2, . . . , M}.
Then 1

σb
(bn(i) − b′n(i)) = 2d

σb
(l′ + jp′), l′, p′ ∈ {−2M +

1,−2M+2, . . . , 2M−1} and σ2
b = 2(4M2−1)d2

3 . The lower
bound of (18) becomes

min
ei �=0

NT∏
n=1

|en(i)|2 ≥
(

4d2

σ2
b

)NT
(

1
NT

)NT

=
(

4d2

NT σ2
b

)NT

(19)
In what follows, we consider an upper bound for the cod-
ing gain for any matrix Q with normalized columns. The
minimal product of errors

∏
n |en(i)|2 is upper bounded by

a particular error instance corresponding to a single error
in the b’s, when 1

σb
(bi − b′i) = 2d

σb
wn0 , where wn0 is the

vector with one in the nth
0 coefficient and zeros elsewhere,

hence

min
ei �=0

NT∏
n=1

|en(i)|2 ≤
(

4d2

σ2
b

)NT NT∏
n=1

|Qn,n0 |2 (20)

Now, given that
∑NT

n=1 |Qn,n0 |2 = 1, then by applying
Jensen’s inequality, we get

NT∏
n=1

|Qn,n0 |2 ≤
(

1
NT

)NT

(21)

Hence,

min
ei �=0

NT∏
n=1

|en(i)|2 ≤
(

4d2

σ2
b

)NT
(

1
NT

)NT

=
(

4d2

NT σ2
b

)NT

(22)
is an upper bound for the coding gain for any matrix Q with
normalized columns. Now, the intersection of upper and

lower bounds leads to min
ei �=0

NT∏
n=1

|en(i)|2 =
(

4d2

NT σ2
b

)NT

and 1
σb

(bi − b′i) = 2d
σb

wn0 for some n0. Hence |en(i)|2 =
4d2

NT σ2
b

and therefore EEH = αI with α = 4d2

NT
.
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