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ABSTRACT

Several recent results demonstrate improvement of
recognition scores if some FIR �ltering is applied on
the trajectories of feature vectors. This paper presents
a new approach where the characteristics of �lters
are trained together with the HMM parameters re-
sulting in improvements of the recognition in �rst
tests.Reestimation formulas for the cut-o� frequencies
of ideal LP-�lters are derived as well for the impulse
response coe�cients of a general FIR LP-�lter.

1. INTRODUCTION

Automatic speech recognition (ASR) relies on the
comparison of utterances with sub-unit models. The
most popular models are trained Hidden Markov Mod-
els (HMM). But, useful information is particularly
concealed in acoustic waveforms and before starting
any model training or recognition, an important is-
sue is to extract pertinent features. Pitch frequency
and phase are usually discarded. Some kind of har-
monic analysis (LPC, cepstral, smoothed spectrum,
�lter banks) turns the recognition into the frequency
domain. The non-stationarity of speech enforces anal-
ysis over time windows. Window length is typically
30ms shifted in time by 10ms: these values are consis-
tent with the articulatory apparatus time constants.
Very soon [1-2], the dynamics i.e. the evolution in
time of the features has been recognized as crucial.
It is now of common use to append each feature vec-
tor with the derivative (speed) and second derivative
(acceleration) of feature coe�cients. The dimension
of the representation space is thus strongly increased
and training of models will require more data and CPU
time. Predictive HMM where the distance between a
state and a feature vector is de�ned in terms of LPC
prediction coe�cients have also been proposed; thus
taking account of one or several previous samples, a.o.
[3-4].
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However, the independancy of the added features is
questionable and research has been conducted to re-
duce feature space dimension. Principal component
analysis (PCA) has been suggested to reduce the di-
mension by keeping independent components only. It
works on the whole training set regardless of the class
appartenance of the feature vectors. Linear discrimi-
nant analysis (LDA) has thus been proposed long time
ago and more recently in [5-6] making use of a priori
knowledge of phonetic segmentation to increase the
inter-class discrimination.

Computation of speed and acceleration vectors relies
on numerical estimation based on neighboring vec-
tors. As a consequence, information associated with
one frame (10ms) is related to a wider time window.
All these numerical evaluations can be viewed as a �l-
tering process of feature vector trajectories. Recently,
discriminative coe�cients obtained using LDA have
been considered as �ltered coe�cients [5]: actual �l-
ters resulting from this discriminant analysis have been
analyzed and their behavior is related to derivators
yielding speed and acceleration.

The aim of this paper is to derive the reestimation for-
mulas for joint training of data �lter cut-o� frequencies
and HMM model parameters in order to increase the
likelihood of the training database.

In section 2, the expression of the �lter applied to the
feature vectors is discussed while section 3 is devoted
to the training criterion.

Filter parameters are trained together with the HMM
parameters (section 4). As a consequence, not only
model parameters but also data are modi�ed during
the training. It could be alledged that preprocessing
the data in order to increase the likelihood is not the
best way to increase the recognition score: indeed, in-
cluding the cut-o� frequencies in the training is noth-
ing else but a way to transform the data in order they
�t better with Markov modeling. But we may consider
the �ltering as part of the model and any attempt to
use the prediction error or a combination of features
like speed and acceleration goes in the same direction.
A common �lter can be applied to all feature vector
entries and to all states. More generally, di�erent �l-
ters can be used for each entry but are similar for all



states. Last, �lters can be assumed di�erent for all
states and all entries.

Feature �ltering contributes also to the reduction of
the data ow: indeed, �ltered data streams can be
downsampled so that in the recognition phase, less
feature vectors have to be processed per second. More
speci�cally,

1. in the training:

� �ltering at the baseline rate (100Hz) but
Viterbi alignment at a downsampled rate.

2. in recognition:

� HMM trained at the baseline frequency (100
Hz) with a �xed cut-o� frequency and recog-
nition on downsampled vectors (according to
the �xed cut-o� frequency)

� HMM trained on downsampled vectors (ac-
cording to the �xed frequency)

2.FILTER DESCRIPTION

The speci�cations of a �lter may be in time or fre-
quency domain. The optimal frequency speci�cations
are unkown and they may be considered as a result
for this joint training. There is a possibility to de-
scribe the �lter by its impulse response sample. In
that case, no immediate control of frequency speci�-
cation is left. In section 5, formulas are given showing
how joint training of HMM and �lter coe�cients can
be achieved. However the number of parameters in
impulse response training is equal for each �lter to the
length of this �lter. In the following, we better assume
the �lter is an ideal LP-�lter so that respectively one
cut-o� frequency only is required for its complete de-
scription.

The simplest �lter depending on a single parameter is
the ideal low-pass �lter. We use its truncated impulse
response which is

hp(!u) =
sin(!up)

�p
p 2 [�P; : : : ; P ]

where !u is the cut-o� frequency of a LP-�lter of
length 2P + 1.
If cut-o� frequency equals the Nyquist frequency (i.e.
50 Hz for a frame rate of 10 ms), the impulse response
has only one non-zero sample at time k = 0 and this
corresponds to no �ltering. Similar e�ect can be ob-
tained if the �lter is of length 1 (P = 0).

In the sequel, �ltered acoustic vectors will be denoted
xt = (�1; : : : ; �d) while original vectors are denoted
zt = (�1; : : : ; �d). So �j is the j-th entry of the acoustic

feature vector z and denoting �(p) the entry of a vector
z(p) located p frames after z,the �ltered version of � is

�j =
PX

p=�P

hp(!u)�
(p)
j : (1)

This is the expression of zero-phase non-causal �lter-
ing. All entries of all vectors will be modi�ed using
this formula and HMM training will make use of the
transformed vectors. An important issue is the nor-
malization of the response. The power of the response
is

P =
PX

p=�P

h2p

and depends of course on the cut-o� frequency !u.
Replacing hp by hp=

pP yields the power-normalized
impulse response.
In case of band-pass �ltering, it is easy to notice that
the truncated impulse response is the di�erence be-
tween the impulse responses of two LP-�lters with re-
spectively the lower (!l) and the upper-cut-o� (!u)
frequencies and depend of course of these two param-
eters only:

hp =
sin(!up)� sin(!lp)

�p

=
2

�p
cos(�p) sin(�p) p 2 [�P; : : : ; P ]

with the central frequency

� =
!u + !l

2

and the bandwidth

2� = !u � !l:

Highpass �lters are obtained as bandpass �lters with a
upper cuto� frequency equal to the Nyquist frequency
(!u = �).

3. HMM AND THEIR TRAINING
ALGORITHMS

Viterbi algorithm is used in this paper for training as
well as for recognition. The best path yields a parti-
tion of the data base such that each feature vector is
associated with a given state. The likelihood of the
training set is then

L =
Y
j

Y
x2Qj

p(xjqj)Pt

where Pt is the product of all transition probabilities
occurring in the best path; Qj is the set of vectors
associated with state qj; the product over j runs over



the set of all independent states of the models and
p(xjqj) is probability density function (pdf) associated
with state qj.
In this paper, we restrict our approach to monogaus-
sian pdf's (�i and �i denote mean vector and co-
variance matrix of state qi) since our aim is to study
feasability.
In case all � matrices are diagonal, the log-likelihood
� i.e � log(L) is

� = 1=2
X
j

X
x2Qj

dX
k=0

�
�k � �jk

�jk

�2

+
X
j

nj
2
log((2�)dj�jj)� log(Pt) (2)

where nj is the number of vectors in Qj .
The contribution of Pt is independent of the contri-
bution of states and can be discarded without loss of
generality. The estimates of mj and �j obtained by
cancelling the derivatives of � respectively versus mj

and �j are

m̂j =
1

nj

X
x2Qj

x (3)

and

�̂j =
1

nj

X
x2Qj

(x�mj)(x�mj)
t: (4)

It is important to notice that if all feature vectors are
multiplied by a common factor K, the j�jj's are mul-
tiplied by K2 turning to additional terms in �: this
shows that � is scale dependent. The best way to avoid
scale dependancy is to constrain P = 1 and thus to
modify the log-likelihood with a Lagrange term. Then
the optimality condition discussed in section 4 depends
on the Lagrange multiplier so that on !u too. However
as it will be seen in the next section, neither !u nor
the Lagrange multiplier can be explicitly found but
result from an iterative process. To remedy this in-
convenient, the cut-o� frequency is computed without
constraint regardless of the value of its power. How-
ever, to avoid irrelevant decay of � due to this gain,
the �lter impulse response is power renormalized at
each training iteration.

4. REESTIMATION OF THE
CUT-OFF FREQUENCIES

To derive a reestimation formula for the cut-o� fre-
quencies !u and !l, we cancel the derivatives of �
versus these variables. The reestimation formulas are
nonlinear. In the case of bandpass �lters, a set of two
nonlinear equations has to be solved. For the sake of
conciseness, we consider here an LP-�lter only where

a single nonlinear equation gives the optimal cut-o�
frequency.
Clearly, all vectors depend on the cut-o� frequency
via equation (1). As a consequence, mean vec-
tors and covariances depend also on them via equa-
tions (3)(4). Parameters at the k-th iteration are
m<k>

j ;�<k>
j ; !<k>u .

In a conventional training where no �ltering is applied,
the di�erential of �

d� =
X
j

�
@�

@mj

dmj +
@�

@�j

d�j

�

should be zero. This is obtained by cancelling all par-
tial derivatives and formulas (3)(4) apply.
The total derivative of � versus !u is

d�

d!u
=
X
j

�
@�

@mj

dmj

d!u
+

@�

@�j

d�j

d!u

�

+
X
all x

@�

@x

dx

d!u
(5)

Since the partial derivatives versus m's and �'s in the
bracketed terms of eq. (5) vanish due to the speci�c
choice of the new estimators (eqs (3)-(4)), the total
derivative of � versus !u will vanish if

X
all x

@�

@x

dx

d!u
= 0: (6)

Using (1) and (2), this expression becomes under the
assumption that all �j's are diagonal matrices

X
j

X
�2Qj

dX
k=0

�k � �jk
�2
jk

d�k
d!u

= 0 (7)

or making use of (1),

PX
p=�P

PX
q=�P

Apq cos(!up)
sin(!uq)

�q
=

PX
p=�P

Ap cos(!up) (8)

where

Ap =
X
j

X
�2Qj

dX
k=0

1

�2jk
�jk�

(p)
k

and

Apq =
X
j

X
�2Qj

dX
k=0

1

�2jk
�
(p)
k �

(q)
k :

It is easy to check that Apq = Aqp: Coe�cients Apq

and Ap contain the statistics collected during the back-
tracking of the optimal path in all training sentences.



By expliciting the special case where q = 0, one ob-
tains:

!u
�

PX
p=�P

Ap0 cos(!up) =
PX

p=�P

Ap cos(!up)�

PX
p=�P

PX
q=�P ;q 6=0

Apq cos(!up)
sin(!uq)

�q
(9)

which is a �xed point formulation !u = f(!u).
This �xed point equation could be iteratively solved
!<k+1>u = f(!<k>u ) at each iteration of the Viterbi
process. The impulse response will simply be power
normalized at each iteration to take the constrain into
account. Multiple solutions exist and the sign of the
second derivative of � should be checked to garantee
a minimum.
One may argue the solution should lay in the range
[��; �]. However, !u is only used in formula (1).
Clearly hp is a periodic function of !u which is thus
de�ned modulo 2�.
To increase discrimination between between states of
phonemes, di�erent features could be used to compute
the emission probability associated with a state or with
the states of a phone. The transformation of the fea-
tures can be seen as part of the HMM description and
leads to dedicated de�nitions of the local probabilities
just as well as the dedicated gaussian pdf's do. Here
we assume di�erent �lters for each state and for each
feature vector entry. Cut-o� frequencies are now de-
noted !kju. Again eq.(7) is crucial and becomes:

X
�2Qj

�k � �jk
�2
jk

d�k
d!kju

= 0: (10)

The de�nition of parameters A is now:

Apjk =
X
�2Qj

1

�2jk
�jk�

(p)
k

and

Apqjk =
X
�2Qj

1

�2jk
�
(p)
k �

(q)
k :

The number of cut-o� frequencies to estimate is dS
where S denotes the number of di�erent states. If
desired, it is straightforward to force all states of a
same phone to have the same cut-o� frequencies.
Let us assume more generally the searched �lter has
an impulse response ht 8t 2 [�P; : : : ; P ] and that
these coe�cients should be optimized. As in (5) and
(6) we come out with the condition:

X
all x

@�

@x

dx

dht
= 0 8t 2 [�P; : : : ; P ] (11)

where the entries of x are still de�ned as in (1) but
where the h-coe�cients are the free parameters and
no longer depend on cut-o� frequencies. Using (1),
(11) becomes:

PX
p=�P

hp
X
�2Qj

�
(t)
k �

(p)
k = �

X
�2Qj

�
(t)
k 8t 2 [�P; : : : ; P ]:

This expression should be valid for all t and the so-
lution of this linear set yields the optimal �lter. The
number of free parameters is then (2P + 1)dS.
It is worth noticing that the power constraint discussed
in section 3 can be taken explicity into account here
since the coe�cients result from a linear set of equa-
tions.

6. EXPERIMENTS

Preliminary experiments on a small speaker dependent
data base shows that a �xed cut-o� frequency (20Hz)
�lter of length 21 leads to 35% error rate against 37%
for an un�ltered recognizer in a phoneme recognition
task without grammar. This score drops to 33% if
50% downsampling is applied and to 30% if phoneme
entrance penalties are tuned. Trained �lters have not
yield signi�cant results since the size of the data base
was too small. Experiments are going on on TIMIT
and will be reported at the conference.
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