
SKiMPy: A Simple Key Management Protocol for
MANETs in Emergency and Rescue Operations

Matija Pužar1, Jon Andersson2, Thomas Plagemann1, Yves Roudier3

1 Department of Informatics, University of Oslo, Norway
{matija, plageman}@ifi.uio.no

2 Thales Communications, Norway
jon.andersson@no.thalesgroup.com

3 Institut Eurécom, France
yves.roudier@eurecom.fr

Abstract. Mobile ad-hoc networks (MANETs) can provide the technical plat-
form for efficient information sharing in emergency and rescue operations. It is
important in such operations to prevent eavesdropping, because some the data
present on the scene is highly confidential, and to prevent induction of false in-
formation. The latter is one of the main threats to a network and could easily
lead to network disruption and wrong management decisions. This paper pre-
sents a simple and efficient key management protocol, called SKiMPy.
SKiMPy allows devices carried by the rescue personnel to agree on a symmet-
ric shared key, used primarily to establish a protected network infrastructure.
The key can be used to ensure confidentiality of the data as well. The protocol
is designed and optimized for the high dynamicity and density of nodes present
in such a scenario. The use of preinstalled certificates mirrors the organized
structure of entities involved, and provides an efficient basis for authentication.
We have implemented SKiMPy as a plugin for the Optimized Link State Rout-
ing Protocol (OLSR). Our evaluation results show that SKiMPy scales linearly
with the number of nodes in worst case scenarios.

1 Introduction

Efficient collaboration between rescue personnel from different organizations is a
mission critical element for a successful operation in emergency and rescue situations.
There are two central requirements for efficient collaboration, the incentive to col-
laborate, which is naturally given for rescue personnel, and the ability to efficiently
communicate and share information. Mobile ad-hoc networks (MANETs) can provide
the technical platform for efficient information sharing in such scenarios, if the rescue
personnel is carrying and using mobile computing devices with wireless network in-
terfaces.

Wireless communication needs to be protected to prevent eavesdropping. The data
involved should not be available to any third parties, for neither publication or mali-
cious actions. Another important requirement is to prevent inducing of false data. At

This work has been funded by the Norwegian Research Council in the IKT-2010 Program,
Project Nr. 152929/431. It has been also partly supported by the European Union under the
E-Next SATIN-EDRF project.

the application layer this might for example lead to wrong management decisions. At
the network layer it has been shown that a very few percent of misbehaving nodes
easily can lead to network disruption and partitioning [17]. In both cases, efficiency of
the rescue operation will be drastically reduced and might ultimately cause loss of
human lives. In order to prevent such a disaster, all data traffic should be protected,
allowing only authorized nodes access to the data. Given that devices carried by the
rescue personnel will mostly have limited resources, any security scheme based sol-
emnly on asymmetric cryptography will be too costly in terms of computing power,
speed and battery consumption. Therefore, the use of symmetric encryption with
shared keys is preferable for MANETs in emergency and rescue scenarios. Agreeing
on a shared key in a highly dynamic and infrastructure-less MANET is a non-trivial
problem and requires establishing trust relations between all devices. It is important
for emergency and rescue scenarios that corresponding solutions are simple, efficient,
robust, and autonomous. User interactions should be kept at an absolute minimum.

This paper describes a simple key management protocol, called SKiMPy, that can
be used to establish a symmetric shared key between the rescue personnel’s devices.
By this, SKiMPy will set up a secure network infrastructure between authorized
nodes, while keeping out unauthorized ones. It may be decided at the application layer
whether the established shared key is robust enough for achieving some degree of
data confidentiality as well. The basis for this simple and efficient solution is the fact
that rescue personnel are members of public organizations with strict, well defined
hierarchies. This hierarchy can be mirrored into a certificate structure installed a priori
on their devices, i.e., before the accident or disaster actually happens. As a result, it is
possible for the nodes during the rescue activity to authenticate each other on a peer-
to-peer basis, without need for contacting a centralized server or establishing trust in a
distributed approach.

The organization of the paper is as follows. Section 2 gives a detailed description
of our protocol. In Section 3 we show some design considerations and respective so-
lutions. Section 4 describes an implementation of the protocol together with evalua-
tion results. In Section 5 we present related work. Finally, conclusion and future work
are given in Section 6.

2 Protocol Description

SKiMPy makes use of the existing traffic in the network to trigger key exchange. Pe-
riodic routing beacons (HELLO), sent by proactive routing protocols, are such an
example. The following two messages are specific to SKiMPy:

• Authentication Request (AUTH_REQ): sent by a node after it detects traffic
from a node having a key that is worse than its own one. The message is used to
inform the remote node that the sending node is willing to transfer its key.

• Authentication Response (AUTH_RESP): sent by a node, as a result of a re-
ceived AUTH_REQ message. The message is used to inform the remote party
that the node is willing to perform the authentication and receive the remote and
better key.

The protocol consists of three phases, namely (I) Neighborhood Discovery, (II)
Batching and (III) Key Exchange.

During phase I, a node listens to all traffic sent by its immediate neighbors. If it de-
tects a node using a worse key (explained in detail in Section 3.2), it will send an Au-
thentication Request message to it, saying it is willing to pass on its key. Upon receiv-
ing such a message, the other node enters the phase II, waiting for possible other au-
thentication requests before sending a response. This batching period is used for op-
timization - a node will only perform authentication with the best of all neighbors. All
the other keys will, due to the transitiveness property of the better than relation, at
some point get overruled and therefore there is no point in getting them. After the
node has chosen its peer, it sends an Authentication Response after which its peer ini-
tializes the actual authentication procedure, that is, exchange of certificates, establish-
ing a secure tunnel, and finally transfer of the key. The reason for having such a hand-
shake procedure is to ensure that the nodes can indeed communicate. In some stan-
dards, such as 802.11b [19], traffic like broadcast messages can be sent on a lower
transmitting rate with larger transmission range than data messages. Thus, broadcast
messages might reach a remote node and trigger a key exchange, even though the
nodes cannot directly exchange data packets.

Figure 1 shows an example of the key exchange between three nodes (A, B and C)
and indicates the different phases of the key exchange for node A. Node A enters
phase I when turned on. Nodes B and C do not directly hear each other’s traffic and
are only able to communicate through node A, once the shared key is fully deployed.

The initial states of the three nodes are as follows: A has the key KA, B has KB and
C has KC. In this example, KC is the best key, whereas KA is the worst key.

Phase I:
1. Node A is turned on. All nodes send periodic HELLO messages which are

part of the routing protocol.
2. A receives a HELLO message from B, notices a key mismatch, but ignores it

because KA is worse than KB.
3. A receives HELLO from C, notices a key mismatch, but ignores it because

KA is worse than KC.
4. B and C receive HELLO from A, they both notice they have a better key than

KA, and after a random time delay (to prevent traffic collisions), send an
AUTH_REQ message to A.

secure tunnel
establishment

2

3

4

1

2

2

3

4

AB C

AUTH_REQ

AUTH_RESP

KC
save(KC)

KB KA KC

KC>KB

KB>KA
AUTH_REQ

HELLO

HELLO HELLO

HELLO

Phase I

Phase II

Phase III

1

1

KC>KA
KB>KA

Fig. 1. Message Flow Diagram

Phase II:
1. A receives AUTH_REQ from B notices that B has a better key and schedules

authentication with B. The authentication is to be performed after a certain
waiting period, in order to hear if some of the neighbors has an even better
key.

2. A receives AUTH_REQ from C as well, sees that C has a key better than KB,
and therefore decides to perform authentication with C instead.

Phase III:
1. A sends an AUTH_RESP message to C, telling it is ready for the authentica-

tion process
2. C initiates the authentication procedure with A, they exchange and verify cer-

tificates; the secure tunnel is established.
3. C sends its key KC to A through the secure tunnel.
4. A receives the key and saves it locally; the old key KA is saved in the key re-

pository for eventual later use; A sends the new key further, encrypted with
KA.

In the next round, that is, after it hears traffic from node B signed with KB, node A

will use the same procedure to deliver the new key KC to node B, hence establishing a
common shared key in the whole cell.

There are two important parameters which influence the performance of the proto-
col and therefore have to be chosen carefully. The delays used before sending
AUTH_REQ are random, to minimize the possibility of collisions in the case when
more nodes react to the same message. On the other hand, the delay from the moment
a node receives AUTH_REQ to the moment it chooses to answer with AUTH_RESP
is a fixed interval and should be tuned so that it manages to hear as many neighbors as
possible within a reasonable time limit. By this, all nodes that have been heard during
the waiting period can be efficiently handled in the same batch.

3 Design Considerations

Our protocol is designed for highly dynamic networks, where nodes may appear, dis-
appear and move in an arbitrary manner. Topology changes are inevitable. The key
management protocol must have low impact on the available resources, i.e. battery,
bandwidth and CPU time. Here, we analyze the different security and performance
issues that had to be considered while designing the protocol, as well as respective
solutions integrated into SKiMPy.

3.1 Authentication

An important characteristic of an emergency and rescue operation is that the organiza-
tions involved (police, fire department, paramedics, etc.) are often well structured,
public entities. Before the rescue personnel comes to the disaster scene, all devices are
prepared for their tasks. One task in the preparation phase, which we call a priori

phase [23], is the installation of valid certificates. The certificates are signed by a
commonly trusted authority, such as the ministry of internal affairs, ministry of de-
fense, etc., on the top of the trust chain. This gives nodes the possibility to authenti-
cate each other without need for contacting a third party.

Certificates on the nodes can identify devices, users handling them, or even both.
The users would then present their certificate to the device by means of a token, i.e.
smartcard. The decision for this does not impact the key management in SKiMPy, but
it impacts the way how lost and stolen nodes are handled, i.e., revoking certificates
and/or blacklisting of such nodes. We explain this issue later, in Section 3.5.

3.2 Choosing Keys

The main task of SKiMPy is to make sure that all the nodes agree on a shared key.
When a node is turned on, it generates a random key with a random ID number. The
uniqueness of the key IDs must be ensured by e.g. using the hash value of the key
itself as part of the ID, by including the nodes MAC address, etc. The final shared key
is always chosen from nodes’ initial keys. To achieve this, we introduce the notions of
better and worse keys, together with the relation “>” representing better than. There
are several possible schemes for deciding which of the keys is better or worse and all
schemes can be equally valid, as long as they cannot cause key exchange loops, are
unambiguous and transitive: (A > B and B > C) => A > C. The necessary control in-
formation, which depends on the scheme chosen, is always sent with the message
signature.

We briefly describe two schemes and their advantages and drawbacks.
The first scheme uses arithmetic comparison of two numbers, i.e. the key having a

higher or lower ID number, timestamp or a similar parameter, is considered to be bet-
ter. The advantage of this scheme is that it is unambiguous, transitive and easy to im-
plement. In addition, it can be “tweaked” in a way that would prevent a single node to
cause re-keying of an already established network cell. For example, if the scheme
defines that the lower ID number means a better key, the highest bit of the ID number
can be always set to “1” when the node is turned on, and cleared once two nodes
merge. Assuming that nodes in a certain area will in most cases pop up independently,
this simple and yet efficient method might prevent a lot of unnecessary re-keying traf-
fic. If we use the keys’ timestamps instead of the ID numbers, choosing a lower time-
stamp could imply that the key is older and that more nodes have it already. SKiMPy
does not require the clocks of different devices to be synchronized and therefore, the
given assumption might not necessarily be true, especially if the key creator’s clock
was heavily out of sync. One major drawback of the presented scheme is that a small
cell (consisting of, for example, 2 nodes) could easily cause re-keying of a much big-
ger cell (having, for example, 100 nodes), which would be a waste of resources.

The second scheme takes care of this problem by using the number of nodes in
each network cell as the decisive factor. The simple rule for this scheme is to always
re-key the smaller cell, i.e. the one with the lower number of nodes, thus minimizing
resource consumption for the necessary re-keying. The approximate number of nodes
can be either retrieved from the routing protocol state information (if, for example, the
OLSR routing protocol [7] is used) or maintained at a higher protocol layer, as it is

done in our project. However, if not all of the nodes have exactly the same informa-
tion (which is to be expected in a dynamic scenario), and for some obscure reason we
have more simultaneous merging processes between the same two cells, a key ex-
change loop may occur. One approach to this problem is to adjust in each node the
state information of the number of nodes in its cell, always increasing it when new
nodes join, but never decreasing it upon partitioning of the cell.

At the present, we use the first scheme, choosing always a key with a lower ID
number. An in-depth study of both schemes and their variations is subject to ongoing
and future work.

3.3 Key Distribution

Once a node gets a new key as a result of network merging, the key should be de-
ployed within its previous network cell. There are several ways to achieve this:

• Proactively - each node receiving the key immediately forwards it to the others.
This approach ensures prompt delivery of the key to all nodes, but it also gener-
ates a lot of unnecessary network traffic.

• Reactively - when a node receives a key, it does nothing. Only after detecting a
message sent by a neighbor and signed with the old key, the node sends the new
key further. This approach uses less resources, but it takes more time for the
whole cell to get a stable key.

• Combination - the first node getting the new key (that is, the node which per-
formed the merge) immediately forwards the key to its one-hop neighbors, since
it knows that no other node in its previous cell has it yet. The other nodes do not
distribute it right away, but rather when (if) they notice that a node still uses an
old key. This approach keeps the number of necessary broadcast messages con-
taining the key at a minimum.

In any of the given cases, the new key is encrypted using the old one before send-

ing, giving all the other nodes the possibility to immediately start using it. The old key
is saved for a short period of time, for possible latecomers. This can be done because
in this particular case the key change was not performed explicitly for the purpose of
preventing traffic analysis attacks.

In our implementation, described in Section 4.1, we use the combination approach.

3.4 Key Update

When created, each key has a companion key (called update key) used to periodically
update it. The update key is never used on traffic that goes onto the network and
therefore it is not prone to traffic-analysis attacks. The nodes must periodically update
the main key. The new key can be computed using one-way hash functions such as
SHA-1 [15] or MD5 [25], ensuring backward secrecy in the case the key gets broken
at some stage. In addition to the ID of the key used to sign it, a message contains also
the update-number saying how many times the key on the sender-node has been up-
dated. That way, the receiver can easily compute the new key if it notices a mismatch,

which could happen since we can’t expect all the nodes to perform the update at ex-
actly the same time. The local update will not take place if the received message has
an invalid signature.

3.5 Exclusion of Nodes

Once authenticated, a node is a fully trusted member of the network. This poses the
evident problem of how to exclude such a node once the device has been lost or, even
worse, stolen by a malicious third party. At the present, exclusion of already authenti-
cated nodes is not solved in SKiMPy and is part of ongoing and future work. Here, we
describe some ideas on measures to be taken in order to ensure that such a node stays
out of the network.

First, the node’s certificate must be revoked, preventing the node from re-
authenticating later at some stage. Since there is no central authority, a decision is
reached on which node or person can perform the task of revoking certificates. If the
certificates contain also additional attributes such as rank or role of the persons (as-
suming that the certificates do in fact represent persons, not devices), it can be de-
cided that only certain roles/ranks (such as leader) can perform revocation and black-
listing. In theory, the leaders’ devices might also be stolen, but in practice they should
normally be physically well protected. It is important to ensure that the compromised
node itself does not revoke and blacklist legitimate ones or, even worse, the whole
network.

Next, the node’s IP address should be put on a common blacklist. Assuming that IP
addresses are bound to the certificates (as presented in e.g. [22]), the nodes would be
unable to change their IP address. However, relying on fixed IP addresses might in-
troduce new issues and should be considered carefully. Traffic coming from black-
listed nodes must be discarded at the lowest possible layer and, in case legally signed
traffic coming from a blacklisted node is detected, the compromised key must be re-
moved.

Additional methods might be used to ensure that devices cannot be used by unau-
thorized persons. One such example is a system relying on short range wireless au-
thentication tokens. A token is installed into the personnel’s vests or watches, ensur-
ing confidentiality of the data and denying unauthorized access to the devices when
they get out of their token’s range [8].

3.6 Batching

To save resources as much as possible, our protocol makes the nodes learn about their
neighborhood before acting, reducing the number of performed authentications and
thus reducing directly CPU and bandwidth consumption. This is possible due to the
fact that all nodes directly trust the same certificate authority and, therefore, if a node
has been successfully authenticated before and has received the shared secret, we im-
plicitly trust it.

Emphasis has been put on optimization with regards to number of messages sent
out in the air. We measured the number of certificates and key management messages
exchanged, and compared these figures to the number of routing messages needed
from the moment when the nodes were turned on, up to the moment when a stable
shared key was established. To perform these measurements, we used a static, wired
test bed with 16 nodes.

Figures 2 and 3 show that introducing neighborhood awareness approximately
halved the total number of messages and, proportionally, the time needed to reach a
stable state. Moreover, the number of messages carrying certificates, whose size is
much larger than other key management messages, has been reduced to approxi-
mately 23% of the initial number. The authentication was considered to be done after
the exchange of certificates. Therefore, the results shown here are only an approxima-
tion, and might be slightly different when an actual authentication algorithm is used.

3.7 Additional Issues

The protocol’s goal is to establish a secure network infrastructure. SKiMPy makes it
impossible for a misbehaving node to induce a key that has either expired, or that
would not have been selected in a normal operation. Such keys will be immediately
discarded.

Timeouts are used during the Key Exchange phase (explained in Section 2) to en-
sure that a node does not end up in indefinite wait states or deadlocks as a result of
possible link failures. Care must be taken for possible Denial-of-Service attacks in
any of these cases.

In the closing phase of the rescue operation [23], the keys must be removed to pre-
vent them from being possibly reused afterwards on a different rescue site.

0

50

100

150

200

250

300

350

0 50
measurement

m
es

sa
ge

s

Routing
Key mgmt
Certificates

Fig. 3. Results for the same scenario, after
introducing the batching process

0

50

100

150

200

250

300

350

0 50
measurement

m
es

sa
ge

s

Routing
Key mgmt
Certificates

Fig. 2. Traffic analysis of the first, non-
optimized protocol implementation

4 Protocol Implementation and Evaluation

4.1 Implementation

Optimized Link State Routing Protocol (OLSR) [7] is a proactive routing protocol for
ad-hoc networks which is one of the candidates to be used in our solution for the
emergency and rescue operations. The olsr.org OLSR daemon [28] is the implementa-
tion we decided to test, since it is portable and expandable by means of loadable
plugins. One example of such a plugin, present in the main distribution, is the Secure
OLSR plugin [16]. The plugin is used to add signature messages to OLSR traffic,
only allowing nodes that possess the correct shared (pre-installed) key to be part of
the OLSR routing domain. One important functionality this plugin lacks is a key
management protocol. Even though SKiMPy is mainly designed to protect all traffic
and not only routing, it is still a good opportunity to test and analyze it in a realistic
environment with a real routing protocol.

The key management protocol has been coded directly into the security plugin, al-
though the plans are to make it as a separate one. X.509 certificates [18] and
OpenSSL [27] are currently used to perform node authentication.

4.2 Evaluation Results

To facilitate development of this and other protocols, we created an emulation test
bed, called NEMAN [24]. Routing daemons run independently, each attached to a
different virtual Ethernet device. We use the monitoring channel of the emulator to
analyze the keys used by each of the routing daemons. In order to test performance
and scalability the protocol, we have made measurements from 2 to 100 nodes, with
two very different kinds of scenario: chain and mesh. Figures 4 and 5 show example
screenshots taken from the GUI, representing the two different scenarios.

In a chain scenario, the nodes are lined up in a single chain and the distance be-
tween all nodes in the chain is such that only the direct neighbors can communicate in
a single hop with each other. We consider this to be the worst case scenario still giv-
ing full network connectivity. Given that all the nodes have to perform authentication
with both their neighbors, this leaves no place for optimization, i.e. batching during
the waiting period.

Fig. 4. Example of a chain scenario

Fig. 5. Example of a mesh scenario

In a mesh scenario, however, nodes have multiple, randomly scattered neighbors,
as it is natural in ad-hoc networks. Having multiple neighbors allows the protocol to
exploit the batching phase, reducing traffic and resource consumption.

Ten independent runs were performed for each number of nodes and each scenario.
All the nodes were started simultaneously (which we assume is the worst case for our
protocol), with a random key and key ID. To be able to meaningfully compare the
results, the nodes were static and the density was constant. The delay in the batching
period was set to be 1 second, i.e. half of the interval used by OLSR to send HELLO
messages.

One important fact that the results on Figure 6 immediately show is that the proto-
col scales linearly with linear increase of the number of nodes and physical network
area accordingly (thus giving the same density of nodes). After approximately 10
nodes, the total time became almost independent on the network size. By the fourth
second, most authentications have already been performed and the key distribution
process came into place. In some additional measurements, we introduced node
movement using the random waypoint mobility model. As long as all of the nodes
remained reachable and the density was constant, movement did not induce a notable
delay.

We also proved that having multiple neighbors does in fact lower the time neces-
sary to reach a stable state. This scenario gives less deviation as well, which is under-
standable since in the case of chain there is more fluctuation of keys, nicely seen in
the GUI.

5 Related Work

Different authentication schemes are available as a starting point for key manage-
ment.

Devices can exchange a secret or pre-authentication data through a physical con-
tact or directed infrared link between them [3, 26]. Another way is for the users to
compare strings displayed on their devices (a representation of their public key, dis-
tance between them, etc. as presented in [9]). Since user interaction in a rescue opera-
tion should be kept as minimum, we need a different approach.

0

5

10

15

20

25

30

0 20 40 60 80 100
Number of nodes in the wireless cell

Se
co

nd
s

Mesh
Chain

Fig. 6. Time needed to achieve a stable shared key

Threshold cryptography schemes, such as [20] and [31] require all nodes that are
going to perform signatures to carry a share of the group private key. The full signa-
ture is acquired by a certain, predefined number of nodes who present partial signa-
tures computed using their shares. These schemes allow a small number of nodes to
be compromised and still not to present a threat for the network. However, since we
do not know the number of nodes that can be expected at the rescue scene and small
partitions might always be present, this approach is not suited for our scenario.

Čapkun et al. [10] present a fully self-organized public-key management system
that does not rely on trusted authorities, developed mainly for networks where users
can join and leave without any centralized control. This is not applicable to networks
used in rescue operations, where only authorized nodes are allowed to participate. In
[11], they present a solution similar to ours, explained in Section 3.1, allowing nodes
to authenticate each other by means of pre-installed certificates with a common au-
thority. The advantages of such a system are twofold: first, the data in the network is
more secure. Second, establishing trust and agreeing on a shared key is much more
efficient, i.e., faster and less resources are consumed.

Related key management protocols can be roughly divided into the following three
categories [6].

The first one relies on a fixed infrastructure and servers that are always reachable.
Since we never know where accidents will happen, we should expect them to happen
at places where we cannot rely on the fact that fixed infrastructure will be present.

The next category comprises contributory key agreement protocols, which are not
suited for our scenario for several reasons. Such protocols ([1, 5, 12, 29, 30], to name
a few) are based on Diffie-Hellman two-party key exchange [13] where all the nodes
give their contribution to the final shared key, causing re-keying every time a new
node joins or an existing node leaves the group. In an emergency and rescue opera-
tion, we can expect nodes to pop up and disappear all the time, often causing network
partitioning and merging. Therefore, using contributory protocols would cause a lot of
computational and bandwidth costs which cannot be afforded. Besides, most of these
protocols rely on some kind of hierarchy (chain, binary tree, etc.) and a group man-
ager to deploy and maintain shared keys. In a highly dynamic scenario this approach
would be quite ineffective. Another reason why such protocols are not suited for us, is
that in order for the nodes to be able to exchange keys, a fully working routing infra-
structure has to be established prior to that. Since the routing protocol is one of the
main things we need to protect, this is a major drawback. Asokan and Ginzboorg [2]
present a password-based authenticated key exchange system. A weak password is
known to every member and it is used by each of them to compute a part of the final
shared key. This approach shares some already mentioned drawbacks and introduces
new ones which conflict with our scenario and requirements. User interaction is
needed and it is assumed that all the members are present when creating the key.

The last category are protocols based on key pre-distribution. The main character-
istic of such protocols is that a pair or group of nodes can compute a shared key out of
pre-distributed sets of keys present on each node. These sets of keys are either given
by a trusted entity before the nodes come to the scene [4, 14, 21], or chosen and man-
aged by the nodes themselves, as it is done in DKPS [6].

SKiMPy is different in the sense that it uses pre-installed certificates to perform di-
rect authentication between two nodes. This makes it more simple and efficient.

6 Conclusion

In this paper, we presented a simple and efficient key management protocol, called
SKiMPy, developed and optimized especially for highly dynamic ad-hoc networks.
The protocol relies on the fact that there will be an a priori phase of rescue and emer-
gency operations, within which certificates will be deployed on rescue personnel’s
devices. Pre-installed certificates are necessary due to the fact that highly sensitive
data may be exchanged between the rescue personnel. The certificates make it possi-
ble for the nodes to authenticate each other without need for a third party present on
the scene.

We described a proof-of-concept implementation, as well as evaluation results. The
results show that SKiMPy performs very well and it scales linearly with the number
of nodes. As part of further work we will analyze more in-depth different key selec-
tion and distribution schemes, authentication protocols, and fine tune certain protocol
parameters, like the delays described in Section 2. Open issues like exclusion of com-
promised nodes, duplicate key ID numbers, denial of service attacks, etc. are also sub-
ject of further investigation.

References
1. Alves-Foss, J., “An Efficient Secure Authenticated Group Key Exchange Algorithm for

Large And Dynamic Groups”, Proceedings of the 23rd National Information Systems Se-
curity Conference, pages 254-266, October 2000

2. Asokan, N., Ginzboorg, P., “Key Agreement in Ad Hoc Networks”, Computer Communi-
cations, 23:1627-1637, 2000

3. Balfanz, D, Smetters, D. K., Stewart, P, Wong, H. C., “Talking To Strangers: Authentica-
tion in Ad-Hoc Wireless Networks”, Proceedings of the 9th Annual Network and Distrib-
uted System Security Symposium (NDSS'02), San Diego, California, February 2002

4. Blom, R., “An Optimal Class of Symmetric Key Generation System”, Advances in Cryp-
tology - Eurocrypt’84, LNCS vol. 209, p. 335-338, 1985

5. Bresson, E., Chevassut, O., Pointcheval, D., “Provably Authenticated Group Diffie-
Hellman Key Exchange - The Dynamic Case (Extended Abstract)”, Advances in Cryptol-
ogy - Proceedings of AsiaCrypt 2001, pages 290-309. LNCS, Vol. 2248, 2001

6. Chan, Aldar C-F., “Distributed Symmetric Key Management for Mobile Ad hoc Net-
works”, IEEE Infocom 2004, Hong Kong, March 2004

7. Clausen T., Jacquet P., “Optimized Link State Routing Protocol (OLSR)”, RFC 3626, Oc-
tober 2003

8. Corner, Mark D., Noble, Brian D., “Zero-Interaction Authentication”, at The 8th Annual
International Conference on Mobile Computing and Networking (MobiCom’02), Atlanta,
Georgia, September 2002

9. Čagalj, M., Čapkun, S., Hubaux, J.-P., “Key agreement in peer-to-peer wireless net-
works”, to appear in Proceedings of the IEEE (Specials Issue on Security and Cryptogra-
phy), 2005

10. Čapkun, S., Buttyán, L., Hubaux, J.-P., “Self-Organized Public-Key Management for
Mobile Ad Hoc Networks”, IEEE Transactions on Mobile Computing, Vol. 2, No. 1,
January-March 2003

11. Čapkun, S., Hubaux, J.-P., Buttyán, L., “Mobility Helps Security in Ad Hoc Networks”,
In Proceedings of the 4th ACM Symposium on Mobile Ad Hoc Networking and Comput-
ing (MobiHoc’03), Annapolis, Maryland, June 2003

12. Di Pietro, R., Mancini, L., Jajodia, S., “Efficient and Secure Keys Management for Wire-
less Mobile Communications”, Proceedings of the second ACM international workshop
on Principles of mobile computing, pages 66-73, ACM Press, 2002

13. Diffie, W., Hellman, M., “New directions in cryptography”, IEEE Transactions on Infor-
mation Theory, 22(6):644-652, November 1976

14. Eschenauer L., Gligor, Virgil D., “A Key-Management Scheme for Distributed Sensor
Networks”, Proceedings of the 9th ACM Conference on Computer and Communication
Security (CCS’02), Washington D.C., November 2002

15. Federal Information Processing Standard, Publication 180-1. Secure Hash Standard
(SHA-1), April 1995

16. Hafslund A., Tønnesen A., Rotvik J. B., Andersson J., Kure Ø., “Secure Extension to the
OLSR protocol”, OLSR Interop Workshop, San Diego, August 2004

17. Hollick, M., Schmitt, J., Seipl, C., Steinmetz, R., “On the Effect of Node Misbehavior in
Ad Hoc Networks”, Proceedings of IEEE International Conference on Communications,
ICC'04, Paris, France, volume 6, pages 3759-3763. IEEE, June 2004

18. Housley, R., Ford, W., Polk, W. and D. Solo, “Internet X.509 Public Key Infrastructure”,
RFC 2459, January 1999

19. IEEE, “IEEE Std. 802.11b-1999 (R2003)”,
http://standards.ieee.org/getieee802/download/802.11b-1999.pdf

20. Luo, H., Kong, J., Zerfos, P., Lu, S., Zhang, L., “URSA: Ubiquitous and Robust Access
Control for Mobile Ad-Hoc Networks”, IEEE/ACM Transactions on Networking, Octo-
ber 2004

21. Matsumoto, T., Imai, H., “On the key predistribution systems: A practical solution to the
key distribution problem”, Advances in Cryptology - Crypto’87, LNCS vol. 293, p. 185-
193, 1988

22. Montenegro, G., Castelluccia, C., “Statistically Unique and Cryptographically Verifiable
(SUCV) Identifiers and Addresses”, NDSS'02, February 2002

23. Plagemann, T. et al., “Middleware Services for Information Sharing in Mobile Ad-Hoc
Networks - Challenges and Approach”, Workshop on Challenges of Mobility, IFIP TC6
World Computer Congress, Toulouse, France, August 2004

24. Pužar, M., Plagemann, T., “NEMAN: A Network Emulator for Mobile Ad-Hoc Net-
works”, Proceedings of the 8th International Conference on Telecommunications (Con-
TEL 2005), Zagreb, Croatia, June 2005

25. Rivest, R., “The MD5 Message-Digest Algorithm”, RFC 1321, April 1992
26. Stajano, R., Anderson, R., “The Resurrecting Duckling: Security Issues for Ad-hoc Wire-

less Networks”, 7th International Workshop on Security Protocols, Cambridge, UK, 1999
27. The OpenSSL project, http://www.openssl.org/
28. Tønnesen A., “Implementing and extending the Optimized Link State Routing protocol”,

http://www.olsr.org/, August 2004
29. Wallner, D., Harder, E., Agee, R., “Key management for Multicast: issues and architec-

ture”, RFC 2627, June 1999
30. Wong, C., Gouda, M. and S. Lam, “Secure Group Communications Using Key Graphs”,

Technical Report TR 97-23, Department of Computer Sciences, The University of Texas
at Austin, November 1998

31. Zhou, L., Haas, Z., “Securing Ad Hoc networks”, IEEE Network, 13(6):24-30, 1999

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

