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ABSTRACT

A key building block in music transcription and indexing
operations is the decomposition of the music signal into
notes. We model a note signal as a periodic signal with
(slow) global variation of amplitude (reflecting attack, sus-
tain, decay) and frequency (limited time warping). Also
voiced speech admits such a representation. The bandlim-
ited variation of global amplitude and frequency gets ex-
pressed through a subsampled representation and parame-
terization of the corresponding signals. The periodic signal
is assumed to arrive at a set of sensors with different ampli-
tude and delay. Assuming additive white Gaussian noise,
a Maximum Likelihood approach is proposed for the es-
timation of the model parameters and the optimization is
performed in an iterative (cyclic) fashion that leads to a se-
quence of simple least-squares problems. Particular atten-
tion is paid to the estimation of the basic periodic signal,
which can have a non-integer period. Simulation results re-
veal that the proposed approach allows to extract such sig-
nals accurately from an underdetermined mixture of several,
using iterated successive interference cancellation.

1. INTRODUCTION

The majority of blind separation algorithms are based on the
theory of Independent Component Analysis. The idea is to
estimate the inverse mixing matrix using statistical indepen-
dence of source signals. However, one area of research in
Blind Source Separation, the Underdetermined BSS, is rel-
atively untouched. It refers to the case when there are less
mixtures than sources. The underdetermined BSS poses a
challenge because the mixing matrix is not invertible and
the traditional ICA methods does not work. And, contrary
to most blind separation algorithms, the source extraction it-
self requires additional assumptions on the source statistics
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or structure. Several approaches in the literature are pro-
posed to solve the problem exploiting essentially the time-
frequency sparcity of the source signals [1, 2]. However, all
the proposed solutions perform separation, independently,
on each time-frequency frame; and do not take advantage
of signal correlation in different frames.

On the other hand, Sinusoidal model based speech/music
analysis/synthesis has received considerable interest in the
signal processing community [3, 4, 5]. The sinusoidal trans-
form represents a signal as a sum of discrete time-varying
sinusoids or partials. The estimation of the model parame-
ters is typically carried out using a short-time Fourier trans-
form (STFT) with a fixed analysis frame size and a fixed
stride between frames. The sinusoids are extracted by peak-
picking in the STFT magnitude spectrum. Intermediate val-
ues are obtained by interpolation. A fundamental prob-
lem faced by the traditional sinusoidal-model based tech-
niques is that, since the sppech/music signal is strongly non-
stationary , it is not always possible to find a good tradeoff
between time and frequency resolution. Another drawback
of these techniques is that they ignore the harmonic struc-
ture of the music signal. For treating periodic signals, the
state of the art is limited to the estimation of pure periodic
signals with period equal to an integer number of samples
[6, 7]. In these references, the authors propose a Maximum
Likelihood approach to analyze pure periodic signals. They
show that the resulting procedure can be interpreted as a
signal projection onto suitable subspaces. In [8], we ex-
tend the results of those references, and we try to merge
the modulated sinusoidal modeling and the periodic signal
analysis techniques, by considering periodic signals with
non-integer period and global amplitude variation and time
warping. And, we show that the previous model gives a
good tradeoff between modeling and estimation noise.

In all cases, all the previous references treat instanta-
neous mixtures and ignore propagation environment. In this
paper, we assume a mono-path propagation environment,
and we will focus on the underdetermined convolutive au-
dio signal separation problem.



2. SIGNAL MODEL

In the sinusoidal modeling, the signal is modeled as a sum
of evolving sinusoids:
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where ����� represents the instantaneous phase of the � ��

partial. As the music signal is quasi-periodic, ����� can be
decomposed into
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where ����� characterizes the evolution of the instantaneous
phases around the ��� harmonic; and can be assumed to be
low-frequency.
The Global Modulation assumption implies that all harmonic
amplitudes evolve proportionally in time; and that the in-
stantaneous frequency of each harmonic is proportional to
the harmonic index:�
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In summary, we model an audio signal as the superposition
of harmonic components with a global amplitude modula-
tion and time warping (that can be interpreted in terms of
phase variations):
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where
� �� is an additive white Gaussian noise.

� ��	� represents the amplitude modulating signal. It
allows an evolution of the note power, reflecting at-
tack, sustain, and decay.

� ��	� denotes the phase modulating signal (that can
be interpreted in terms of time warping). The time
warping focuses on the time evolution of the instanta-
neous frequency, and allows the modeling of several
musical phenomena (vibrato, glissando ...)

In [8], we have expressed the time warping in term of inter-
polation operation over a basic periodic signal. In sum, the
audio signal can be written as:
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where :
- � � 	
�
� � � � 
����� , represents the observation vector.
- � � 	��
� � � � ������ , represents the signal of interest.

- � � 	��
� � � � ������ , denotes the noise vector.
- � � 	��
� � � � ���� ���, characterizes the harmonic signa-
ture over essentially one period
- � � ����	��
� � � ������, represents the global ampli-
tude modulation signal.
- 
 is an � � �� � interpolation matrix characterizing the
time warping. See [8] for a detailed description.

3. AUDIO SEPARATION IN MONO-PATH
ENVIRONMENT

As a first approximation to the propagation environment,
we use the delay-mixing model. In this model, only direct
path signal components are considered. Signal components
from one source arrive with a given attenuation and a frac-
tional delay between the time of arrivals at two receivers.
By fractional delays, we mean that delays between receivers
are not generally integer multiples of the sampling period.
The signal attenuation and delay depend on the position of
the source with respect to the receiver axis and the distance
between receivers. Under the previous propagation assump-
tions, observations can be written as:
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where ��
����
���	 represent � distinct audio source signals
following (4)(with distinct periodicities); ������������ a
spatially and temporally white gaussian noise signals; ��

the relative attenuation of the ��� source at the ��� sensor;
and ��
 the propagation delay (function of the direction of
arrival �
, and the sensor geometry (that we suppose fix but
unknown)).

As in [8], the time delay operation can be expressed us-
ing an interpolation matrix �� (as it can be interpreted as a
particular time warping):
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where �� is an � �� toeplitz, band matrix characterizing
the time delay operation.

Thus, the total observation vector can be written as
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where
- � � 	� �
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� �� , is a �� � 
 vector representing the

observation vector
- � � 	��� � � ���	 �

� , ���
 vector representing the signals
of interest.
- � � 	� �

� � � �� �
� �� , is a ���
 vector denoting the noise

vector
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�is an

�� � �� interpolation matrix characterizing the prop-
agation environment.
The previous model is linear in � , and � (separately); � ,
and �, being parameterized nonlinearly. Trying to estimate
all factors jointly is a difficult nonlinear problem. Indeed,
as the noise is assumed to be a white Gaussian signal, the
ML approach leads to the following least-squares problem:
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The estimation can easily be performed iteratively though.

3.1. Channel Estimation

Under the current estimate of the source signal ��, the Chan-
nel coefficients are optimized using


��
�������

���� �� ����� (7)

On the other hand,���� �� ������ � ��
���

������� �
	�

��

��
����
��

�����
�

and,������� �
	�

��

��
����
��

�����
�

� ����
� �

	�

��

���


������������
�

	�

��

��
 ���
�� ������
�

 ���

��
��� ������� � ���� �

where ����� � ����
��
 denotes the estimate of the ��� source

delayed by ��
; and ����� 
� � �
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��� �� �
� � repre-
sents the estimate of the correlation between signals � and

.

Note that the quantities �� ����� � ����� � 	�  can be ne-
glected, as source signals are assumed independent, having
different periodicities. Then, the optimization problem in
(7) is separable; and can be solved, independently, for each
channel parameter.

The optimization over a given time-lag ��
 can be inter-
preted in terms of maximizing the correlation �� �
�� �����
between the observed signal on the sensor and the � �� source
signal delayed by ��
 .
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Ones the different time lags are estimated, the optimal
attenuation coefficients are computed using:
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3.2. Source Signal Estimation

If we assume that the channel parameters known, the ML
source estimation is given by:��� � ���

where �� �
�
���

�
�� denotes the pseudoinverse of � .

On the other hand, the source signal is supposed to be a
pseudo-periodic signal (as in (4)). Thus, it can be written as���
 � ��
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where ��
, �

, and ��
 are estimated in an iterative (cyclic)

fashion (as in [8]) from ���
:
3.2.1. Periodic Signature Estimation

If we assume that the matrices ��
� �

 are given, the periodic
signature �
 can be isolated as���
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Then minimizing (10) w.r.t. � leads to
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Hence the periodic signature gets estimated by using the
data over the whole note duration.

3.2.2. Instantaneous Amplitude Estimation

The instantaneous amplitude gets estimated based on the
noisy data and noise energies estimation. By assuming the
instantaneous amplitude be piecewise constant, �
�	� gets
estimated using:
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where 
 � �� denotes temporal averaging over the piecewise
interval containing 	; ��
 � ��


�

��
 denotes the latest esti-
mate of the signal of interest.

3.2.3. Instantaneous Frequency Estimation

As for the instantaneous amplitude, the instantaneous fre-
quency gets estimated on a frame-by-frame basis. In each
frame, the instantaneous frequency is optimized using (10):��� 
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where �� denotes the maximum relative frequency varia-
tion in the current frame compared to the previous frame,
reflecting an assumed limited frequency variation rate. The
optimal instantaneous frequency value for the current frame
gets determined from a finite set of discrete values within
the thus limited range.



4. A ISIC IMPLEMENTATION FOR THE AUDIO
SOURCE SEPARATION TECHNIQUE

In previous, we have proposed an audio separation scheme
tacking into account simultaneously the source signal struc-
ture and the propagation environment model. The inher-
ent complexity, however, is cubic on �� (as the technique
requires the inversion of the non Toeplitz matrix �). For
practical implementation, Iterated Successive Interference
Cancellation (ISIC) approach can been used to approximate
the previous technique; with only a linear complexity.

Iterated Successive Interference Cancellation is a non-
linear type of parameters estimation scheme in which pa-
rameters are estimated successively. The approach succes-
sively cancels concurrent parameters using their current es-
timate. The ISIC audio separation algorithm appears in the
table below.

Iterated SIC Multichannel Audio Source Separation

Computation

Initialization

for � � � � � do

�� � Periodic Source Extraction���� ���

for � � � � � do

��� � arg������
�	 ���� �����
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end for

end for

Iteration

for � � � � � do

Interference Cancellation

for � � � � � do
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�

���� 
�� ��������

end for

Channel Estimation

for � � � � � do

��� � arg������
�	 ���� �����
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end for

Non parametric source estimation

������
��
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parametric source estimation

�� � Periodic Source Extraction���� ���

end for

cost/update (�� �): 
 ���� ���

Table 1. Iterated SIC Multichannel Audio Source Separa-
tion

Note that the non parametric source estimation (com-
puted using a simple matched filter) can be interpreted as a
delay and sum beamformer. It leads then to a second level
of interference cancellation.

Using the proposed approach, we perform separation us-
ing a single musical record. The proposed signal represents
a synthesized mixture of three notes played by an acoustic
guitar. The record has a duration of 1s and is sampled at
22.050 kHz (see figure 1). Their pitch frequencies are re-
spectively 82 Hz, 92 Hz, 116 Hz. The SNR of the input
signal is 26 dB.
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Fig. 1. Original guitar signal

In figure 2, we plot the different outputs of the algorithm
concerning the note 1: original signal (�����), synthesized
signal (������) according to the global amplitude and fre-
quency modulation model, signal error (�����) (difference
between the previous two), and instantaneous amplitude sig-
nal ����	�.
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Fig. 2. ”Note 1” Extracted parameters.

In order to analyze the extraction quality of our algorithm,
we plot the Fast Fourier transform of the original signals
(�
) and the residual error signals ( ��
) (figure 3).
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Fig. 3. The FFT of the original and residual error signals for
the notes 1, 2, and 3.

We also calculate the signal to (measurement plus ap-
proximation) noise ratio for the estimated model (for the
total note duration, and for the steady-state region). Results
are summarized in the table 2.

Total SNR (in dB) SNR for steady-state

portion only (in dB)

Note 1 	�� 16.8

Note 2 
�� 7.3

Note 3 ��� 8.9

Table 2. Total and steady-state SNR.

We see that, even using a single mixture, the extraction
performances on the steady state portions are quite good:
taking only periodicity into account is sufficient to perform
separation. However, on the attack and decay portions, the
extraction technique achieves poor performances. In fact, as
the different note signals are asynchronous (don’t start and
finish at the same time), amplitude estimation based on a
simple energy detection fails in tracking the note variations.

5. A MODIFIED MULTICHANNEL AUDIO
SOURCE EXTRACTION TECHNIQUE

The reason for which the previous algorithm fails to track
instantaneous amplitude variations is that amplitude esti-
mation relies only on energy considerations. If only one
audio source is present in the mixture, in presence of an ad-
ditive stationary noise (signal enhancement problem), such
approach is sufficient to extract the audio source. However,
if more than one source is present (and/or the noise is non-
stationary), instantaneous amplitude estimation should take
into account some additional information (such as the signal
periodicity, the harmonic signature...).
In this paper, we suggest using a Least Squares estimator
for the instantaneous amplitude estimation.

In fact, if we assume that � �

� ��
� are given, the audio

source estimate ���
 can be written as
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On the other hand, the instantaneous amplitude (� 
) is sup-
posed to be lowpass band. Then, it can be down-sampled.
The remaining samples can be estimated using linear inter-
polation. Linear interpolation can be formalized as a linear
transform:	





�

�
�

�
�

...

...
�



�





� �

	






�


 � � � � �
#��#�� � � � �
#	�#	� � � � �
� 
 � � � �

...
� � � � � � � 


�






�
	
� �
�

...
�
�

�
� � # �


Where ��
������� denote the freedom degrees of our model;
and # represents the interpolation matrix.

In our simulation, we propose using Hamming window
for linear interpolation. In fact, the linear interpolation can
be interpreted as a linear filtering operation of the upsam-
pled signal with a low-pass filter (triangular for linear inter-
polation, rectangular for nearest-neighbor interpolation...).
By using a smooth window (with energy concentrated es-
sentially in the principal lobe), the estimation error gets am-
plified less. Thus, we do better estimation.

We can also vary the interpolation window length with
time. In fact, in the transient state the instantaneous ampli-
tude is much more large-band than in harmonic steady-state;
the fact that allows using larger windows (then increase es-
timation performance).

In sum, the estimation problem can be formalized as fol-
low
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and, ��
 gets estimated using the least-squares technique (via
the ��
).
The main drawback of this technique is its non robustness
to the initialization. In fact, the estimation of the instanta-
neous amplitude relies strongly on the quality of estimation
of the periodic signal �
. So, we suggest using the first ver-
sion (with the non-coherent amplitude estimation) for the
algorithm initialization.

We simulate the previous audio mixture using this mod-
ified version and we plot the different algorithm outputs
(concerning the note 1) on figure 4. We observe that the
algorithm achieves better performances; and that was able
to detect the begin and the end of the musical note. Figure 5
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Fig. 4. ”Note 1” Extracted parameters.

shows curves of the estimation SNR (for the total note du-
ration, and for the steady state portion). Once again, we ob-
serve that the second version achieves better performances
(not only on transition regions, but also on steady state re-
gion).
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Fig. 5. Estimation SNR for mono-mixture audio source sep-
aration (version 1 on solid line, modified version on dotted
line).

We consider now the Multi-Input Multi-Output problem (fig-
ure 6). We assume that the audio source signals are captured
by two microphones (spaced by � � ���$). The angles of
arrival of the three source signals are respectively �� � ��

	 ,
�� � �, and �	 � ��

	 . The relative attenuations at the sec-
ond microphones are respectively ��� � ���, ��� � 
, and
��	 � 
�
.

Fig. 6. Multi-Input Multi-Output propagation scenario.

Figure 7 shows curves of the estimation SNR (for the to-
tal note duration) for MISO (slide line) and MIMO (dotted
line) scenarios. As it was expected, we observe that, ones
relative delays and attenuations are well estimated, using
multiple output enable algorithm to achieve better perfor-
mances.
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Fig. 7. Estimation SNR for MISO (solid line), and MIMO
(dotted line) audio source separation.

6. CONCLUSION

In this paper we have investigated the underdetermined con-
volutive source separation of audio mixtures. We have con-
sidered the periodic signal model with a slow global ampli-
tude and phase variation. We have proposed a separation
technique that takes into account simultaneously the source
signal structure and the propagation environment model. Sim-
ulations show that the extraction technique is suitable for
the analysis of musical notes, and produces good auditive
synthetic results.
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