
On the Stationarity of TCP Bulk Data Transfers

G. Urvoy-Keller

Institut Eurecom, 2229, route des crêtes, 06904 Sophia-Antipolis, France
urvoy@eurecom.fr

Abstract. While the Internet offers a single best-effort service, we re-
mark that (i) core backbones are in general over provisioned, (ii) end
users have increasingly faster access and (iii) CDN and p2p solutions
can mitigate network variations. As a consequence, the Internet is to
some extent already mature enough for the deployment of multimedia
applications and applications that require long and fast transfers, e.g.
software or OS updates. In this paper, we devise a tool to investigate
the stationarity of long TCP transfers over the Internet, based on the
Kolomogorov-Smirnov goodness of fit test. We use BitTorrent to obtain
a set of long bulk transfers and test our tool. Experimental results show
that our tool correctly identify noticeable changes in the throughput of
connections. We also focus on receiver window limited connections to
try to relate the stationarity observed by our tool to typical connection
behaviors.

1 Introduction

The current Internet offers a single best-effort service to all applications. As a
consequence, losses and delay variations are managed by end-hosts. Applications
in the Internet can be classified into two classes: elastic applications, e.g. web or
e-mail, that can tolerate throughputs and delays variations; and real time appli-
cations, that are delay sensitive (e.g. voice over IP) or throughput sensitive (e.g.
video-on-demand). With respect to the above classification, a common belief is
that the current Internet with its single best-effort service requires additional
functionality (e.g. DiffServ, MPLS) to enable mass deployment of real-time ap-
plications. Still, a number of facts contradict, or at least attenuate, this belief:
(i) recent traffic analysis studies have deemed the Internet backbone ready to
provide real-time services [15]; (ii) the fraction of residential users with high
speed access, e.g. ADSL or cable, increases rapidly; (iii) network-aware coding
schemes, e.g. mpeg4-fgs [7], combined with new methods of transmission like
peer-to-peer (p2p) techniques, e.g. Splitstream [5], have paved the way toward
the deployment of real-time applications over the Internet.
The above statements have lead us to investigate the variability of the service
provided by the Internet from an end connection point of view. As TCP is car-
rying most of the bytes in the Internet [10], our approach is to concentrate on
long lived TCP connections. Bulk data transfers represent a significant portion
of the current Internet traffic load, especially with p2p applications [2]. By ana-
lyzing bulk data transfers, we expect to better understand the actual interaction

between TCP and the Internet. This is important for future applications 1 and
also for CDN providers that rely on migrating traffic on the ”best path” from
central to surrogate servers [8]. CDN providers generally rely on bandwidth es-
timation tools, either proprietary or public tools [12] to perform path selection.
However, the jury is still out on the stationarity horizon provided by such tools,
i.e. how long will the estimation provided by the tool remain valid or at least
reasonable. In the present work, we propose and evaluate a tool that should help
solving these issue. The rest of this paper is organized as follows. In Section
2, we review the related work. In Section 3, we present our dataset. In Section
4, we present our tool to extract stationarity periods in a given connection. In
Section 5, we discuss results obtained on our dataset. Conclusions and future
work directions are presented in Section 6.

2 Related Work

Mathematically speaking, a stochastic process X(t) is stationary if its statistical
properties (marginal distribution, correlation structure) remain constant over
time.
Paxson et al. [17] have studied the stationarity of the throughput of short TCP
connections (transfers of 1Mbytes) between NIMI hosts. The major difference
between this work and the present work is that we consider long bulk data
transfer (several tens of minutes) and our dataset is (obviously) more recent
with hosts with varying access capacity, whereas NIMI machines consistently
had good Internet connectivity. Other studies [4, 13] have concentrated on the
non stationarity observed on high speed link with a high number of aggregated
flows. They studied the time scales at which non stationarity appears and the
causes behind it. Also, recently, the processing of data streams has emerged as
an active domain in the database research community. The objective is to use
database techniques to process on-line stream at high speed (e.g. Internet traffic
on a high speed link). In the data stream context, detection of changes is a
crucial task [14, 3].

3 Dataset

Our objective is to devise a tool to assess the stationarity of TCP bulk data
transfers. To check the effectiveness of the tool, we need to gather samples, i.e.
long TCP transfers, from a wide set of hosts in the Internet. A simple way to
attract traffic from a variety of destinations around the world is to use a p2p
application. As we are interested in long data transfers, we used BitTorrent,
a popular file replication application [11]. A BitTorrent session consists in the

1 Our focus in the present work is on throughput, which is an important QoS met-
rics for some multimedia applications, e.g. VoD, but arguably not all multimedia
applications, a typical counter-example being VoIP.

replication of a single large file on a set of peers. BitTorrent uses specific algo-
rithms to enforce cooperations among peers. The data transfer phase is based
on the swarming technique where the file to be replicated is broken into chunks
(typical chunk size is 256 kbytes) that peers exchange with one another. The
BitTorrent terminology distinguishes between peers involved in a session that
have not yet completed the transfer of the file, which are called leechers and
peers that have already completed the transfer, which are called seeds. Seeds re-
main in the session to serve leechers. Connections between peers are permanent
TCP connections. Due to the BitTorrent algorithms [11], a typical connection
between two hosts is a sequence of on periods (data transfers) and off periods
(where only keep-alive messages are transfered). Figure 1, where y axis values
are one second throughputs samples, depicts a typical one way connection of
approximately 14 hours with clear on and off phases .

0 1 2 3 4 5

x 10
4

0

100

200

300

400

500

600

700

800

900

1000

time(s)

Th
ro

ug
hp

ut
 (k

bi
ts

/s
)

Fig. 1. A typical (one-way) BitTorrent
connection

0 2 4 6 8 10 12 14 16

x 10
4

0

2

4

6

8

10

12

14

Time (second)

Th
ro

ug
hp

ut
 (M

bi
ts

/s
)

Total Aggregate Rate
Access Link Speed (10 Mbits/s)

Fig. 2. Aggregate rate of the BitTorrent
application during the experiment

The dataset we have collected consists of connections to about 200 peers that
were downloading (part of) the file (latest Linux Mandrake release) from a seed
located at Eurecom. More precisely, a tcpdump trace of 10 Gbytes was gener-
ated during a measurement period of about 44 hours. While the 200 connections
are all rooted at Eurecom, the 10 Mbits/s access link of Eurecom should not
constitute a shared bottleneck for two reasons. First, with BitTorrent, a client
(leecher or seed) does not send to all its peers simultaneously but only to 4 of
them, for sake of efficiency. Second, the total aggregate throughput remains in
general far below the 10 Mbits/s as shown in figure 2 while the average traffic
generally observed on this link (to be added to the traffic generated by our Bit-
Torrent client to obtain the total offered load for the link) exhibits an average
rate around 1 Mbits/s with a peak rate below 2 Mbits/s.
To illustrate the diversity of these 200 peers, we have used the maxmind service
(http://www.maxmind.com/) to assess the origin country of the peers. In table 1,
we ranked countries based on the peers that originate from each of them. Unsur-
prisingly, we observe a lot of US peers (similar observation was made in [11] for a

similar torrent, i.e. Linux Redhat 9.0) while the other peers are distributed over a
wide range of 27 countries (see http://encyclopedia.thefreedictionary.com/ISO%203166-

1 for the meaning of the abbreviations used in table 1).
Our objective is to study long bulk data transfers in the Internet. To obtain

Country # peers Country # peers Country # peers Country # peers

US 87 NL 4 BR 2 YU 1

UK 24 DE 3 LT 2 BE 1

CA 14 AU 3 CN 1 AT 1

FR 12 PE 3 NO 1 ES 1

IT 8 AE 3 SI 1 CH 1

SE 8 CL 2 TW 1

PL 7 PT 2 CZ 1
Table 1. Origin countries of the 200 peers

meaningful samples, we extracted the on periods from the 200 connections, re-
sulting in a total of 399 flows. The algorithm used to identify off-periods is to
detect periods of at least 15 seconds where less than 15 kbytes of data are sent,
as BitTorrent clients exchange keep-alive messages at a low rate (typically less
than 1000 bytes per second) during periods where no data transfer is performed.
We further restricted ourselves to the 184 flows whose duration is higher than
1600 seconds (∼ 26.6 minutes), for reasons that will be detailed in section 4. We
call flow or initial flow an on-period and stationary flow a part of a flow that is
deemed stationary. For each flow, we generate a time series that represents the
throughput for each 1 second time interval. The average individual throughput of
these 184 flows is quite high, 444 kbits/s. Overall, these flows correspond to the
transfer of about 50 Gbytes of data over a cumulated period of about 224 hours
(the flows of duration less than 1600 seconds represent about 14 Gbytes of data).
Due to its size, we cannot claim that our dataset is representative of the bulk
transfers in the Internet. It is however sufficiently large to demonstrate the effec-
tiveness of our tool. It also shows that BitTorrent is a very effective application
to collect long TCP transfers from a variety of hosts in terms of geographical
location and access link speed (even if it is unlikely to observe clients behind
modem lines, as downloading large file behind a modem line is unrealistic).

4 Stationarity Analysis Tool

4.1 Kolmogorov-Smirnov (K-S) test

Given two i.i.d samples X1(t)t∈{1,...n} and X2(t)t∈{1,...n}, the Kolmogorov-Smirnov
test enables us to determine whether the two samples are drawn from the same
distributions or not. The test is based on calculating the empirical cumulative
distribution functions of both samples and evaluating the absolute maximum

difference Dmax between these two functions. The limit distribution of Dmax un-
der the null hypothesis (X1 and X2 drawn from the same distribution) is known
and thus Dmax is the statistics the test is built upon. In the sequel of this paper,
we used the matlab implementation of the K-S test with 95% confidence levels.

4.2 K-S test for change point detection

Our objective is to detect stationary regions in time series, or equivalently to
detect change points (i.e. border points between stationary regions). We used
the K-S test to achieve this goal. Previous work as already used the K-S test to
detect changes [9, 3], though not in the context of traffic analysis.
The basic idea behind our tool is to use two back-to-back windows of size w
sliding along the time series samples and applying the K-S test at each shift of
the windows. If we assume a time series of size n, then application of the K-S
test leads to a new binary time series of size n − 2w, with value zero whenever
the null hypothesis could not be rejected and one otherwise. The next step is to
devise a criterion to decide if a ’1’ in the binary time series corresponds to a false
alarm or not. Indeed, it is possible to show that even if all samples originate from
the same underlying distribution, the K-S test (or any other goodness of fit test
[16]) can lead to spurious ’1’ values. The criterion we use to deem detection of a
change point is that at least wmin ≈ w

2 consecutive ones must be observed in the
binary time series. wmin controls the sensitivity of the algorithm. The intuition
behind setting wmin to a value close to w

2 is that we expect the K-S test to
almost consistently output ’1’ from the moment when the right-size window
contains about 25% of points from the ”new” distribution (the distribution after
the change point) up to the moment when the left-size window contains about
25% of points from the ”old” distribution. In practice, a visual inspection of
some samples revealed that using such values for wmin allows to correctly detect
obvious changes in the time series. Figure 3 presents an example on one of our
TCP flows time series (aggregated at a 10 seconds time scale - see next section
for details) along with the scaled binary time series output by the tool and the
change points (vertical bars). This example illustrates the ability of the test to
isolate stationary regions. Note also that the output of the binary time series
that represents the output of the K-S test for each window position (dash line
in figure 3) exhibits a noticeable consistency. This is encouraging as oscillations
in the output of the test would mean that great care should be taken in the
design of the change point criterion. As this is apparently not the case, we can
expect our simple criterion (wmin consecutive ’1’ values to detect a change) to
be effective.

4.3 K-S test in the presence of correlation

We want to apply the K-S change point tool described in the previous section
to detect changes in the throughput time series described in section 3. However,
we have to pay attention that, due to the close loop nature of TCP, consecutive

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

700

800

Sample index (1 sample=10 seconds)

Th
ro

ug
hp

ut
 in

 k
bi

ts
/s

Fig. 3. Initial time series (thin line), binary
time series (dash line) and change points
(thick bars)

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

l
0

F(
l 0)

Fig. 4. Cumulative distri. function of l0

one-second throughputs samples are correlated2. If all samples are drawn from
the same underlying distribution, a simple heuristic to build an uncorrelated
time series out of a correlated time series is to (i) compute the auto-correlation
function of the initial time series, (ii) choose a lag l0 at which correlation is close
enough to zero and (iii) aggregate the initial time series over time intervals of size
l0. Specifically, let X(t)t∈{1,...n} be the initial time series. Its auto-correlation

function is AC(f) =
∑n−f

i=1 X̄(i+f)X̄(i)

nσ2
X̄

, where X̄(t) , X(t) − E[X] and σ2
X̄

is

the variance of X̄. AC(f) measures the amount of correlation between samples
located at positions t and t + f . If ever the time series is i.i.d., then |AC(f)|
should be upper bounded by 2√

n
for f > 1 [6]. For a correlated time series, we can

choose l0 such that ∀f > l0, |AC(f)| ≤ 2√
n
. We then generate the aggregate time

series Y (t)t∈{1,...d n
l0
e} where Y (t) =

∑(t+1)×l0
u=t×l0+1 X(u)

l0
. This method is however not

applicable to our TCP time series as changes in the network conditions prevent
us from assuming the same underlying distributions over the whole duration of
a flow.
To overcome this difficulty and be able to use the K-S test, we aggregate each
time series at a fixed value of l0 = 10. This means that we average the initial
time series over intervals of 10 seconds. As the average throughput of the flows
is 444 kbits/s, an average flow will send more than 400 packets (of size 1500
bytes) in a 10 second time interval, which is reasonably large enough for a TCP
connection to have lost memory of its past history (e.g. to have fully recovered
from a loss). To assess the level of correlation that persists in the time series after
aggregation at the 10 second time scale, we have computed, for each stationary
interval obtained with our tool, the autocorrelation function of the process in
this interval. We then derive the lag l0 after which the autocorrelation function

2 While correlation and independence are not the same, we expect that removing cor-
relation will be sufficient in our context to obtain some almost independent samples.

remains (for 95% of the cases) in the interval
[
− 2√

n
, 2√

n

]
. Figure 4 represents

the cumulative distribution function of l0. We notice that about 95% of the l0
values are below 5, which indicates that the ”remaining” correlation is of short
term kind only.
Based on the result of figure 4, one could however still argue that we should
continue further the aggregation of the time series for which the correlation is
apparently too large, say for l0 ≥ 3. Note however that the choice of the time
scale at which one works directly impacts the separation ability of the K-S test.
Indeed, as we use windows of w samples, a window corresponds to a time interval
of 10 × w seconds, and we won’t be able to observe stationary periods of less
than 10×w seconds. For example, the results presented in section 5 are obtained
with w = 40, which means that we won’t be able to observe stationary periods
of less than 400 seconds (∼ 6.7 minutes). Thus, there exists a trade-off between
the correlation of the TCP throughput time series that calls for aggregating over
large time intervals and the separation ability of the test that calls for having as
much small windows as possible.
A second reason why we have chosen to aggregate at a fixed 10 second time
scale value is that we expect our tool to be robust in the presence of short term
correlation. We investigate this claim in the next section, on synthetic data,
where we can tune the amount of correlation. While by no means exhaustive,
this method allows us to obtain insights on the behavior of K-S test in the
presence of correlation.

4.4 Test of the robustness of the tool with synthetic data

We consider a first-order auto-regressive process X with X(t) = aX(t − 1) +
Z(t),∀t{1, . . . n} where Z is a purely random process with a fixed distribution.
We choose two distributions for Z (leading to Z1 and Z2) to generate two samples
X1(t) and X2(t). We then form the compound vector [X1(t)X2(t)] and apply
the K-S change point test. We can vary the a parameter to tune the amount
of correlation and test how the K-S change point test behaves. Specifically, we
consider a ∈ {0.2, 0.5, 0.9} as these values roughly correspond to l0 values (as
defined in the previous section) equal respectively to 2, 5 and 20. With respect
to the results presented in figure 4, we expect the K-S test to behave properly
for a ≤ 0.5 (i.e. l0 ≤ 5). In table 2, we present results obtained when Z1(t) and
Z2(t) are derived from normal distributions with respective means and variances
(0.4, 0.3) and (1.5, 1.5) where a given sample Z1(t) (resp. Z2(t)) is obtained
by averaging 10 independent samples drawn from the normal distribution with
parameters (0.4, 0.3) (resp. (1.5, 1.5)). The main idea behind this averaging phase
is to smooth X1(t) and X2(t) in a similar fashion that the throughput samples
are smoothed at a 10 second time scale in the case of our BitTorrent dataset. As
the transition between X1(t) and X2(t) is sharp thanks to the difference in mean
between Z1 and Z2, we expect that the change point tool will correctly detect it.
Now, depending on the correlation structure, it might happen that more change
points are detected. This is reflected by the results presented in table 2, where for

different values of a, w and wmin, we compute over 1000 independent trajectories,
the average number of detections made by the algorithm (without false alarm,
we should obtain 1) and the percentage of cases for which a change is detected in
the interval [450, 550] that corresponds to the border between X1(t) and X2(t)
in the compound vector [X1(t)X2(t)], each vector having a size of 500 samples.
When the latter metric falls below 100%, it indicates that the correlation is such
that our tool does not ncessarily notice the border between X1(t) and X2(t) any
more. From table 2, we note that such a situation occurs only for a = 0.9. Also,
when the amount of correlation increases, the average number of points detected
increases dramatically, as the correlation structure of the process triggers false
alarms as illustrated by the trajectory depicted in figure 5. For a given w value,
increasing the treshold wmin helps reducing the rate of false. Note that while
the results obtained here on synthetic data seem to be better for a criterion
wmin = 40, we used wmin = 15 on our dataset as it was giving visually better
results. A possible reason is the small variance of the throughput time series as
compared to the corresponding mean for our dataset. More generally, we note
that tuning w and wmin is necessary to tailor the tool to the specific needs of a
user or an application.

a w wmin % of cases with one Average number
detection in [450, 550] of detections

0.2 40 15 100 2.4

0.2 40 40 100 1

0.2 80 15 100 2.4

0.2 80 40 100 1.2

0.5 40 15 100 5.6

0.5 40 40 100 1.1

0.5 80 15 100 4.5

0.5 80 40 100 1.9

0.9 40 15 100 14.6

0.9 40 40 99 6.5

0.9 80 15 89.9 8

0.9 80 40 90.7 5.6
Table 2. Change point detection tool performance in the presence of correlation

4.5 Empirical validation on real data

For the results obtained in this section and the rest of the paper, we used w = 40
as special care must be taken when using the K-S test for smaller values [16].
Also, we consider wmin = 15 as it visually gives satisfying results on our dataset.
In addition, to obtain meaningful results, we restrict the application of the tool
to time series with at 4 × w samples (the tool will thus output at least 2 × w

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Fig. 5. Sample trajectory of [X1X2] with the detected change points (vertical bars) for
w = 40 and wmin = 15

results), i.e. to flows that last at least 1600 seconds.
Our change point analysis tool can be easily validated with synthetic data. How-
ever, we need to further check whether the results obtained on real traces are
reasonable or not. We thus applied our tool on our 184 flows to obtain 818
stationary flows. To assess the relevance of the approach, we proceeded as fol-
lows: for any two neighboring stationary flows from the same flow, we compute
their means µ1 and µ2 and their standard deviations σ1 and σ2. We then com-
pute the ”jump in mean” ∆µ = µ2−µ1

µ1
× 100 and ”jump in standard deviation”

∆σ = σ2−σ1
σ1

× 100. We then break each stationary flows into two sub-flows of
equal size and compute their means µi

1 and µi
2 and standard deviations σi

1 and σi
2

(i = 1, 2). We can then define jumps in means and standard deviations between
two sub-flows of a given stationary flow. The latter jumps are called intra jumps
while the jumps between stationary flows are called inter jumps. The idea behind
these definitions is to demonstrate that the distributions of intra jumps are more
concentrated around their mean value than the distributions of inter jumps. To
compare those distributions, we used boxplot representations. A boxplot of a
distribution is a box where the upper line corresponds to the 75 percentile p̂0.75

of the distribution, the lower line to the 25 percentile p̂0.25 and the central line
to the median. In addition, the p̂0.25 − 1.5× IQR and p̂0.75 + 1.5× IQR values
(IQR = p̂0.75 − p̂0.25 is the inter quantile range, which captures the variability
of the sample) are also graphed while the samples falling outside these limits are
marked with a cross. A boxplot allows to quickly compare two distributions and
to assess the symmetry and the dispersion of a given distribution. In figure 6,
we plotted the boxplots for the inter jump in mean (left side) and intra jump in
mean (right side). From these representations, we immediately see that the intra
jump distribution is thinner than the inter jumps distribution which complies
with our initial intuition. Note also that the means of the inter and intra jump
distributions are close to zero as the ∆µ definition can result in positive or neg-
ative values and it is quite reasonable that overall, we observe as much positive

as negative jumps. Figure 7 depicts the boxplots for the inter and intra jumps in
standard deviations. The results are somehow similar to the ones for jumps in
mean although less pronounced and more skewed toward large positive values.

Inter Intra

−100

−50

0

50

100

150

V
al

ue
s

Fig. 6. Boxplot representation of the inter
jump in mean (left side) and intra jump in
mean (right side)

Inter Intra

−100

0

100

200

300

400

500

600

700

V
al

ue
s

Fig. 7. Boxplot representation of the in-
ter jump in standard deviation(left side)
and intra jump in standard deviation (right
side)

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Durations (minutes)

C
D

F

Initial Flows
Stationary Flows

Fig. 8. CDFs of flows and stationary flows
durations

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput in kbits/s

C
D

F

Initial Flows
Stationary Flows

Fig. 9. CDFs of flows and stationary flows
throughputs

5 Results on the BitTorrent Dataset

5.1 Stationary periods characterization

As stated in the previous section, the K-S change point tool has extracted 818
stationary flows out of the 184 initial flows. This means that, on average, a flow
is cut into 4.45 stationary flows. Figure 8 represents the cumulative distribution
functions (cdf) of the duration of stationary and initial flows. Stationary flows
have an average duration of 16.4 minutes while initial flows have an average
duration of 73 minutes.
Figure 9 represents the cumulative distribution functions of throughputs of the

stationary and initial flows. Overall, stationary flows tend to exhibit larger
throughputs than initial flows. Indeed, the mean throughput of stationary flows
is 493.5 kbits/s as compared to 444 kbit/s for the initial ones. This discrepancy
is an indication that the K-S change point test is working properly as it extracts
from the initial flows stationary periods where the throughputs significantly dif-
fer from the mean throughput of the flow. The cdfs differ at the end because
whenever the K-S test exhibits a small period (relative to the flow it is extracted
from) with high throughput, it will become one sample for the cdf of stationary
flows, whereas it might have little impact for the corresponding sample for the
cdf of the initial flows (if the high throughput part only corresponds to a small
fraction of the initial flow).
Using our tool, we can also investigate transitions between consecutive station-
ary periods. The left boxplot of figure 6 allows us to look globally at transitions
between stationary periods. From this figure, we can observe that most of the
changes result in jumps of the mean value that are less than 20% in absolute
values. This is encouraging for applications that can tolerate such changes in
their observed throughput since they can expect to experience quite long stable
periods, typically several tens of minutes (at least in the context of our dataset).
However, a lot of values fall outside the plus or minus 1.5×IQR interval, meaning
that some transitions are clearly more sharp than others.

5.2 The case of receiver window limited connections

In a effort to relate the stationarity observed by our tool to the intrinsic char-
acteristics of the connections, we considered the case of receiver window limited
flows. A receiver window limited flow is a flow whose throughput is limited by
the advertised window of the receiver. The motivation behind this study is that
as receiver window limited flows are mostly constrained by some end hosts char-
acteristics (the advertised window of the receiver), they should exhibit longer
stationary periods than other flows. Indeed, the intuition is that those other
flows have to compete ”more” for resources along their path with side traffic,
which should affect their throughput, leading to change points.
We first have to devise a test that flags receiver window limited flows. We pro-
ceed as follows. For each flow, we generate two time series with a granularity
of 10 seconds. The first time series, Adv(t) represents the advertised window of
the receiver while the second one, Out(t) accounts for the difference between the
maximum unacknowledged byte and the maximum acknowledged byte. The sec-
ond time series provides an estimate of the number of outstanding bytes on the
path at a given time instant. The Out(t) time series is accurate except during
loss periods. Note that the computation of Out(t) is possible since our dataset
was collected at the sender side, as the Eurecom peer in the BitTorrent session
was acting as a seed during the measurement period. A flow is then flagged
receiver window limited if the following condition holds:∑N

t=1 1Adv(t)−3×MSS≤Out(t)≤Adv(t)

N
≥ 0.8

where N is the size of the two time series and MSS is the maximum segment size
of the path. The above criterion simply states that 80% of the time, the estimated
number of outstanding packets must lie between the advertised window minus
three MSS and the advertised window. By choosing a treshold of 80%, we expect
to be conservative.
Application of the test on our dataset leads us to flag about 13.7% of the flows
as receiver window limited. The next issue is to choose the non window limited
flows. We adopt the following criterion:∑N

t=1 1Out(t)≤Adv(t)−3×MSS

N
≥ 0.9

Applying the above criterion, we obtained about 14.4% of non receiver window
limited flows. A straightforward comparison of the durations of the stationary
flows extracted from the flows of the two families (receiver window limited and
non receiver limited) is misleading as the duration of their respective connec-
tions is different. We thus use two other metrics. First, we compute the number
of stationary flows into which a flow is cut in each family. We obtain that the
receiver window limited flows are on average cut into 3.5 stationary flows while
non receiver window limited flows are cut into 4.5 stationary flows. The second
metric we consider is the relative size, in percentage, of the stationary flows with
respect to the size of flow they are extracted from for the two familied. Figure 10
represents the cumulative distribution functions of the percentages for the two
families. From this figure, we observe that receiver window limited stationary
flows are relatively larger than non receiver window limited ones in most cases.
Also, in figure 11, we plot the cumulative distributions of the throughput of
the stationary flows for both families. We conclude from figure 11 that receiver
window limited stationary flows exhibit significantly smaller throughputs values
than non receiver window limited ones. This might mean that receiver limited
flows correspond to paths with larger RTT than non receiver window limited
ones, as this would prevent these flows from achieving high throughput values.
This last point as well as our definition of window limited flows (we only con-
sidered around 28% of the flows of our dataset to obtain those results) would
clearly deserve more investigation.

6 Conclusion and Outlook

Internet Traffic analysis becomes a crucial activity, e.g. for ISPs to do trou-
bleshooting or for content providers and researchers that are willing to devise
new multimedia services in the Internet. Once information on some path has
been collected, its needs to be analyzed. The first step is to divide traces into
somewhat homogeneous period and to flag anomalies. In this paper, we concen-
trate on the analysis of the service perceived by long TCP connections in the
Internet. We have developed a change point analysis tool that extracts stationary
periods within connections. We follow a non parametric approach and based our
tool on the Kolmogorov-Smirnov goodness of fit test. We validated our change

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relative duration (%)

C
D

F
Non Window limited
Window limited

Fig. 10. Histogram of relative size of rec.
window and non rec. window limited sta-
tionary flows

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput (kbits/s)

C
D

F

Window Limited
Non Window limited

Fig. 11. Histogram of rec. window and
non rec. window limited stationary flows
throughputs

point tool in various ways on synthetic and operational datasets. Overall, the
tool manages to correctly flag change points as long as little correlation persists
at the time scale at which it is applied. We worked at the 10 second time scale,
which is a reasonable time scale for some multimedia applications such as VoD.
We also focused on receiver window limited connections to relate the stationarity
observed by our tool to typical connection behaviors.
As future work, we intent to pursue in this direction by correlating the station-
arity periods with some other network events like RTT variations or loss rates.
We would also like to study the extent to which our tool could be used in real
time and to investigate how it could be tailored to the need of some specific
applications. It is also necessary to compare our tool with some other change
point techniques [1].

Acknowledgment

The author is extremely grateful to the anonymous reviewers for their valuable
comments and to M. Siekkinen for the trace collection and time series extraction.

References

1. M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes - Theory and
Application, Prentice-Hall, Inc. ISBN 0-13-126780-9, 1993.

2. N. Ben Azzouna, F. Clerot, C. Fricker, and F. Guillemin, “Modeling ADSL traffic
on an IP backbone link”, Annals of Telecommunications, December 2004.

3. S. Ben-David, J. Gehrke, and D. Kifer, “Detecting changes in data streams”, In
Proceedings of the 30th International Conference on Very Large Databases, 2004.

4. J. Cao, W. S. Cleveland, D. Lin, and D. X. Sun, “On the nonstationarity of
Internet traffic”, In Proceedings of the 2001 ACM SIGMETRICS international
conference on Measurement and modeling of computer systems, pp. 102–112, ACM
Press, 2001.

5. M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh,
“SplitStream: High-bandwidth multicast in a cooperative environment”, In Pro-
ceedings of SOSP’03, New York, USA, October 2003.

6. C. Chatfield, The analysis of time series - An introduction, Chapman & Hall,
London, UK, 1996.

7. P. De Cuetos, P. Guillotel, K. Ross, and D. Thoreau, “Implementation of Adaptive
Streaming of Stored MPEG-4 FGS Video over TCP”, In International Conference
on Multimedia and Expo (ICME02), August 2002.

8. J. Dilley, B. Maggs, J. Parikh, H. Prokop, and R. Sitaraman, and B. Weihl, “Glob-
ally distributed content delivery”, Internet Computing, IEEE, pp. 50–58, Sept.-Oct
2002.

9. H. Eghbali, “K-S Test for Detecting Changes from Landsat Imagery Data”, IEEE
Trans Syst., Man & Cybernetics, 9(1):17–23, January 1979.

10. M. Fomenkov, K. Keys, D. Moore, and k claffy, “Longitudinal study of Internet
traffic from 1998-2003”, Cooperative Association for Internet Data Analysis -
CAIDA, 2003.

11. M. Izal, G. Urvoy-Keller, E. Biersack, P. Felber, A. Al Hamra, and L. Garcés-
Erice, “Dissecting BitTorrent: Five Months in a Torrent’s Lifetime”, In Passive
and Active Measurements 2004, April 2004.

12. M. Jain and C. Dovrolis, “End-to-end available bandwidth: measurement method-
ology, dynamics, and relation with TCP throughput”, IEEE/ACM Transactions
on Networking, 11(4):537–549, 2003.

13. T. Karagiannis and et al., “A Nonstationary Poisson View of Internet Traffic”, In
Proc. Infocom 2004, March 2004.

14. B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based change detection:
methods, evaluation, and applications”, In IMC ’03: Proceedings of the 3rd ACM
SIGCOMM conference on Internet measurement, pp. 234–247, ACM Press, 2003.

15. A. Markopoulou, F. Tobagi, and M. J. Karam, “Assessing the quality of voice com-
munications over Internet backbones”, IEEE/ACM Transactions on Networking,
11:747–760, October 2003.

16. S. Siegel and N. J. Castellan, Nonparametric statistics for the Behavioral Sciences,
McGraw-Hill, 1988.

17. Y. Zhang, V. Paxson, and S. Shenker, “The Stationarity of Internet Path Proper-
ties: Routing, Loss, and Throughput”, ACIRI, May 2000.

