
Structured Peer-to-Peer Networks: Faster, Closer, Smarter

P. Felber 1, K.W. Ross 2, E.W. Biersack 3, L. Garcés-Erice 4, G. Urvoy-Keller 3

1 University of Neuchâtel, Switzerland 2 Polytechnic University, NY, USA
3 Institut EURECOM, Sophia Antipolis, France 4 IBM Research, Zürich, Switzerland

Abstract

Peer-to-peer (P2P) distributed hash tables (DHTs) are structured networks with decentralized lookup capabilities.
Each node is responsible for a given set of keys (identifiers) and lookup of a key is achieved by routing a request
through the network toward the current peer responsible for the desired key. DHT designs are usually compared in
terms of degree (number of neighbors) and diameter (length of lookup paths). In this paper, we focus three other
desirable properties of DHT-based systems: We first present a topology-aware DHT that routes lookup requests
to their destination along a path that mimics the router-level shortest-path, thereby providing a small “stretch.”
We then show how we can take advantage of the topological properties of the DHT to cache information in the
proximity of the requesters and reduce the lookup distance. Finally, we briefly discuss techniques that allow users
to look up resources stored in a DHT, even if they only have partial information for identifying these resources.

1 Introduction

Several important proposals have recently been put forth for providing distributed peer-to-peer (P2P) lookup
services based on distributed hash tables (DHTs). A DHT maps keys (data identifiers) to the nodes of an overlay
network and provides facilities for locating the current peer node responsible for a given key. DHT designs differ
mostly by the way they maintain the network and perform lookups: there is a fundamental trade-off between the
degree of the network (the number of neighbors per node, i.e., the size of the routing tables) and its diameter
(the average number of hops required per lookup) [12]. There are, however, other important aspects that should
be taken into consideration when designing a DHT.

In this paper, we present our research on three facets of DHT-based systems. We first explore in Section 2
the design of a P2P lookup service for which topological considerations take precedence so as to provide faster
lookup. We propose a P2P network design with a new lookup service, TOPLUS (Topology-Centric LookUp
Service). In TOPLUS, peers that are topologically close are organized into groups. In turn, groups that are
topologically close are organized into supergroups, close supergroups into hypergroups, etc. The groups within
each level of the hierarchy can be heterogeneous in size and in fan-out. Groups can be derived directly from
the network prefixes contained in BGP tables or from other sources. TOPLUS has many strengths, including a
small “stretch” (the ratio of the latency between two hosts through the overlay to the latency through layer-3 IP
routing), efficient forwarding mechanisms, and a fully symmetric design.

We also elaborate on the natural caching capabilities of TOPLUS and show how it can be leveraged to
replicate content closer to the requesters. Distributed caches can be deployed in a straightforward manner at any
level of the TOPLUS hierarchy in order to reduce transfer delays and limit the external traffic of a given network
(campus, ISP, etc.).

Copyright 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1

Finally, we present in Section 3 distributed indexing techniques that allow users to locate data using incom-
plete information, i.e., partial keys, and hence provide a smarter lookup. These techniques have been designed
for indexing data stored in arbitrary DHT networks and discovering the resources that match a given user query.
Our system creates multiple indexes, organized hierarchically, which permit users to locate data even using
scarce information, although at the price of a higher lookup cost.

Due to space limitations, we shall refer the reader to other publications [5, 4, 3] for a more detailed de-
scription of our research on DHTs, including additional technical information, experimental evaluation, and
exhaustive comparison with related work.

2 Topology Awareness

Early DHT designs did not take into account network topology. In particular, small steps in the logical address
space usually resulted in large geographical jumps, which was observed to be a major bottleneck. As a result,
some researchers have modified their DHTs to take topology into special consideration (e.g., [10, 1, 6]), but as
an add-on rather as a foundation of the P2P system. For instance, in Pastry [1], a message takes small topological
steps initially and big steps at the end of the route so as not to wander too far off the source, but the message is
unlikely to proceed physically toward the destination.

In contrast, our TOPLUS lookup service was designed from the ground up with topological considerations
in mind. It strives to route messages along a path that mimics the router-level shortest-path distance, i.e., by
taking steps that systematically reduce the distance remaining to the destination. Informally, routing proceeds
as follows: Given a message with key k under the responsibility of a peer pd in the system, (1) source peer ps

sends the message (through IP-level routers) to a first-hop peer p1 that is “topologically close” to pd; (2) after
arriving at p1, the message remains topologically close to pd as it is routed closer and closer to pd through the
subsequent intermediate peers. Clearly, if the lookup service satisfies these two properties, the stretch should be
very close to 1.

We now formally describe TOPLUS in the context of IPv4. Let I be the set of all 32-bit IP addresses.1 Let
G be a collection of sets such that G ⊆ I for each G ∈ G. Thus, each set G ∈ G is a set of IP addresses. We
refer to each such set G as a group. Any group G ∈ G that does not contain another group in G is said to be an
inner group. We say that the collection G is a proper nesting if it satisfies all the following properties: (1) I ∈ G;
(2) for any pair of groups in G, the two groups are either disjoint, or one group is a proper subset of the other;
(3) For each G ∈ G, if G is not an inner group, then G is the union of a finite number of sets in G; and (4) each
G ∈ G consists of a set of contiguous IP addresses that can be represented by an IP prefix of the form w.x.y.z/n
(for example, 123.13.78.0/23).

As shown in [5], the collection of sets G can be created by collecting the IP prefix networks from BGP
(border gateway protocol) tables and/or other sources [7, 11]. An autonomous system (AS) uses BGP to know
which ASes it is connected to, and more important, which other ASes can be reached through each of them. A
network is represented by an IP prefix and prefix aggregation allows to hide the complexity of routing inside the
AS while offering other ASes enough information to route IP packets.

In TOPLUS, many of the sets G would correspond to ASes, other sets would be subnets in ASes, and yet
other sets would be aggregations of ASes. This approach of defining G from BGP tables requires that a proper
nesting is created. In order to reduce the size of the nodal routing tables, groups may be aggregated and artificial
tiers may be introduced. Note that the groups differ in size, and in the number of subgroups (the fanout).

If G is a proper nesting, then the relation G ⊂ G′ defines a partial ordering over the sets in G, generating
a partial-order tree with multiple tiers. The set I is at tier-0, the highest tier. A group G belongs to tier-1 if

1For simplicity, we assume that all IP addresses are permitted. Of course, some blocks of IP addressed are private and other blocks
have not been defined. TOPLUS can be refined accordingly.

2

there does not exist a G′ (other than I) such that G ⊂ G′. We define the remaining tiers recursively in the same
manner (see Figure 1).

tier−1

n

tier−2

tier−3

H

S2

S3

S1

=I0H

H1

2H

3

Figure 1: A sample TOPLUS hierarchy (plain boxes are inner groups)

G

cached copy cached copy

Gpp

p

s

d

original copy

p

w.x.y.z/r

k

k

Figure 2: Data caching in TOPLUS.

Peer state. Let L denote the number of tiers in the TOPLUS tree, let U be the set of all current up peers
and consider a peer p ∈ U . Peer p is contained in a collection of telescoping sets in G; denote these sets by
Hi(p),Hi−1(p), · · · ,H0(p) = I , where Hi(p) ⊂ Hi−1(p) ⊂ · · · ⊂ H0(p) and i ≤ L is the tier depth of p’s
inner group. Except for H0(p), each of these telescoping sets has one or more siblings in the partial-order tree
(see Figure 1). Let Si(p) be the set of siblings groups of Hi(p) at tier-i. Finally, let S(p) be the union of the
sibling sets S1(p), · · · ,Si(p).

For each group G ∈ S(p), peer p should know the IP address of at least one peer in G and of all the
other peers in p’s inner group. We refer to the collection of these two sets of IP addresses as peer p’s routing
table, which constitutes peer p’s state. The total number of IP addresses in the peer’s routing table in tier i is
|Hi(p)| + |S(p)|.

The XOR metric for DHTs. Each key k′ is required to be an element of I ′, where I ′ is the set of all b-bit
binary strings (b ≥ 32 is fixed). A key can be drawn uniformly randomly from I ′, or it can be biased (e.g., for
balancing the keys among the groups). For a given key k ′ ∈ I ′, denote k for the 32-bit suffix of k′ (thus k ∈ I
and k = k31k30 . . . k1k0). Throughout the discussion below, we shall refer to k rather than to the original k ′.

The XOR metric defines the distance between two IDs j and k as d(j, k) =
∑31

ν=0 |jν − kν | · 2
ν . Let c(j, k)

be the number of bits in the common prefix of j and k. The metric d(j, k) has the following properties: if
d(i, k) = d(j, k) for any k, then i = j; if d(i, k) ≤ d(j, k), then c(i, k) ≥ c(j, k); and d(j, k) ≤ 232−c(j,k) − 1.
The XOR metric is a refinement of longest-prefix matching. If j is the unique longest-prefix match with k, then
j is the closest to k in terms of the metric. Further, if two peers share the longest matching prefix, the metric
will break the tie. The Kademlia DHT [8] also uses the XOR metric. The peer p ′ that minimizes d(k, p), p ∈ U
is “responsible” for key k.

The lookup algorithm. Suppose peer ps wants to look up key k. Peer ps determines the peer in its routing
table that is closest to k in terms of the XOR metric, say pj . Then ps forwards the message to pj . The process
continues, until the message with key k reaches a peer pd such that the closest peer to k in pd’s routing table is
pd itself. pd is trivially the peer responsible for k.

If the set of groups form a proper nesting, then it is straightforward to show that the number of hops in a
lookup is at most L + 1, where L is the depth of the partial-order tree. In the first hop the message will be
sent to a peer p1 that is in the same group, say G, as pd. The message remains in G until it arrives at pd. Each
peer in TOPLUS mimics a router in the sense that it routes messages based on a generalization of longest-prefix
matching of IP addresses using highly-optimized algorithms.

Overlay maintenance. When a new peer p joins the system, p asks an arbitrary existing peer to determine
(using TOPLUS) the closest peer to p (using p’s IP address as the key), denoted by p ′. p initializes its routing
table with p′’s routing table. Peer p’s routing table should then be modified to satisfy a “diversity” property: for
each peer pi in the routing table, p asks pi for a random peer in pi’s group. This way, for every two peers in

3

a group G, their respective sets of delegates for another group G′ will be disjoint (with high probability). This
guarantees that, in case one delegate fails, it is possible to use another peer’s delegate. Finally, all peers in p’s
inner group must update their inner group tables.

Note that groups, which are virtual, do not fail (individual peers fail) but they can be partitioned or aggregated
at runtime when needed.

Data caching. In DHT storage systems, caching can help reduce access times by creating local copies of
popular data so as to avoid fetching the original data from the responsible peer. The caching mechanisms that
have been proposed in major DHT systems consist in replicating the data along the lookup path of a query after
a successful lookup. This approach suffers from two major drawbacks: First, it assumes that the lookup paths
of two requests for a given key converge quickly, which is not always the case (especially when the number of
peers grows). Second, the data is typically not cached close to the clients: even if a local copy does exist near
the client, that copy is unlikely to be on the lookup path.

In addition to improving lookup performance, a major objective of data caching is to save on bandwidth costs
by caching content within a given network (company, ISP, AS, etc.). Because of its hierarchical organization
derived from IP prefixes, TOPLUS can straightforwardly fulfill this goal and provide a powerful caching service
for network infrastructures.

Suppose that a peer ps wants to obtain the file f associated with key k ∈ I , located at some peer pd (see
Figure 2). It would be preferable if ps could obtain a cached copy of file f from a topologically close peer. To
this end, suppose that some group G ∈ G, with network prefix w.x.y.z/r, at any tier, wants to provide a caching
service to the peers in G. Further suppose all pairs of peers in G can send files to each other relatively quickly
(high-speed LAN) or at least quicker than to any other peer outside of G. Peer ps ∈ G creates a new key, kG,
which is equal to k but with the first r bits of k replaced with the first r bits of w.x.y.z/r. Peer ps then looks up
the peer pG responsible for kG. This peer is obviously inside group G and the lookup message will not leave the
group.

If pG has a copy of f (cache hit), then it will serve the file to ps at a relatively high rate. Otherwise (cache
miss), pG will use key k to obtain f from the global lookup service. After downloading the file, pG will send f
to ps and create a local cache copy for other users of G. Another peer p ∈ G will obtain the file faster by directly
downloading it from pG (Figure 2). It is obviously possible to cache data at multiple levels of the hierarchy (e.g.,
company, ISP, AS) and hence implement a hierarchical Internet cache.

Performance. We have measured the efficiency of TOPLUS with 1, 000 nodes using IP network prefixes
obtained from several BGP tables and routing registries.2 When constructing a TOPLUS hierarchy from a direct
mapping of IP prefixes to groups, we obtain an average stretch of 1.17, that is, a query in TOPLUS takes on
average only 17% more time to reach its destination than using direct IP routing. Unfortunately, this hierarchy
has many tier-1 groups, which leads to large routing tables. We can reduce their size by “aggregating” small
groups that have a long prefix into larger groups not present in our IP prefix sources. Even after aggressive
aggregation of large sets of tier-1 groups into coarse 8-bit prefixes, we have measured a remarkably small stretch
of 1.28. Complete evaluation results are available in [5].

Limitations. In designing TOPLUS to optimize topological locality, we had to sacrifice some other desirable
properties of P2P lookup services. In particular, TOPLUS suffers from limitations related to the non-uniform
population of the ID space (peers in sparse regions may be overloaded if keys are uniformly distributed over the
ID space), the lack of support for virtual peers, and the vulnerability to correlated peer failures (a whole inner
group being unavailable, e.g., due to a network partition). Some solutions to these problems are discussed in [5].

2BGP tables were provided by the University of Oregon and by the University of Michigan and Merit Network. Routing registries
were provided by Castify Networks and RIPE.

4

3 Content Indexing

A major limitation of DHT lookup services is that they only support exact-match lookups: one needs to know
the exact key (identifier) of a data item to locate the peer responsible for that item. In practice, however, P2P
users often have only partial information for identifying these items and tend to submit broad queries (e.g., all
the articles written by “John Smith”). In this section, we propose to augment DHT-based P2P systems with
mechanisms for locating data using incomplete information. We do not aim at answering complex database-
like queries, but rather at providing practical techniques for searching data within a DHT. Our mechanisms rely
on indexes, stored and distributed across the peers of the network, that maintain useful information about user
queries. Given a broad query, a user can obtain additional information about the data items that match her
original query; the DHT lookup service can be recursively queried until the user finds the desired data items.
Indexes can be organized hierarchically to reduce space and bandwidth requirements, and to facilitate interactive
searches. They integrate an adaptive distributed cache to speed up accesses to popular content. Our indexing
techniques can be layered on top of an arbitrary DHT lookup service, including TOPLUS, and thus benefit from
any advanced features implemented in the DHT (e.g., replication, load-balancing).

P2P storage system. We assume an underlying DHT-based P2P data storage system in which each data item
is mapped to one or several peers. Example of such systems are Chord/DHash/CFS [2] and Pastry/PAST [9].
We shall use the example of a bibliographic database system that stores scientific articles. Files are identified
by descriptors, which are textual, human-readable descriptions of the file’s content (in their simplest form, they
can be file names). Let h(descriptor) be a hash function that maps identifiers to a large set of numeric keys.
The peer responsible for storing a file f is determined by transforming the file’s descriptor d into a numeric key
k = h(d). This numeric key is used by the DHT lookup service to determine the peer responsible for f . In order
to find f , a peer p has to know the numeric key or the complete descriptor.

<article>
<author>

<first>John</first>
<last>Smith</last>

</author>
<title>TCP</title>
<conf>SIGCOMM</conf>
<year>1989</year>
<size>315635</size>

</article>

d1

<article>
<author>

<first>John</first>
<last>Smith</last>

</author>
<title>IPv6</title>
<conf>INFOCOM</conf>
<year>1996</year>
<size>312352</size>

</article>

d2

<article>
<author>
<first>Alan</first>
<last>Doe</last>

</author>
<title>Wavelets</title>
<conf>INFOCOM</conf>
<year>1996</year>
<size>259827</size>

</article>

d3

Figure 3: Sample File Descriptors.

q1 = /article[author[first/John][last/Smith]] · · ·

[title/TCP][conf/SIGCOMM][year/1989][size/315635]
q2 = /article[author[first/John][last/Smith]] · · ·

[conf/INFOCOM]
q3 = /article/author[first/John][last/Smith]
q4 = /article/title/TCP
q5 = /article/conf/INFOCOM
q6 = /article/author/last/Smith

Figure 4: Sample File Queries.

Data descriptors and queries. In the rest of this section, we shall assume that descriptors are semi-structured
XML data, as used by many publicly-accessible databases (e.g., DBLP). Examples of descriptors for biblio-
graphic data are given in Figure 3. These descriptors have fields useful for searching files (e.g., author, title), as
well as fields useful for administering the database (e.g., size).

To search for data stored in the peer-to-peer network, we need to specify broad queries that can match
multiple file descriptors. For this purpose, we shall use a subset of the XPath XML addressing language, which
offers a good compromise between expressiveness and simplicity. XPath treats XML documents as a tree of
nodes and offers an expressive way to specify and select parts of this tree using various types of predicates and
wildcards. An XML document (i.e., a file descriptor) matches an XPath expression when the evaluation of the
expression on the document yields a non-null object.

For a given descriptor d, we can easily construct an XPath expression (or query) q that tests the presence of
all the elements and values in d.3 We call this expression the most specific query for d or, by extension, the most
specific descriptor. Conversely, given q, one can easily construct d, compute k = h(d), and find the file. For
instance, query q1 in Figure 4 is the most specific query for descriptor d1 in Figure 3.

3In fact, we can create several equivalent XPath expressions for the same query. We assume that equivalent expressions are trans-
formed into a unique normalized format.

5

Given two queries q and q′, we say that q′ covers q (or q is covered by q′), denoted by q′ w q, if any descriptor
d that matches q also matches q′. Abusing the notation, we often use d instead of q when q is the most specific
query for d and we consider them as equivalent (q ≡ d); in particular, we say that q ′ covers d when q′ w q and q
is the most specific query for d. Note that the covering relation introduces a partial ordering on the queries.

Indexing algorithm. When the most specific query for the descriptor d of a file f is known, finding the
location of f is straightforward using the key-to-peer (and hence key-to-data) underlying DHT lookup service.
The goal of our architecture is to also offer access to f using less specific queries that cover d.

The principle underlying our technique is to generate multiple keys for a given descriptor, and to store these
keys in indexes maintained by the DHT in the P2P system. Indexes do not contain key-to-data mappings; instead,
they provide a key-to-key service, or more precisely a query-to-query service. For a given query q, the index
service returns a (possibly empty) list of more specific queries, covered by q. If q is the most specific query of
a file, then the P2P storage system returns the file (or indicates the peer responsible for that file). By iteratively
querying the index service, a user can traverse upward the partial order graph of the queries and discover all the
indexed files that match her broad query.

In order to manage indexes, the underlying P2P storage system must be slightly extended. Each peer should
maintain an index, which essentially consists of query-to-query mappings. The “insert(q, q i)” function, with
q w qi, adds a mapping (q; qi) to the index of the peer responsible for key q. The “lookup(q)” function, with q
not being the most specific query of a file, returns a list of all the queries qi such that there is a mapping (q; qi)
in the index of the peer responsible for key q.

Roughly speaking, we store files and construct indexes as follows: Given a file f and its descriptor d, with a
corresponding most specific query q, we first store f at the peer responsible for the key k = h(q). We generate
a set of queries q = {q1, q2, . . . , ql} likely to be asked by users (to be discussed shortly), and such that each
qi w q. We then compute the numeric key ki = h(qi) for each of the queries, and we store a mapping (qi; q) in
the index of the peer responsible for each ki in the P2P network. We iterate the process shown for q to every qi,
and we continue recursively until all the desired index entries have been created.

Indexing example. To best illustrate the principles of our indexing techniques, consider a P2P bibliographic
database that stores the three files associated to the descriptors of Figure 3. We want to be able to look up pub-
lications using various combinations of the author’s name, the title, the conference, and the year of publication.
A possible hierarchical indexing scheme is shown in Figure 5. Each box corresponds to a distributed index, and
indexing keys are indicated inside the boxes. The index at the origin of an arrow stores mappings between its
indexing key and the indexing key of the target. For instance, the Last name index stores the full names of all
authors that have a given last name; the Author index maintains information about all articles published by a
given author; the Article index stores the most specific descriptors (MSDs) of all publications with a matching
title and author name. After applying this indexing scheme to the three files of the bibliographic database, we
obtain the distributed indexes shown in Figure 6 (left). The top-level Publication index corresponds to the raw
entries stored in the underlying P2P storage system: complete keys provide direct access to the associated files.
The other indexes hold query-to-query mappings that enable the user to iteratively search the database and locate
the desired files. Each entry of an index is potentially stored on a different peer in the P2P network, as illustrated
for the Proceedings index. One can observe that some index entries associate a query to multiple queries (e.g.,
in the Author index).

Figure 6 (right) details the individual query mappings stored in the indexes of Figure 6 (left). Each arrow
corresponds to a query-to-query mapping, e.g., (q6; q3). The files corresponding to descriptors d1, d2, and d3

can be located by following any valid path in the partial order tree. For instance, given q6, a user will first obtain
q3; the user will query the system again using q3 and obtain two new queries that link to d1 and d2; the user can
finally retrieve the two files matching her query using d1 and d2.

6

Lookups. We can now describe the lookup process more formally. When looking up a file f using a query q0,
a user first contacts the peer p responsible for h(q0). That peer may return f if q0 is the most specific query for
f , or a list of queries {q1, q2, . . . , qn} such that the mappings (q0; qi), with q0 w qi, are stored at p. The user can
then choose one or several of the qi and repeat this process recursively until the desired files have been found.
The user effectively follows an “index path” that leads from q0 to f (“guided tour”). The lookup process can
be interactive, i.e., the user directs the search and restricts her query at each step, or automated, i.e., the system
recursively explores the indexes and returns all the file descriptors that match the original query.

MSD

author/first

author/last title conference year

+ author/last
+ title

+ author/last
author/first conference

+ year

Last name

Author

Article

Title Conference

Proceedings

Year

Publication

Figure 5: Sample indexing scheme
for a bibliographic database.

TCP

d
3

Alan/Doe/Wavelets

WaveletsAlan/Doe

Doe

d
2

q
5

q
6

q
1

d
1

q
3

q
4IPV6

John/Smith/TCP

John/Smith/TCP/SIGCOMM/1989/...

SIGCOMM/1989

1989SIGCOMM

John/Smith

Alan/Doe Alan/Doe/Wavelets
John/Smith/IPV6
John/Smith/TCP

John/Smith

Alan/Doe/Wavelets
John/Smith/IPV6
John/Smith/TCP

Alan/Doe/Wavelets/INFOCOM/1996/...
John/Smith/IPV6/INFOCOM/1996/...
John/Smith/TCP/SIGCOMM/1989/...

INFOCOM/1996

SIGCOMM/1989

John/Smith/IPV6/INFOCOM/1996/...
Alan/Doe/Wavelets/INFOCOM/1996/...
John/Smith/TCP/SIGCOMM/1989/...

INFOCOM/1996
SIGCOMM/19891989

1996INFOCOM
SIGCOMM

INFOCOM/1996
SIGCOMM/1989

Alan/Doe/Wavelets

John/Smith/IPV6
John/Smith/TCP

Wavelets
TCP
IPV6Alan/Doe

John/SmithSmith
Doe

Alan/Doe/Wavelets/INFOCOM/1996/...
John/Smith/IPV6/INFOCOM/1996/...
John/Smith/TCP/SIGCOMM/1989/...

x.pdf
y.pdf
z.pdf

Alan/Doe/Wavelets/INFOCOM/1996/...

John/Smith/IPV6/INFOCOM/1996/...

INFOCOM/1996

INFOCOM 1996

Smith

John/Smith/IPV6

Publication

Proceedings

Article

Last name Title Conference Year

Author

Figure 6: Sample distributed indexes (left) and query mappings (right) for the three
documents of Figure 3 and the indexing scheme of Figure 5.

Lookups may require several iterations when the most specific query for a given file is not known. Deeper
index hierarchies usually necessitate more iterations to locate a file, but are also generally more space-efficient,
as each index factorizes in a compact manner the queries of other indexes. In particular, the size of the lists (result
sets) returned by the index service may be prohibitively long when using a flat indexing scheme (consider, for
example, the list of all articles written by the persons whose last name is “Smith”). There is therefore a trade-off
between space requirements, size of result sets, and lookup time.

When a user wants to look up a file f using a query q0, it may happen that q0 is not present in any index,
although f does exist in the peer-to-peer system and q0 is a valid query for f . It is still possible to locate f ,
by (automatically) looking for a query qi such that qi w q0 and qi is on some index path that leads to f . For
instance, given the distributed indexes of Figure 6, it appears that query q2 in Figure 4 is not present in any index
(q2 =/article[author[first/John][last/Smith]][conf/INFOCOM]). We can however find q3, such that q3 w q2

and there exists an index path from q3 to d1. Therefore, the file associated to d1 can be located using this
generalization/specialization approach, although at the price of a higher lookup cost. We believe that it is natural
for lookups performed with less information to require more effort.

Building and maintaining indexes. When a file is inserted in the system for the first time, it has to be indexed.
The choice of the queries under which a file is indexed is arbitrary, as long as the covering relation holds. As
files are discovered using the index entries, a file is more likely to be located rapidly if it is indexed “enough”
times, under “likely” names. The quantity and likelihood of index queries are hard to quantify and are often
application-dependent. For instance, in a bibliographic database, indexing a file by its size is useless for users,
as they are unlikely to know the size beforehand. However, indexing the files under the author, title, and/or
conference are appropriate choices.

Index entries can also be created dynamically to adapt to the query patterns of the users. For instance, a
user who tries to locate a file f using a non-indexed query q0, and eventually finds it using the query general-
ization/specialization approach discussed above, can add an index entry to facilitate subsequent lookups from
other users. More interestingly, one can easily build an adaptive cache in the P2P system to speed up accesses
to popular files. Assume that each peer allocates a limited number of index entries for caching purposes. After
a successful lookup, a peer can create “shortcuts” entries (i.e., direct mappings between generic queries and
the descriptor of the target file) in the caches of the indexes traversed during the lookup process. Another user

7

looking for the same file via the same path will be able to “jump” directly to the file by following the shortcuts
stored in the caches. With a least-recently used (LRU) cache replacement policy (i.e., the least used entries in
the cache are replaced by the new ones once there is no cache space left), we can guarantee that the most popular
files are well represented in the caches and are accessible in few hops. The caching mechanism therefore adapts
automatically to the query patterns and file popularity.

An in-depth discussion of the properties of our indexing techniques, such as space-efficiency, scalability,
loose coupling, flexibility and adaptability, can be found in [4], together with a detailed experimental evaluation.

4 Conclusion

DHTs suffer from a number of limitations over unstructured P2P networks due to the rigidness of their logical
organization. We have discussed some of these limitations and presented several techniques to help alleviate
them. TOPLUS integrates network topology in its design, by organizing peers in a group hierarchy defined
by IP prefixes that map directly to the underlying topology. The TOPLUS architecture also allows for the
straightforward deployment of distributed caches in order to reduce transfer delays and limit the external traffic
of a given network. Finally, we have studied the problem of looking up information in a DHT using incomplete
information—a major improvement over the exact-match lookup of DHTs. Our distributed indexing techniques
can be used to locate data in a DHT matching a broad query. We hope that these various improvements can
contribute to the large-scale deployment of DHTs in the Internet and bring them on par with unstructured P2P
networks in terms of popularity.

References

[1] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Topology-aware routing in structure peer-to-peer overlay network.
In International Workshop on Future Directions in Distributed Computing (FuDiCo), pages 103–107, June 2002.

[2] F. Dabek, M.F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area cooperative storage with CFS. In Proceed-
ings of the 18th ACM Symposium on Operating System Principles (SOSP), pages 202–215, October 2001.

[3] L. Garcés-Erice, E.W. Biersack, P. Felber, K.W. Ross, and G. Urvoy-Keller. Hierarchical peer-to-peer systems.
Parallel Processing Letters, 13(4):643–657, 2003.

[4] L. Garcés-Erice, P. Felber, E.W. Biersack, K.W. Ross, and G. Urvoy-Keller. Data indexing in DHT peer-to-peer
networks. In Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS), pages
200–208, March 2004.

[5] L. Garcés-Erice, K.W. Ross, E.W. Biersack, P. Felber, and G. Urvoy-Keller. TOpology-centric Look-Up Service. In
Proceedings of COST264/ACM 5th International Workshop on Networked Group Communications (NGC), volume
2816 of LNCS, pages 58–69. Springer, September 2003. Best paper award.

[6] A.D. Joseph, B.Y. Zhao, Y. Duan, L. Huang, and J.D. Kubiatowicz. Brocade: Landmark routing on overlay networks.
In Proceedings of the 1st International Workshop on Peer-to-Peer Systems (IPTPS), volume 2429 of LNCS, pages
34–44. Springer, March 2002.

[7] B. Krisnamurthy and J. Wang. On network-aware clustering of Web sites. In Proceedings of SIGCOMM, pages
97–110, August 2000.

[8] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer informatic system based on the XOR metric. In
Proceedings of the 1st International Workshop on Peer-to-Peer Systems (IPTPS), volume 2429 of LNCS, pages 53–
65. Springer, March 2002.

[9] A. Rowstron and P. Druschel. Storage management and caching in PAST, a large-scale, persistent peer-to-peer storage
utility. In Proceedings of the 18th ACM Symposium on Operating System Principles (SOSP), pages 188–201, October
2001.

[10] S. Shenker, S. Ratnasamy, M. Handley, and R. Karp. Topologically-aware overlay construction and server selection.
In Proceedings of INFOCOM, pages 1190–1199, June 2002.

[11] J. Wang. Network Aware Client Clustering and Applications. PhD thesis, Cornell University, May 2001.
[12] J. Xu, A. Kumar, and X. Yu. On the fundamental tradeoffs between routing table size and network diameter in

peer-to-peer networks. IEEE Journal on Selected Areas in Communications, 22(1):151–163, January 2004.

8

