
InTraBase: Integrated Traffic Analysis Based
on a Database Management System

M. Siekkinen, E.W. Biersack, G. Urvoy-Keller
Institut Eurécom
BP 193
06904 Sophia-Antipolis Cedex
France�

siekkine,erbi,urvoy � @eurecom.fr

V. Goebel, T. Plagemann
Department of Informatics
University of Oslo
P.O. Box 1080 Blindern
NO-0316 Oslo, Norway�

goebel,plageman � @ifi.uio.no

Abstract
Internet traffic analysis as a research area has attracted lots of interest over the last
decade. The traffic data collected for analysis are usually stored in plain files and the
analysis tools consist of customized scripts each tailored for a specific task. As data
are often collected over a longer period of time or from different vantage points, it
is important to keep metadata that describe the data collected. The use of separate
files to store the data, the metadata, and the analysis scripts provides an abstraction
that is much too primitive: The information that “glues” these different files together
is not made explicit but is solely in the heads of the people involved in the activity.
As a consequence, manipulating the data is very cumbersome, does not scale, and
severely limits the way these data can be analyzed.

We propose to use a database management system (DBMS) that provides the in-
frastructure for the analysis and management of data from measurements, related
metadata, and obtained results. We discuss the problems and limitations with today’s
approaches, describe our ideas, and demonstrate how our DBMS-based solution,
called InTraBase, addresses these problems and limitations. We present the first ver-
sion of our prototype and preliminary performance analysis results.

1. Introduction and Motivation

Internet traffic analysis as a research area has experienced rapid growth over the last
decade due to the increasing needs caused by the massive growth of traffic in the
Internet together with new types of traffic generated by novel applications, such as
peer-to-peer. Today, the state of the art in traffic analysis is handcrafted scripts and a
large number of software tools specialized for a single task. The amount of data used
in traffic analysis is typically very large. Also, traffic analysis normally is an iterative
process: A first analysis is performed and based on the results obtained, new analysis
goals are defined for the next iteration step. These facts lead to the following three
problems:

Management: Many tasks are solved in an ad-hoc way using scripts that are
developed from scratch, instead of developing tools that are easy to reuse and un-
derstand. Another problem with today’s traffic analysis is the huge amount of data
generated. Trace files with “raw” data, files containing intermediate and final results



filter
raw data results

interpretcombine w/

results
previous

process
filtered

data

store
into files

(a) Typical Case

process
raw data

store
intermediate

results results
interpretquery (filter

& combine)
data

load raw
data into DB

(b) Using DBMS-based Approach

Figure 1: Cycles of Tasks for the Iterative Process for Off-line Traffic Analysis.

need to be properly annotated and archived in order to be able to use them at a later
point in time. However, the tools used generally do not provide any support for man-
aging these large amounts of data. Therefore, trace files are typically archived as
plain files in a file system. Depending on the number of files and the skills of the
researcher to properly organize them, the later retrieval of a particular trace or data
item may be a non-trivial problem. As Paxson [18] has pointed out the researchers
themselves often cannot reproduce their own results.

Analysis cycle: A common workflow to analyze network traffic proceeds in cy-
cles (see Figure 1(a)). Let us take as example our own analysis of BitTorrent [13],
a peer-to-peer system for file distribution. When following the analysis steps, one
can identify three iterations of the analysis. In a first iteration, we studied the global
performance of BitTorrent in terms of how many peers succeeded downloading the
complete file. From the results, we noticed a large flash-crowd of peers arriving at
the beginning. In a second iteration, the performance of individual sessions was stud-
ied. First, the raw data was analyzed on the basis of individual sessions that either
had successfully completed the file download or aborted. In the next step, the perfor-
mance of the individual sessions in both categories was computed. The information
from the previous cycle was combined to obtain average performance of a session
during the flash-crowd period and after. In a last iteration, we considered the geo-
graphical location of the clients that successfully completed their download to study
download performance per geographic region. Since the semantics of the data were
not stored during the analysis process, reusing intermediate results (e.g. to integrate
geographic information) turned out to be cumbersome and most of the time the data
extraction had to be done again starting from the raw data after modifying the scripts.

Scalability: Scalability is an important issue in traffic analysis and poses a prob-
lem as the amount of data is typically very large. Often tools are first applied to



process small amounts of data. If then applied on large data sets, it often turns out
that the run-time or memory requirement of the tool grows more than linearly with
the amount of data, in which case modifications and heuristics are introduced that of-
ten sacrifice quality of the analysis for performance. An example is the well-known
tool �����������	��
 [6] that can, among others, be used to extract an individual flow from
a large amount of trace data collected via ����������	��� .

The above mentioned issues are also in some extent discussed in [14] and [11].
These problems lead us to investigate whether database management systems (DBMSs)
might ease the process of analyzing traffic. Traditional database systems (DBSs) have
been used for more than 40 years for applications requiring persistent storage, com-
plex querying, and transaction processing of data. Furthermore, DBMSs are designed
to separate data and their management from application semantics to facilitate inde-
pendent application development. Internet traffic consists of well-structured data,
due to the standardized packet structures, and can therefore easily be handled with a
DBMS.

We present later the first prototype of the InTraBase, an implementation of our
DBMS-based approach. The goal is to devise an open platform for traffic analysis
that would facilitate the researchers’ task. Our solution should:

(i) conserve the semantics of data during the analysis process;
(ii) enable the user to easily manage his own set of analysis tools and methods and;
(iii) share them with colleagues;
(iv) allow the user to quickly retrieve pieces of information from analysis data and
simultaneously develop tools for more advanced processing.

The remainder of this paper is structured as follows: In the next section, we review
some related work. In Section 3, we present our InTraBase approach. In Section 4, we
describe the first prototype of InTraBase and in Section 5, we show some measures
of its performance and make a comparison to another tool called �����������	��
 . Finally,
we draw some conclusions and discuss open issues in the last section.

2. Related Work

Table 1 summarizes the differences between the various existing approaches and our
InTraBase approach.

Data, metadata, and software management are related to the problems of manage-
ment and analysis process cycle (see Section 1). Because publicly available solutions
are generally more interesting for the research community, we include public avail-
ability as a metric. Integrated approach means that in addition to data, metadata and
software are also managed in an integrated way. It is a feature of our approach only,
which will be described in Section 3. Finally, the capability to analyze traffic on-line
is the last feature that we consider. By on-line analysis we mean the ability to per-

�
Due to the focus of our research and for the sake of illustration, the examples given usually refer to the

collection and analysis of TCP related data. However, we do not want to imply that our approach is limited
to this kind of study.



Table 1 Characteristics of Different Approaches for Traffic Analysis.

Approach Data Metadata SW Scalable Publicly Integrated On-
mgt mgt mgt available approach line

Ad-hoc scripts

Specialized tools (tcptrace [6]) X (X)

Toolkits (CoralReef [15]) X X (X)

Sprint IPMon [9] X X
Gigascope [8]

ISP (AT&T) X X X
database Internet Traffic
projects Warehouse [7] X X X X

(Telcordia)

InTraBase X X X X X X

X = feature is supported in the approach
blank = feature is not at all supported or is implemented in an ad-hoc manner
(X) = feature is supported in some members of the category

form the analysis tasks on a continuous stream of traffic, i.e. to process the input data
at a rate equal to its arrival rate.

The first approach is ad-hoc scripts. However, this approach does not have any
of the characteristics we look for. The next step forward are the specialized tools
such as ����������	��
 [6] which allows to analyze a ������� ���	� trace and produce statis-
tics or graphs to be visualized using the xplot software. Still none of the important
management issues are considered by these tools.

There have been some efforts toward complete analysis toolkits that are flexi-
ble enough to be used in customized ways. One example is the Coralreef software
suite [15] developed by CAIDA, which is a package of device drivers, libraries,
classes and applications. The programming library provides a flexible way to develop
analysis software. The package already contains many ready-made solutions. The
drivers support all the major traffic capturing formats. This approach concentrates
on the software management aspect but addresses neither the problem of handling
nor managing the data, i.e. source data and results, nor managing related metadata.
Also scalability is an issue.

There exist some larger projects than those mentioned so far for traffic analysis.
They usually involve huge amounts of traffic data, and therefore, require a lot of
attention to the organization and handling of the data, i.e. raw traffic data, associated
metadata, and derived analysis data. We classify these approaches as “ISP database
projects” since they are tailored to the needs of large ISPs and, as it turns out, two of
the three approaches we consider are developed by a large ISP. Unfortunately, none
of them is publicly available.

Sprint labs initiated a project called IP Monitoring Project (IPMON) [10], [9] to
develop an infrastructure for collecting time-synchronized packet traces and routing
information, and to analyze terabytes of data. In their architecture, a DBS is used
for metadata management only and metadata is stored about raw input data sets,



analysis programs, result data sets, and analysis operations. Details about metadata
management can be found in [17]. IPMON has adopted CVS for managing software.

Gigascope [8] is a fast packet monitoring platform developed at AT&T Labs-
Research. It is not a traditional DBMS but a Data Stream Management System
(DSMS) that allows on-line analysis of traffic arriving at high rates. As a power-
ful DSMS, Gigascope can handle a high rate traffic stream in real-time. However,
the real-time requirements imply that the input data are processed in one pass, what
evidently imposes limits on the operations that can be performed. We refer the reader
to [19] for a detailed assessment of the suitability of DSMSs for traffic analysis. Gi-
gascope is specialized for network monitoring applications such as health and status
analysis of a network or intrusion detection. Gigascope does not manage data nor
metadata, which are typically managed via a separate data warehouse. Gigascope
has a registry for query processes that are providing output streams according to the
associated query. The user can also define his own functions and data types for the
queries. In this way, Gigascope addresses the software management problem.

We wish to perform complex traffic analysis tasks, such that cannot be performed
with a single pass over the input data. For this, we need to be able to make multi-
ple iterations over the analysis process cycle, like in Figure 1(a), which is impossi-
ble with a DSMS. The work related closest to our approach is the Internet Traffic
Warehouse [7], which is a data warehouse for managing network traffic data built
by Telcordia. Analysis results on application level are provided by storing appli-
cation information about traffic in addition to IP packet headers. Using a suite of
programs, input traffic traces are filtered and parsed into temporary files, which are
subsequently loaded into the data warehouse. This system is proprietary and mainly
aimed for ISPs and especially suitable for accounting. We, on the other hand, target
researchers on the field of traffic analysis with a publicly available and extendible
solution. In addition, we would like to do filtering and parsing operations within the
DBS and preserve the raw data stored in the database as unchanged as possible.

3. IntraBase Approach

3.1 Fully Integrated DBMS-Based Solution

We advocate a DBMS-based approach for traffic analysis. While some research
groups have already proposed the use of DBMS techniques to process Internet traffic
(see previous section), our approach is different. First of all, we completely manage
the collected data within the DBS. In other words, we process the “raw” data as little
as possible prior to loading it into the database.

A high-level architectural view of our solution is shown in Figure 2. We store data
from different sources into the DBS. The data uploaded into the database is referred
to as base data. Examples of base data are packet traces collected via ������� ���	� or
a similar tool but also data obtained by instrumenting an application or time series
created with the help of Web100 [16] that allows to track precisely the state of a TCP
connection.



Application logs
Web100

Raw base data
files

Network link

Data Ware House

Sub
Sub

Sub

Sub
Sub

Sub

Off-line analysis

Base data

Results

Queries

Descriptions

DBMSApplication

TCP

IP

Preprocess

tcpdump

Sub
Sub

Sub

Sub
Sub

Sub

Figure 2: High-level Architecture of the DBS.

Once the base data is uploaded into the DBS, we process it to derive new data
that is also stored in the database. For instance, we demultiplex the ������� ���	� packet
traces into connections by assigning a connection identifier to each packet.

All the processing is done within the DBS. Details are given in Section 4. We
want a DBS that not only contains all the data but also contains reusable elementary
functions and more complex tools built on top of the elementary functions, as illus-
trated in Figure 3. The boxes on the lowest layer represent the base data uploaded
into the database. The middle layer contains the elementary functions that primar-
ily process the base data and create new data. Finally, the highest layer represents
tools for more complex analysis tasks. (We refer the reader to [21] for details about
T-RAT.) A given component commonly utilizes some of the components at the lower
layers. These relationships are described with arrows.

3.2 Benefits From Our Approach

An obvious advantage of using a DBS is the support provided to organize and man-
age data and related metadata. As far as the analysis cycle is concerned, once the base
data is in the DBS, it becomes structured data and, therefore, processing and updat-
ing becomes easier. Also this makes searching easy and allows for complex queries.
Modern DBSs also support the use of indexes to speed up lookup operations.

From Figure 3, one can identify two additional strong points of a DBMS-based
approach. First, it is possible to easily combine different data sources provided that
time synchronization issues between different recorded base data are solved. For
example, it is realistic to assume that application layer events explain some of the
phenomena in the traffic observed at TCP layer. One can issue joint queries on the
tables holding application layer events and TCP traffic to extract the necessary infor-
mation. Second, since the InTraBase consists of reusable components, implementing
new tools will be less laborious and error prone.

Figure 1(b) describes the common analysis cycle with our DBMS-based approach.
If we compare to Figure 1(a), we can see that the initial processing steps performed
by the DBS to store data derived from the base data shorten the analysis cycle. Fil-
tering, combining, and aggregating data are operations performed automatically by



flight connection
summarizer

connection
identifieridentifier

base data

toolsplotter
xplot

logspacket traces
tcpdump Web100

timeseries

bandwidth
estimatorT−RAT

application

elementary
functions

Figure 3: Integrated Data and Tool Management.

the query processor of a DBS, which makes this cycle shorter than the one in Figure
1(a).

DBSs are designed to handle very large amounts of data and there exists a large
body of knowledge and literature about performance tuning, which is essential for
good performance [20].

4. The First Prototype of InTraBase

We built a first prototype for analyzing TCP traffic from ����������	� packet traces with
PostgreSQL, which is an open source DBMS that has a widespread user commu-
nity. � The main reason for choosing PostgreSQL [3] is its object-relational nature
that allows to extend the functionality by adding new programming language bind-
ings, called loadable procedural languages (PL). After adding a binding, one can
implement external functions in well-known programming languages, such as Perl
or Python, which is impossible with standard relational DBS like MySQL. We are
using currently PL/pgSQL [2] and PL/R [1]. PgSQL is specifically designed for Post-
greSQL and R [4] is a language and environment for statistical data analysis and
visualization.

The core tables used in InTraBase are described in Figure 4. The table traces con-
tains annotations about all the packet traces that are uploaded in the database. The
packets table holds all packets for a single trace. The two tables connections and re-
transmissions hold connection level summary data for all traces. The cnxid attribute
identifies a single connection in a packet trace, reverse differentiates between the two
directions of traffic within a connection, and tid identifies a single trace. Cid2tuple
is a table to store a mapping between unique cnxids and 4-tuples formed by source
and destination IP addresses and TCP ports. The attributes of the packets table are
directly from the standard output of ��� �� ���	� for TCP packets. The attributes of the

�
Note that this prototype focuses only on the analysis of TCP traffic. However, we do not want to imply

that our approach is limited to this kind of study but the prototype can be extended to support UDP traffic,
for instance.



other tables were chosen so that the connection level information roughly covers that
given by � ����������
 .

Figure 4: The Layouts of Core Tables in InTraBase After the 5 Processing Steps.
Underlined Attributes Form a Key That is Unique for Each Row.

Processing a ������ � �	� packet trace with InTraBase includes five major steps:

1. Copy packets into the packets table in the database;
2. Build an index for the packets table based on the connection identifier;
3. Create connection level statistics from the packets table into the connections table;
4. Insert unique 4-tuple to cnxid mapping data from packets table into the cid2tuple

table;
5. Count the amount of retransmitted bytes per connection from the packets table

and insert the result into the retransmission table;

Step1, copying packets into the packets table is done as follows: ������� ���	� is used
to read the packet trace file and the output is piped through a filter program to the
database. The filter program’s primary task is to make sure that each line of text, i.e.
each packet, is well-structured before uploading it into the database. More specifi-
cally, each line of text representing a TCP packet contain all the attributes defined
in the packet table. If an attribute is missing, the filter program adds a special char-
acter signifying that its value is null. For example, pure acknowledgments do not
have starting and ending sequence numbers and the filter program inserts null val-
ues for them. The second task of the filter program is to add a unique connection
identifier and a reverse attribute for each packet. A connection identifier is unique
for each 4-tuple. (More information about using the 4-tuple as unique identifiers for
connections is given in Section 5.2.)

The remaining four processing steps are performed with SQL queries. It would
be logical to have the retransmission data created in step 5 in the same table with the



other connection level statistics created in step 3, but the need to use separate SQL
queries to create these two sets of data forces us to use separate tables. In Figure 4,
the table packets does not contain the 4-tuple attributes and, in fact, the reason for
performing the processing step 4 is that we can drop the 4-tuple attributes data from
the packets table, which saves disk space because we only store the 4-tuple twice per
connection (both directions) instead of once for each packet.

After the five processing steps the tables in Figure 4 are populated with data from
the packet trace and the user can either issue standard SQL queries or use a set of
functions provided for more advanced querying on the uploaded data. Alternatively,
the user may develop his own functions. The schema shown in Figure 4 enables the
user to limit himself on connection level analysis but also drill down to per-packet
analysis.

We have implemented functions in procedural languages to perform operations
that cannot be done with plain SQL queries. Currently, we have used the PL/pgSQL
language to write functions for operations such as creating graphs in xplot format and
producing timeseries of throughput, packet inter-arrival times, jitter, retransmitted
packets etc. We have also used it to write functions that perform analysis tasks on
a packet trace. For example, using specific timeseries functions, we separate for all
connections in a given packet trace all bulk transfer periods from inactive periods
where the application operating on top of TCP is silent. PL/R has been used to write
functions that produce graphs and do statistical calculations.

We released the first public prototype of InTraBase March 1, 2005 (accessible
at http://metrojeu2.eurecom.fr:8080/intrabase.html). It enables the user to install the
functionality of InTraBase into a PostgreSQL DBMS and process ������ � �	� packet
traces as described earlier in this section. Note that, compared to Figure 2, we only
support processing of ������� ���	� base data in this prototype.

5. Evaluation of Our Prototype

We evaluate two aspects of our prototype: (i) feasibility in terms of processing time
and disk space consumption and (ii) qualitative and quantitative comparison of our
approach with the ������� ��	��
 tool.

5.1 Analysis of Processing Time and Disk Space Consumption

We conducted measurements in order to evaluate whether a DBMS-based solution
scales in an acceptable way, i.e. has a reasonable processing time for large files and
acceptable disk space overhead. We processed the five different steps described in
Section 4 using different size ����������	� packet trace files of two different types of
traffic: BitTorrent traffic and mixed Internet traffic. BitTorrent, as a peer-to-peer file
distribution system, tends to produce long-lived and large connections in terms of
transferred bytes. A typical mixture of Internet traffic, on the other hand, contains
many short connections, the so-called mice, and few long-lived connections, the so-
called elephants [12]. Consequently, a BitTorrent trace file contains fewer connec-
tions than a mixed Internet trace file of same size. For example, the 10 Gigabyte
files of BitTorrent and mixed Internet traffic used contain 53,366 and 1,709,993 con-



nections, respectively. As most of the processing is done on a connection basis, we
expect the number of connections to have an impact on the performance. Our Bit-
Torrent traffic trace file contains also fewer packets than the mixed Internet traffic
trace file of the same size. The reason is that the BitTorrent traffic was captured on
a Sun machine where the minimum capture length is 96 bytes whereas the mixed
Internet traffic was captured using the default length of 68 bytes. We did our tests
using Linux 2.6.3 running on an Intel Xeon Biprocessor 2.2GHz with SCSI RAID
disks and 6GB RAM � .
Processing Time
Figure 5(a) shows the evolution of the processing time as a function of the trace file
size for BitTorrent traffic and mixed Internet traffic. We can see that for both traces
the growth is approximately linear. Processing BitTorrent traffic takes approximately
0.6 hours per Gigabyte and mixed Internet traffic approximately 0.9 hours per Giga-
byte. In fact, since eventually each packet in the packet trace needs to be processed,
it is impossible to find a solution that scales better than

�������
, where

�
is the number

of packets. We can only try to minimize the processing time per packet. In Figure
5(b), the processing times are plotted against the number of packets. As expected,
the curves are closer to each other than in Figure 5(a) because the mixed Internet
traffic traces contain more packets per Gigabyte than BitTorrent traffic files. Still,
clearly the processing time depends on the combination of number of packets and
connections. These performance results are good enough in the current stage of our
research as we rarely process traffic traces larger than 10 Gigabytes.

We have also analyzed how much processing time each of the five steps requires
with respect to different trace file sizes. Since the results from BitTorrent and mixed
Internet traffic are very similar, we present in Table 2 only the numbers for BitTor-
rent. The main observation is that when the file size grows, the fraction of time spent
for copying packets becomes smaller at the expense of the other operations, which
are performed within the DBS. The reason could be overhead caused by atomic-
ity of transactions enforced by the DBMS. As the operations are performed with
a single function call each, the DBMS ensures that each of these operations is an
atomic transaction. To achieve this, the DBMS writes all relevant information of the
tasks performed within a single transaction to log files. Consequently, the heavier the
transaction, the heavier also the task for the DBMS to ensure atomicity. For exam-
ple, we are performing most of our analysis tasks as large batch jobs on whole traces
executed with a single function call. If at any point the execution of the function is
interrupted, the DBMS must be able to go back to the state before starting the exe-
cution. Therefore, a solution would be to break these functions into several lighter
suboperations. This should ease the burden for the DBMSs caused by the atomicity
property of transactions. We will further investigate this issue in the future.
Disk Space Consumption
Modern DBMSs use indexes to speed up operations to access information stored
on disk. This introduces an overhead in disk space consumption. Also, data stored

�
Unfortunately, PostgreSQL is unable to take advantage of more than 2GB of this memory in certain

critical operations such as sorting.



0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

6

7

8

9

size of tcpdump file (megabytes)

pr
oc

es
si

ng
 ti

m
e 

(h
)

mixed Internet traffic
BitTorrent traffic

(a) Total Processing Time vs. ���������
	�� File
Size.

0 2 4 6 8 10 12

x 10
7

0

1

2

3

4

5

6

7

8

9

pr
oc

es
si

ng
 ti

m
e 

(h
)

number of packets

mixed Internet traffic
BitTorrent traffic

(b) Total Processing Time vs. Number of
Packets.

10 50 100 200 400 500 600 800 1000 2000 4000 6000 8000 10000
0

5

10

15
x 10

6

size of tcpdump file (megabytes)

us
ed

 d
is

k 
sp

ac
e 

(k
ilo

by
te

s)

packet table
index

(c) Disk Space Usage for Different ���������
	��
File Sizes Containing BitTorrent Traffic

Figure 5: Processing Time and Disk Space Usage Measurements for BitTorrent and
Mixed Internet Traffic Traces.

in a database takes up more disk space than in a flat file because of different data
structures used in the DBSs, e.g. a four byte integer number in a database might not
require all the four bytes when stored in a flat file. Moreover, we need to store 2 and
4 bytes fields from the TCP/IP packet headers using 4 and 8 byte data types because
PostgreSQL does not support unsigned data types. Finally, we add some data such
as connection and table identifiers for each packet but also remove some redundant
data by storing only single instances of IP addresses and TCP port numbers. Figure
5(c) visualizes the disk space consumption for the BitTorrent trace. It is the packets
table that consumes most of the disk space. The sizes of other tables are negligible
and are therefore excluded from the figure. The total disk space consumption of



Table 2 Processing Times of Different Steps With Respect to Trace File Size in
Percents of the Total Processing Time.

File size Copying (%) Indexing (%) Connections (%) Cid2tuple (%) Retransmissions (%)

10 Megabytes 54 � 1 23 8 15

100 Megabytes 48 4 19 13 16

1 Gigabytes 44 4 23 13 16

10 Gigabytes 33 9 24 15 18

the data in the database is 1.4 to 1.5 times larger than in a flat file. The disk space
overhead due to indexes is around 15% from the plain data stored in the database.
The results are similar for the mixed Internet trace. A total disk space overhead of
50% is acceptable since nowadays disk space is cheap and rarely an issue. Note that
the disks space overhead is the price to pay for having structured data.

5.2 Comparison of InTraBase and Tcptrace

Let us emphasize here that comparing the processing times of ��� ������	� 
 and InTra-
Base as such is meaningless. For simple tasks with relatively small files ����������	��
 is
clearly a better choice. As stated in Section 3.2, the benefits of InTraBase are in the
depth of analysis that can be done and its scalability. However, we tried to measure
the processing time of ��� ������	� 
 for the mixed Internet trace to have an idea of its
behavior compared to InTraBase. As expected, with file sizes up to 4 Gigabytes the
processing times were in the order of minutes. However, with file sizes of 6 Giga-
bytes and larger, ������� ��	��
 was unable to finish the analysis because after using 3
Gigabytes of memory, it could no longer allocate more.

Because � ����������
 is among those tools that often need to trade-off accuracy
for performance, as discussed in Section 1, it is interesting to compare the results
obtained from InTraBase and ����������	��
 . We compare the per connection statistics
produced by ����������	��
 and InTraBase. In the case of InTraBase, we consider two
different definitions of a connection: the 4-tuple formed by source and destination
IP addresses and TCP ports, from now on called 4-tuple connection, and an accu-
rate one, from now on called real connection, where we further separate connections
within distinct 4-tuples due to TCP port number reuse. We accomplish this by search-
ing multiple TCP three-way hand shakes, i.e. SYN packet exchanges, among packets
sharing a common 4-tuple. The definition of a real connection agrees perfectly with
the definition from the specification of TCP [5], and therefore, can be considered
as the “correct” one. These two different cases for InTraBase are included to get an
idea of how often they differ and in this way to assess the need for separating the
connections within a distinct 4-tuple � .

�
In the early stage of InTraBase development we considered only the 4-tuple as the identifier of a con-

nection. As it is not entirely accurate, we improved the accuracy. However, this improvement came with
a price to pay in performance, and therefore, we wish to assess the need for it.



10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

duration (s)

F
(x

)

CDFs of durations

InTraBase 4−tuple
InTraBase real
tcptrace

(a) Durations of connections

10
0

10
2

10
4

10
6

10
8

10
10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

connection size (bytes)
F

(x
)

CDFs of bytes per connection

InTraBase 4−tuple
InTraBase real
tcptrace

(b) Sizes of connections in bytes

10
0

10
2

10
4

10
6

10
8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

connections size (packets)

F
(x

)

CDFs of packets per connection

InTraBase 4−tuple
InTraBase real
tcptrace

(c) Sizes of connections in data packets.

Figure 6: Comparison of Per-Connection Statistics from ��� ������	� 
 and InTraBase.

�
���������	��
 reported statistics from a 10 Gigabyte BitTorrent trace on 55482 con-

nections while InTraBase found 53366 4-tuple connections and 56162 real connec-
tions. This shows that � ����������
 and InTraBase’s 4-tuple definition indeed miss
some real connections. Cumulative distribution functions (cdfs) of connection dura-
tions are plotted for each case in Figure 6(a). The cdfs for ��� ������	� 
 and InTraBase’s
real connections agree with each other almost perfectly and cannot be distinguished
from each other. Between 10 and 10

�

seconds the cdf of durations of the 4-tuple
connections deviates from the two other curves. This suggests that the 4-tuple defini-
tion captures fewer short connections which is an expected result since some of the
4-tuple connections are in reality several connections due to the reuse of TCP port
numbers. However, a look at Figures 6(b) and 6(c), which show the cdfs of connec-
tion sizes in bytes and packets, respectively, reveals that the connections missed by



the 4-tuple definition carry negligible amounts of bytes and packets. All in all, the
differences between these three sets of connection statistics for the 10 Gigabyte Bit-
Torrent trace seem to be marginal. Therefore, it is justified to simply use the 4-tuple
as connection identifier in most of the cases and avoid heavy operations to futher
improve the accuracy. We did not conduct the same comparison with the mixed In-
ternet traffic trace since ������� ��	��
 was unable to process the 10 Gigabyte trace due
to memory limitations.

6. Conclusions

Our previous experience of Internet traffic analysis with a plain file-based approach
has lead us to the conclusion that for improved manageability and scalability, new
approaches are needed. We have advocated to use a DBMS for network data analysis.
While this requires an upfront investment to master a DBMS, our initial experience is
clearly encouraging in terms of reuse of intermediate data and elementary functions
and the type of analysis that becomes possible. We have built a first prototype and
conducted measurements of processing time and disk space usage. The results show
that our DBMS-based solution has acceptable performance and disk space overhead
compared to a plain file-based approach. Furthermore, we showed that in certain
cases our solution works where tools such as ��� ������	� 
 reach their limits and are
no longer able to operate. There is still a lot of work left such as developing more
complex tools, applying the approach to other types of traffic analysis data (e.g. BGP
data) and to much larger data sets in the order of Terabytes.

Acknowledgments

The authors would like to thank Karl-André Skevik and Ragnar Nicolaysen for their
help in maintaining the database server used to develop and test the InTraBase pro-
totype.

References

[1] “PL/R - R Procedural Language for PostgreSQL:
http://www.joeconway.com/plr/”.

[2] “PostgreSQL 7.4 Documentation (PL/pgSQL - SQL Procedural Language):
http://www.postgresql.org/docs/current/static/
plpgsql.html”.

[3] “PostgreSQL: http://www.postgresql.org/”.
[4] “The R Project for Statistical Computing: http://www.r-project.org/”.
[5] “TCP RFC(793): ftp://ftp.rfc-editor.org/in-notes/rfc793.txt”.
[6] “Tcptrace: http://www.tcptrace.org/”.
[7] C.-M. Chen, M. Cochinwala, C. Petrone, M. Pucci, S. Samtani, P. Santa, and

M. Mesiti, “Internet Traffic Warehouse”, In Proceedings of ACM SIGMOD,
pp. 550–558, 2000.

[8] C. D. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk, “The Gigascope
Stream Database”, IEEE Data Eng. Bull., 26(1), 2003.



[9] C. Fraleigh, C. Diot, B. Lyles, S. Moon, P. Owezarski, D. Papagiannaki, and
F. Tobagi, “Design and Deployment of a Passive Monitoring Infrastructure”,
In Proceedings of Passive and Active Measurements(PAM), April 2001.

[10] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell,
T. Seely, and C. Diot, “Packet-level Traffic Measurement from the Sprint IP
Backbone”, IEEE Network Magazine, November 2003.

[11] J. Gray, D. T. Liu, M. A. Nieto-Santisteban, A. S. Szalay, G. Heber, and D. De-
Witt, “Scientific Data Management in the Coming Decade”, , Microsoft Re-
search, 2005.

[12] L. Guo and I. Matta, “The War between Mice and Elephants”, In Proceedings
of IEEE International Conference on Network Protocols (ICNP), Riverside,
CA, November 2001.

[13] M. Izal, G. Urvoy-Keller, E. Biersack, P. Felber, A. Al Hamra, and L. Garcés-
Erice, “Dissecting BitTorrent: Five Months in a Torrent’s Lifetime”, In Pro-
ceedings of Passive and Active Measurements (PAM), April 2004.

[14] J. Jacobs and C. Humphrey, “Preserving Research Data”, Communications of
the ACM, 47(9):27–29, September 2004.

[15] K. Keys, D. Moore, R. Koga, E. Lagache, M. Tesch, , and K. Claffy, “The
architecture of the CoralReef Internet Traffic monitoring software suite”, In
Proceedings of Passive and Active Measurements(PAM), 2001.

[16] M. Mathis, J. Heffner, and R. Reddy, “Web100: extended TCP instrumentation
for research, education and diagnosis”, SIGCOMM Comput. Commun. Rev.,
33(3):69–79, 2003.

[17] S. B. Moon and T. Roscoe, “Metadata Management of Terabyte Datasets from
an IP Backbone Network: Experience and Challenges”, In Proceedings of
Workshop on Network-Related Data Management (NRDM), 2001.

[18] V. Paxson, “Experiences with Internet Traffic Measurement and Analysis”,
Lecture at NTT Research, February 2004.

[19] T. Plagemann, V. Goebel, A. Bergamini, G. Tolu, G. Urvoy-Keller, and E. W.
Biersack, “Using Data Stream Management Systems for Traffic Analysis - A
Case Study”, In Proceedings of Passive and Active Measurements, April 2004.

[20] D. Shasha and P. Bonnet, Database Tuning: Principles, Experiments, and Trou-
bleshooting Techniques, Morgan Kaufmann Publishers, 2003, ISBN 1-55860-
753-6.

[21] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker, “On the Characteristics and
Origins of Internet Flow Rates”, In Proceedings of ACM Sigcomm, Pittsburgh,
PA, USA, August 2002.


