
HONEYNETS: FOUNDATIONS FOR THE DEVELOPMENT OF
EARLY WARNING INFORMATION SYSTEMS

F. Pouget, M. Dacier, V.H. Pham
Institut Eurecom

2229, route des Crêtes ; BP193
06904 Sophia-Antipolis Cedex ; France

Email: {pouget,dacier,pham}@eurecom.fr

H. Debar
France Telecom R&D1

42, rue des Coutures; BP 6243
14066 Caen Cedex 4 ; France

Email: herve.debar@francetelecom.com

Abstract This paper aims at presenting in some depth the “Leurré.com” project and its first results.
The project aims at deploying so-called low level interaction honeypot platforms all over
the world to collect in a centralized database a set of information amenable to the analysis
of today’s Internet threats. At the time of this writing, around two dozens platforms have
been deployed in the five continents. The paper offers some insight into the findings that
can be derived from such data set. More importantly, the design and the structure of the
repository are presented and justified by means of several examples that highlight the
simplicity and efficiency of extracting useful information out of it. We explain why such
low cost, largely distributed system represents an important, foundational element,
towards the building of early warning information systems.

1 INTRODUCTION
The mere existence and success of workshops such as WORM, DIMVA and SRUTI ([1], [2], [3])

indicate that Internet-wide infectious epidemics have emerged as one of the leading threats to
information security and service availability. Important contributions have been made in the past that
have proposed propagation models ([4], [5], [6]) or that have analyzed, usually by reverse engineering
specific worms, their modus operandi [7], [8], [9], [10]. Several initiatives exist to monitor real world
data related to worms and attacks propagation. The Internet telescopes, the DShield web site, the work
reported by John McHugh in [11] are among them. These approaches are extremely valuable and have
in common the wish to collect very large amount of data collected thanks to a large amount of
monitored addresses.

By launching the Leurré.com project in the course of 2004, we have decided to take a different,
yet complimentary, approach. Instead of collecting aggregated information, such as Netflow records,
about a very large number of connections and hosts, we have decided to keep in one centralized
database very precise information concerning a very limited number of nodes under close scrutiny.
Furthermore, we have proposed to several partners to join the project by hosting such data collection
platform. Concretely speaking, we do use low interaction honeypots, based on the honeyd software
 [12], emulating 3 vulnerable machines on a single home computer. We do record all packets sent to or
from these machines, on all platforms, and we store the whole content of all the packets into a
database. Special care must be taken in the design of the database to offer an easy and intuitive way to
retrieve interesting information.

Before launching the Leurré.com project, we have investigated the usefulness of honeypots to
analyze Internet threats. Therefore, a first platform has been deployed for almost two years and its

1 This research is supported by a research contract with France Telecom R&D, Contract Number 46127561

results analyzed. Experience gained led to the publications of several papers and to several iterations
in the design of the database used to store the information. The most important results can be
summarized as follows:
• In [13], we present early results based on a couple of months of data highlighting the potential of

the data set we were in the process of building. The apparent limited number of attacks as well as
the regularity of their origins is presented and explained.

• In [14], we introduce a clustering algorithm to group together traces of attacks likely due to the
same attack tool. The method is presented, a technique to test the consistency of the obtained
clusters is offered and experimental results, based on 16 months of data are detailed.

• In [15] we highlight, based on concrete cases, the limitations of the other approaches such as the
internet telescopes or Dshield. We discuss the aftermath of a very atypical worm, the Deloder one,
as we see it from our honeypot point of view. We also describe an experimentation protocol, as
well as its results, aiming at validating the assumption that several groups of attackers are
exchanging information on the Internet in a non trivial way.
All these results have been obtained thanks to a single platform collecting data from one

environment only. Encouraged by these results, we have decided to collect the very same kind of data
from a diversity of places. This led to the creation of the Leurré.com project. A key element for the
success of such project is its ability to store large amount of data and, more importantly, to offer its
users a simple way to retrieve meaningful pieces of it efficiently. This is where the design of the
centralized database plays a key role. In the next Sections, we will present not only the structure of
this database but also how it can be used to bring to light some ongoing attack processes in the
Internet. Using several examples, we will present in parallel the structure of the database and the
results it delivers to us.

The structure of the paper is as follows. Section 2 introduces the design of the platform we are
using. Section 3 details the raw data we can get from the platforms we monitor and how this
information can be stored in and retrieved from the database. Section 4 explains the need for enriching
this data set with several kinds of external related information such as, for instance, the geographical
locations of the attacking sources. For each new type of added attribute, we explain how it fits into the
general database structure and, by means of examples, how one can take advantage of it. Section 5
explains why, from a usability point of view, it is also important to build what we call meta-data
tables. These are tables that contain redundant information that could be retrieved by means of SQL
queries on the database but that, for some efficiency reasons, we explicitly include as part of its
design. Examples are given. Section 6 concludes the paper.

2 HONEYPOTS

2.1 Initial Set Up

Average daily tcpdump file size 1.5 Mbytes
Maximum file size 9.6 Mbytes
Number of files collected 516 days
Average number of packets per tcpdump file 13600 packets

Tableau 1: VMWare-Based Environmnent, a big picture

A detailed description of our initial platform as well as a thorough treatment of the state of the art

in honeypots is given in [16]. This first platform is a so-called high interaction honeypot. It consists in
a VMWare virtual environment with three virtual machines running various Operating systems (Linux
RedHat, Windows 98, and Windows NT) and services (ftp server, web server, etc). Virtual machines
are built on non-persistent disks [17] which means that changes are lost when machines are powered
off or reset. In other words, rebooting a compromised machine offers us a new, clean, environment.
This platform has been deployed in February 2003. We collect every day all traffic coming from or to
the three virtual machines in tcpdump pcap files [18]. Table 1 summarizes the files characteristics we
have obtained from February 2003 until now. The total number of collected files represents the

amount of days during which the platform was up and running.

2.1.1 Distributed Honeypots
The results obtained with this initial platform and summarized here above have shown that most

of the attacks are caused by a few numbers of attack tools and that there are very stable processes
occurring in the wild. Furthermore, as discussed in [15], the fingerprinting capability of the attack
tools appears to be very limited. Therefore, one can reasonably decides to use low, instead of high,
interaction honeypots despite the fact that they can be easily identified by a remote attacker. A low
interaction honeypot being much cheaper to implement in terms of software and hardware, our hope is
to see many institutions volunteering to deploy such a platform on their premises, whereas they
wouldn’t have been eager to pay the price of a full fledged high interaction honeypot.

As a consequence, we have implemented a new platform similar to the one presented before, but
with emulated operating systems and services. We have developed such a platform based on open
source software2: it emulates three different Operating Systems, Windows 98, Windows NT Server
and Red Hat 7.3 respectively. The platform only needs a single host station, which is carefully secured
by means of access controls and integrity checks. Every day, we connect to the host station machine to
retrieve traffic logs and to check its security logs.

In the context of the Leurré.com project, we have started deploying these platforms all over the
world [19]. At the time of this writing, we have deployed 25 platforms, in 5 continents and 12
different countries. We invite the interested reader to look at [20] for a first analysis of this distributed
honeypot architecture.

Table 2 gives an overview of the data which is collected every day for these 25 platforms. We
only consider here the tcpdump pcap files. Volumes vary greatly between platforms. For instance, log
files collected on one German platform can be as twenty times bigger than those of one Lithuanian
platform, whereas the number of collected packets can be almost thirty times higher. Therefore, this
Table does not fairly represent any of the platforms but gives a rough idea of the amount of data we
deal with.

Average daily dump file size 114 Kbytes
Maximum file size 13 Mbytes
Number of collected files 1492 files

Table 2: LEURRE.COM project, the big picture

3 RAW COLLECTED DATA

3.1 Raw Data
As explained in Section 2, we collect from the different honeypot platforms tcpdump files which

contain observed suspicious packets. We also collect other information, such as application log files to
verify the integrity of the platforms but these lie outside the scope of the paper as they are not used to
analyze the attacks we face. It is worth noting that broadcast and multicast traffic is filtered out from
the tcpdump files we collect (e.g. arp traffic, Cisco Discovery Protocol CDP, Spanning-Tree Protocol
STP, etc). In other words, we only are interested in packets from/to the honeypot virtual machines
specifically. At the network level, these are mainly IP and ICMP packets. At the transport protocol,
they are mainly UDP and TCP ones.

3.2 New Definitions
This data needs to be properly organized as it will be used for further analysis and experiments.

One major remark is that it is not obvious, a priori, to define what the best structure of the database
could be as we do not know the most frequent queries that we will have to run on the dataset. As
explained before, this is the reason why we went through several iterations in its design, as we were
progressing with our research. The result presented here appears to have reached a relative stability,

2 The platform implements a modified version of Honeyd at this time.

based on several months of work with it.
In theory, no traffic should be observed to or from the machines we have set up. As a matter of

fact, many packets hit the different virtual machines, coming from different IP addresses. Typically, if
an attacker decides to choose one of our honeypots as his next victim, he tries to establish direct TCP
connections or to send UDP packets against it. We group all these attempts into what we call a “Tiny
Session” by contrast to the notion of “Large Session” which includes all Tiny Sessions that a given
attacker might have launched against a given platform. In our setup, as we have three honeypots, a
Large Session can be made of 1 to 3 Tiny Sessions. This idea of Tiny and Large Sessions is at the core
of the design of the database. Therefore, the five most important tables in the database are the
following ones:

- Host: this table contains all attributes (or links to other tables containing attributes) required to
characterize one honeypot virtual machine.

- Environment: this table contains all attributes (or links to other tables containing attributes)
required to characterize one honeypot platform, i.e. a group of three hosts.

- Source: this table gathers all attributes (or links to other tables containing attributes) required
to characterize one attacking IP within one day.

- Large_Session: this table contains all attributes (or links to other tables containing attributes)
required to characterize the activity of one Source observed against one Environment.

- Tiny_Session: this table contains all attributes (or links to other tables containing attributes)
required to characterize the activity of one Source observed against one Host.

It is worth noting that, according to these definitions, we consider that we have two distinct
Sources of attacks when a given attacking IP address is observed twice on the same Environment with
more than 24 hours between the two observations. The reason for this doing is experimental. We have
found out that it was extremely rare, not to say impossible, to see Large Session lasting more than a
couple of seconds. It is also extremely rare to observe the same IP address in multiple days. Last but
not least, we do know that most of the attacks come from personal PCs which, usually, use temporary
addresses [15], [16]. For all these reasons, it is quite likely that the same IP address observed in two
different days is not linked to a single physical machine. Therefore, it makes sense to separate, in the
database, the activities of the first from the activities of the second one by giving them distinct Source
identifiers.

The Entity-Relationship diagram presented in Figure 1 exhibits the respective roles of these
tables. The relationship between Source and Environment is called Large_Session. The relationship
between one Source and one Host is called a Tiny_Session.

Figure 1: Entity6Relationship Diagram

3.3 Database Construction
The purpose of the Entity-Relationship model is to allow the description of the conceptual

scheme. It is normal to turn it into a practical relational model upon which the real database is built.
There exists a vast amount of knowledge and a rich literature explaining how to optimize this process,

with respect to various types of constraints (speed, memory consumption, table sizes, number of
indices, etc.). We invite the interested reader to see [21], [22], for instance, for more on this topic.

Typically, the theory on the ‘good’ design of relational databases has been looking at problems
such as: data redundancy in the tables, update and insertion anomaly issues. These problems are
classically solved by transforming non optimal entity relationships models into their so-called “normal
forms” (Third Normal Form, Boyce-Codd Normal Form). In our case though, the problem is slightly
different and offers us the freedom not to follow that path. There are two important reasons for that.
Firstly, we do not care about update and insertion anomaly issues as we do not touch to the data once
they is inserted into the database. Indeed, the stored information is something that we have no reason
to modify as it represents a fact of the past. Secondly, we do care a lot about the efficiency of querying
the database and are not too concerned by space efficiency (be it on disk or in memory) as the total
amount of data we deal with remains rather modest, compared to what existing database systems can
handle. Therefore, we do have consciously decided to introduce in our design tables that contain
redundant information. In other words, these tables contain information that could be retrieved by
querying other tables. However, having the results of such queries available at hand in ad-hoc tables
proves to be extremely useful when using the database. As a consequence, we decide to keep them,
acknowledging the fact that, without their presence, the database would be more ‘optimal’ according
to the classical criteria.

These remarks have been carefully taken into account for the database implementation. Figure 2
represents the Unified Modeling Language (UML) class diagram we have chosen corresponding to the
ER diagram in Figure 1.

Figure 2: UML Class Diagram

Primary keys are underlined in Figure 2. For the Source table, the key Source_Id is equivalent to

the expected double key (IP_Address,Date_Id). For the Large_Session table, the primary key
Large_Session_Id is equivalent to the expected double key (Source_Id,Environment_Id). Finally,
similarly to the two last cases, the primary key Tiny_Session_Id from table Tiny_Session is equivalent
to the expected key pair (Source_Id, Host_Id). Some redundancies have also been introduced on
purpose: as an illustration, the Large_Session_Id attribute in the Tiny_Session table can be potentially
removed. Indeed, it is always possible to identify the Large Session a given Tiny Session belongs just
by knowing its Host_Id and Source_Id. We show in the following that this redundancy is however
beneficial for performance improvements. Moreover, it greatly simplifies the process of writing new
queries.

Raw packets were not presented in the previous figure for clarity concerns, but they are definitely
stored. They are parsed and stored in tables similar to those used by the Snort Intrusion Detection
System [23]. Packets are either coming from a Host or from a Source. They are linked to a given Tiny

Session. Figure 3 presents the resulting new tables. Each packet has its unique identifier, called cid.
The reader can easily deduce the global graph from the two figures 2 and 3. In the following, we will
keep introducing new tables, in an incremental way. We will represent only the relevant information as
the representation of the whole schema appears to be rather difficult. We invite the interested reader to
contact us if he wants to obtain the whole diagram.

Figure 3: Raw packet Storage

3.4 Illustrative Examples
At the end of 2004, the database contains 17 Gbytes. The tables presented in Section 3.3 have

been implemented in a MySQL [24] database running on a RedHat 9.0 server, with 2GHz, 80 GB
ROM and 1GB RAM. The entries for the previously introduced tables are given in Table 3.

Table names Number of entries

Source 511 415
Large_Session 525 152
Tiny_Session 933 536
Environment 25

Host 75
Table 3: Number of table entries in 11/04

From these tables, it is now very simple to answer questions like the four following ones:
1. How many Sources have been observed per Environment?
2. How many Hosts have been targeted by each Source?
3. How many Sources have been observed from multiple Environments?
4. What is the percentage of IP addresses observed during more than one day?

The first question can be answered by means of the following SQL query:
 SELECT Environment_Id, count(Source_Id) FROM Large_Session GROUP BY

Environment_Id

The output is a two-column table. It gives for each environment (left column) the corresponding
number of observed Sources (right column). This is –partially- represented in the second and third
column of Table 4 in which we see a large diversity in the number of hits against various
Environments. Of course, this number is relative to the activity period of each platform as they did not

start at the same time. A better output consists in dividing the total number of observed Sources by the
number of active days. This provides the average number of Sources observed each day on each
platform. Even in this case, we observe on some platforms twenty times more Sources per day than on
some others, in the average.

Platforms Number of

Observed Sources
Number of days

the platform has been
active

Average number
of Source observed each

day
Platform 1 (France, industry) 58791 70 840
Platform 2 (France, academy) 21781 121 180
Platform3 (Germany, academy) 109426 105 1042
Platform 4 (Lithuania, academy) 7841 156 50
Platform 5 (USA, industry) 22784 79 285

Table 4: Number of Observed Attack Sources per Platform

The clear difference between Large_Session entries and Tiny_Session entries in Table 3 indicates
that many attacks target more than one virtual machine. This is verified when answering to our second
question by means of the following SQL query:

 SELECT Source_Id, count(Tiny_Session_Id) FROM Tiny_Session GROUP BY Source_Id

The output is a two-column table which provides for each Source_Id (left column) the associated
number of Tiny_Sessions (right column). As a reminder, all the exchanges of packets between one
Source and one Host are part of a single Tiny_Session. We find out with this request that in average,
54% of the Sources have targeted the three virtual machines. A closer look also indicates that they
always have targeted the three virtual machines in the same order, the sequential order. 40% of the
observed Sources have targeted one and only one virtual machine. The remaining 6% Sources have
targeted two out of the three honeypots.

The answer to the third question tells us if some IP addresses have been observed on multiple
platforms the very same day. This is given by the following query:

 SELECT Source_Id, count(Large_Session_Id) FROM Large_Session GROUP BY

Source_Id

This request reveals that 9995 out of the 511415 Sources (i.e. less than 2% of the Sources) have been
observed on more than one platform the very same day, by definition of the notions of Source and
Large Session.
The fourth question goes one step further than the previous one by looking at the percentage of IP
addresses that have been observed on two different days. In other words, how many IP addresses are
found under more than one Source identifier? This number can be found by dividing the result of this
query:

 SELECT count(distinct(IP_Address)) FROM Source

By the result of this other one:
 SELECT count(Source_Id) FROM Source

The result is around 91%. This simply means that it is unlikely to observe the same attacking IP
address twice on the same platform. The last two questions highlight the fact that, first, attacks are
issued from a very large pool of IP addresses and, second, that it might not be worth the effort of
implementing the notion of blacklists [25] since, apparently, a few of them are observed more than
once.

4 ADDITIONAL INFORMATION

4.1 IP Geographical location

4.1.1 Various Information
The geographical location of IPs can represent interesting information to better understand where

the attacks are coming from. We initially used one utility called Netgeo, developed in the context of
the CAIDA project [26]. NetGeo is made of a collection of Perl scripts that map IP addresses to
geographical locations. This software is open source and has been applied in several research papers,
among which [27], [28], [29], [30]. However, as we show in [15], there are some differences with other
tools like MaxMind, IP2location or GeoBytes [31], [32], [33]. The reason is that Netgeo returns in
many cases the geographical location of the Autonomous System (AS) instead of the real location of
the IP itself. Thus, we have decided to include into our database the geographical information
provided by several tools and leave it up to the user to choose the one whom he felt more comfortable
with. This offers us as well the opportunity to test and compare the results of these tools. We have
subscribed to a commercial solution called MaxMind, and have made some comparisons with demo
versions of commercial tools like IP2location and GeoBytes [32], [33].

4.1.2 Database Modifications
The geographical information has to be considered for one IP at a given point in time. Indeed, the

location can change over months (see Maxmind updates presented in [31] for instance). For this
reason, the geographical location is linked to the notion of Source. Two choices are possible here. The
first solution consists in adding into the Source table one attribute for each utility which will be a
pointer to its output. This method is not practical, as it requires modifying permanently the Source
table for each tool application. On the other hand, the second solution considers that the geographical
location characterizes a Source but also represents a new and important information type. Thus a new
table called Geographical_Information is introduced. This enables us to leave the important Source
table unchanged. Details are presented in Figure 4.

Figure 4: Geographical Information on the attacks

One Geographical_Information entry is defined by the primary key pair (Source_Id,
Geographical_Utility_Id). It returns the corresponding Country_Id provided by the Geo_Utility whose
identifier is Geo_Utility_Id. The table Country maps the full country name associated to the
Country_Id. Luckily enough, all tools are using the same Country_Id. It consists in 2 letters, as
specified in the ISO 3166-1 alpha-2Code [34]. Thus, it is very easy to directly work on the Country_Id
attribute, as shown with the examples given below.

4.1.3 Examples
A very simple SQL request enables us to get an idea of the amount of differences between the

outputs provided by the various tools.

 SELECT Source_Id, count(distinct(Country_Id)) FROM Geographical_Information

GROUP BY Source_Id

This gives a two-column output. If the values in the second column are strictly higher than one, it
means that the same Source is seen as belonging to different countries by the various tools. As a
matter of fact, we find out that Maxmind and Netgeo give a different result for 65% of the Sources.
This result is obtained by looking at the number of cases where two different countries are assigned to
the very same Source. The comparison with another tool called IP2location ([32]) confirms Maxmind
results.
It is usually said that most of the attacks originate from China and the United States of America. This
is confirmed by the following request which focuses on the results provided by Maxmind (identified
by Geographical_Utility_Id = 2)

 SELECT Country_Id, count(Source_Id) n FROM Geographical_Information WHERE

Geographical_Utility_Id = 2 GROUP BY Country_Id ORDER BY n

The ORDER BY command orders the results in increasing order. Thus, it is easy to pick up the ten most
active countries, as presented in Table 5.

Top Ten attacking Countries for all Sources
(given in decreasing number of importance)

Number of Observed Sources

US – The USA 77621
TW – Taiwan 48440
CN – China 40046
DE – Germany 34348
FR – France 26911
KR – Republic of Korea 24496
ES – Spain 22756
JP – Japan 20602
GB- The United Kingdom 19771
CA-Canada 18286

Table 5: Top 10 attacking countries for all Sources

More generally, 185 distinct countries have been observed since the beginning of this
experiment. It is worth noting that there are 191 countries members of the United Nations and 192
countries are recognized by the United States State Department.

We also note that 10 countries are responsible for more than 66% of the attacks while 175
countries are for the remaining 34%. This analysis can also be performed per platform. This is done by
introducing the notion of Environment into the previous request:

 SELECT Country_Id, count(Source_Id) n FROM Geographical_Information,

Large_Session WHERE Geographical_Utility_Id = 2 AND Large_Session.Source_Id =

Geographical_Information.Source_Id AND Large_Session.Environment_Id = 21 GROUP

BY Country_Id ORDER BY n

We apply the same request than previously, but we only consider here Sources having targeted the
Environment 21. An analysis of the evolution of the attacks per country has been performed in [20].
We refer the interested reader to this paper for more results on the analysis of the attacks based on
geographical information.

4.2 Passive OS Fingerprinting

4.2.1 Various Utilities
Many worms propagate through Windows machines [9], [10], [35]. Others target specific Linux

services [36], [37]. In all cases, it seems that there exists some correlation between the Operating
System of the attacker and the attack type it is performing. Many techniques exist to

determine/fingerprint the operating system of machines, even if they are not all perfect. They are often
classified as active when they send specific traffic to the machine to probe its OS. On the contrary, so-
called passive fingerprinting methods rely on the observation of packets without interacting with the
machine. This last approach is far more interesting in our case. Indeed, we want our honeypot
machines to remain passive. Indeed, we do not want to show to the attacker that his activities are under
observation.

A dozen of utilities implements passive fingerprinting techniques. Most of them compare packet
fields to a given fingerprints database. A match means that the OS has been determined. Some tools
differ by the answer provided in the case of uncertainty, others by their fingerprinting tables. As a
consequence, we have decided to use three different passive fingerprinting utilities, with the
possibility to add new ones later on if needed. They are respectively called Disco, p0f and ettercap
 [38], [39], [40]. They all use tcpdump pcap files as input. Their output is in text format which we parse
to store the information into the database. Details of the tables are provided in the next Section.

4.2.2 Database Modifications
Supposedly, the OS fingerprinting qualifies a given attack Source. However, for practical

reasons, we have decided to run the OS fingerprinting process on a per platform basis. As a
consequence, we consider that the OS fingerprinting information is related to a given Large_Session
and not to a given Source. Details on the database architecture are presented in Figure 5.

Figure 5: Passive OS Fingerprinting Information

There are two options here, as with the geographical location information. The first solution
consists in introducing a new attribute in the Large_Session table for each fingerprinting tool. The
second solution consists in having the OS information in a new table called Info_OS. Using a similar
reasoning as before, we decide to use the second option. Each entry is totally determined by the triple
key (Large_Session_Id, OS_Finder_Id, OS_Id). The OS table contains all fingerprints, even those
which are not currently determined.

4.2.3 Some Applications
It appears that a comparison between fingerprinting tools is not straightforward. Indeed, the tools

rely on different fingerprints database. As a consequence, two same signatures might not be associated
exactly to the same OS(s). For instance, the very same signature will be detected as “Windows 2000
SP2+, XP SP1 (seldom 98 4.10.2222)” by p0f and as “Windows XP Pro,S” by Disco. A naive
comparison will claim that these are two different operating systems. On the other hand, they both
point out that the attack Source runs on a Windows machine. This can be an interesting hint to better
characterize the Source profile.

To avoid such a problem, we make use of regular expressions. They can also be easily

implemented with MySQL. Thus, if we are interested in looking at the number of attacking Sources
considered to be Windows machines by p0f (OS_Finder=2), we write the following request:

 SELECT count(distinct(Source_Id)) FROM Large_Session, Info_OS, OS WHERE

Large_Session.Large_Session_Id = Info_OS.Large_Session_Id AND Info_OS.OS_Id =

OS.OS_Id AND OS.Name REGEXP “Windows”

We count all the distinct sources to avoid counting multiple times all sources having targeted
multiples platforms. By repeating this query with various parameters, we obtain the comparison
proposed in Table 6:

Passive

Fingerprinting Tools
Detected

“Windows” Machines
Detected

“linux/unix/solaris”
machines

Number of
returned undetermined

values
Disco 66% 0.3% 33.7%
P0f 81.8% 0.5% 17.7%
Ettercap 77,6% 0.4% 22%

Table 6: Comparison between three Passive OS Fingerprinting Tools

All tools agree that the majority of attacks are coming from Windows machines. P0f and Ettercap
give very high percentage values for these machines. We also notice that Disco has a high rate of
undetermined fingerprints. This is the less elaborated tool. It bases its fingerprints on TCP SYN and
TCP SYN/ACK packets only. If we now compare how many Sources differ between Disco and p0f,
we find out that Disco does not return any result when there is an ambiguity. Ettercap and p0f,
however, tend to assign a default Windows value in many cases. This is all the more confirmed that
we have learnt recently that Ettercap passive fingerprinting functionality is apparently based on the
p0f_v1 (p0f first version) code. As a consequence, we have decided to use p0f as our default OS
fingerprinting tool.

4.3 Domain Name Resolution

4.3.1 DNS and other network features
It is interesting to analyze the geographical location of the attack sources, as we have shown in

Section 4.1. Another potentially interesting information can be the machine name resolution. The
Domain Name Resolution (DNS) associates one name to one IP. It is based on a distributed database
containing all name/address pairs. This database is organized in domains that form a hierarchy. The
nslookup tool enables us to query a NS to find (among other information) the IP address
corresponding to a host name. It is also possible to obtain the name corresponding to an IP address.
The reason is that NS manages two databases: the direct zone and the inverse zone. We have
implemented a simple Perl script based on the Perl Net-DNS library that recursively performs the
reverse DNS request.

The network from which the attack occurs can also be of interest. This information can be
retrieved with Whois queries. A Whois query against a registry's database identifies the registrar and
the name servers for the domain name given in the query. A query against a registrar's database
identifies the owner of the domain name, and the contacts associated with it. Some simple Perl scripts
exist to directly perform WHOIS lookups automatically [41]. These lookups provide various
information on the domain, as its registration ID, its creation date, its expiration date, etc.

Finally, each IP belongs to a given network. A network can be defined as an IP address with a
Classless Inter-Domain Routing (CIDR) mask. The method is precisely described in RFC 1520 ([42]).
The CIDR notation specifies an IP address range by the combination of an IP address and its
associated network mask. CIDR notation uses the following format xxx.xxx.xxx.xxx/n where n is the
number of (leftmost) bits in the mask. For example, 192.168.12.0/23 applies the network mask
255.255.254.0 to the 192.168 network, starting at 192.168.12.0. This notation represents the address
range 192.168.12.0 - 192.168.13.255. We have decided for each Source to store its corresponding
CIDR mask in the database. Both Netgeo and Maxmind provide information on the network the

Source is coming from. We derive from the IP-range network values the CIDR network mask.
To summarize, we thus introduce into the database three new external important information

types: the domain reverse resolution, the result of Whois queries and the network parameters. As a
follow up, since these information characterize uniquely a given Source, we have decided to enrich the
corresponding table with this information by adding attributes, the value of which point to new tables
providing the imported information. This is represented in Figure 6. For instance, Network_Id is a
pointer to an entry in the table Network where a network address can be found together with an
estimated CIDR value.

Figure 6: Network and Domain information

4.3.2 Examples
Some interesting statistics can be done on the domain names. We have developed some parsers to

extract the different levels of the name. The top 5 most attacking domains are respectively the .net,
.com, .jp, .fr and .de first name levels. Other statistics can be done quite easily by checking if the
attacking machine belongs to a company network or is more likely to be a home computer. For
instance, simple extractions of patterns like ‘%dsl%’, ‘%cable%’, ‘%dial%’ are a good indicators of
home computers. On the other hand, patterns like ‘%web%’, ‘%mail%’, ‘%serv%’ in the machine
name are likely to show up for machines belonging to some industrial professional environment.
Several other analyses are possible and this is an ongoing task in our project.

5 META DATA

5.1 Meta-Data definition
We have explained here above the existence of redundant information in our database for the

sake of querying efficiency. In the following, we call “meta-data” the content of these redundant
tables. Meta data information is information that is saved in specific tables but that could also be
derived by means of queries against the other tables. Meta-data tables are built by means of automated
scripts that are run whenever new data are entered into the database. We provide in the following a
non-exhaustive list of meta-data information that can be found today in the database:

• The duration of the observation of a given Source
• The average inter arrival time of requests sent to a given Source. This might help

differentiate hand-written attacks from automated tools.
• An indicator on who starts the attack session (to efficiently verify that none of our

honeypots has ever been seen initiating a connection outside).
• A simple attribute that indicates how many virtual machines are targeted
• The number of observed complete TCP connections in a given Tiny Session
• Some precisions on the observation date: working days, working hours, etc..;
• The sequence of ports that have been targeted during the attack on a virtual machine
• A Boolean value indicating if a given Source has already been observed or not
• An attribute to mark Tiny sessions that are likely due to backscatter activities

• Another Boolean value to indicate if attacks on multiple virtual machines were
performed in sequence or simultaneously.

• Etc.
The main idea is that we do not want to compute this meta-data information whenever we need

it. It is considered to be useful enough to be part of the database information. The attentive reader will
notice that, actually, the core notions of Source, Tiny_Session and Large_Session are already meta-
data.They are attack representations we observe from our platforms based on the raw packets initially
stored.

In conclusion to this Section, there are a multitude of meta-data we have found interesting to
represent and analyze. Others will definitely appear along with our experiments. We explain in the
following how they can be easily integrated into the database architecture.

5.2 Flexible Database Interface
As explained in Section 5.1, the meta-data list we present in this document is far from being

exhaustive. There is a very easy way to figure out where to integrate new meta-data into the current
architecture. It boils down to answering the following question:

 What characterizes this new piece of Information?
• The Source only?
• The attack session between one Source and one Environment, i.e. a Large_Session?
• The attack session between one Source and one virtual machine, i.e.; a Tiny_Session?

The following steps are simple updates of the appropriate tables. Once tables are created or
modified, updating the whole database to reflect these changes is a matter of minutes, thanks to a
couple of scripts. It is important to note that the updates concern only the addition of new data, thanks
to new data structures. It does not imply changing some existing values in certain tables. If that was
the case, adding new meta data could lead to update anomaly problems.

The meta-data described in Section 5.1 have all been treated this way. The resulting tables are
presented in Figure 7.

Figure 7 : Meta Data Insertion

For the Source table, one major attribute has been added.

• The Precision_Date attribute gives more detailed information about the date of the
observation of an attack. This information can be used to determine if the attack occurred
during working days (Monday-Friday), or working hours (9h-17h). The Working_Day_Id is a
Boolean value. The Hours_Interval attribute indicates the hour at which the Source has first
been observed. This way, it is now quite easy to answer questions like: Are we less attacked
during working days? Are attacks more virulent during night time? Some elements of
responses are presented in Figure 8 for the VMWare platform which has been up and running
for almost 2 years. All Sources that have been first observed between 00:00 and 01:00 are
presented by the ‘0’ bar. The 24 bars stem for the 24 hour intervals. This curve has a very nice

shape, interesting to look at. We do not observe the same amount of attacks every hour. The
curve clearly indicates that the attack time does not correspond to a random pattern. In
addition, there is a weird peak of activities between 3pm. and 4pm.Thanks to the geographical
location tables, we could identify if this shape is due to a particular country attacking at that
specific time. We can also imagine many other possible investigations which lie beyond the
scope of this paper.

Figure 8: Attacks per Hour on our VMWare platform

For the Large_Session table, a few attributes have also been added:
• Number_Queries: this attribute gives for each Large_Session the total number of packets that

have been sent by the Source to the whole honeypot platform, i.e. Environment. There is a
similar attribute assigned for the Tiny_Session table. It corresponds to the total number of
packets sent by the same Source to one virtual machine, i.e. Host.

• Duration: This attribute corresponds in table Large_Session to the time period from the date
the Source has sent its first packet to the date it has sent its last packet. In a similar way, there
is a Duration attribute in the Tiny_Session table for packets sent to one Host only.

• Ordo_Session: This attribute indicates if Hosts have been attacked sequentially or in parallel.
To get this information, it suffices to look at packet timestamps. If the first packet sent to the
second virtual machine is posterior to the last one sent to the first virtual machine, they have
been attacked sequentially. In other cases, they have been attacked in parallel.

• Av_InterReq_Time: This attribute provides the average time that occurs between two packets
sent by the same Source. This attribute has been introduced with the goal of chasing traces due
to non automated attacks. Our assumption is that attacks launched manually from a console by
attackers will be characterized by a large inter arrival time of packets. This is true, for
instance, when a user replies in an interactive way to an ftp server asking him his username
and password. So far, we only have observed a very few number of attacks like this within the
2 year experiments.

For the Tiny_Session table, three main attributes have been added:
• Who_Starts: This attribute is an indicator to check who initiated the connection between the

Source and the Host. By design, the Host should never initiate a connection to a Source unless
if it has been compromised. We use this information as another method to verify that none of
our hosts gets hacked.

• We make use of the definition Ports Sequence as an ordered list of ports targeted by an attack
Source on a given Host. For instance, if source A sends requests on port 80 (HTTP), and then
on ports 8080 (HTTP Alternate) and 1080 (SOCKS), the associated ports sequence will be
{80;8080;1080}. The sequence of ports has been put in the ListPortsDest table. For all the
Tiny_Sessions we have observed so far, the length of theses sequences of ports is usually very
short. In this two-year experiment, we have observed only 9 scans on more than 500 ports.
Thus, it seems more reasonable to store them once as strings and add in parallel a dedicated
index in the Tiny_Session table.

• The Backscatter identification is quite straightforward. Indeed, backscatter packets are
responses to connections requests issued by spoofed IP addresses, typically in the case of a
Denial of Service attack against a third party. If our addresses are used (spoofed) in the course
of this attack, we will see the responses of the victim sent to us without us having talked to
him first. These attacks have been very well-analyzed by Moore et al. in [43], [44]. Figure 9
summarizes the various types of responses (column ‘response from victim’) that can be sent
“against” our honeypots. These packets hit a large variety of ports that are traditionally
unused, such as 27374 (TCP RST), 11224 (TCP SYN ACK), 9026 (RST ACK), etc...

Figure 9: Backscatter Packet characteristics

5.3 Some Interesting Meta-Data Outputs
Insofar, the size of the database as described in the previous Sections is 27 Gbytes. Everyday, we

insert around 13Mbytes of raw data. If we consider the global additional increase every day with all
meta-data, this reaches 40 Mbytes per day. More specifically, the Source table is 36 Mbytes, the
Tiny_Session is 97Mbytes, the Large_Session is 48 Mbytes, the Source_To_Host_Traffic table is 586
Mbytes, the Host_To_Source_Traffic table is 440 Mbytes, the Geographical_Location is 30 MBytes
and finally the Info_OS table is 100 MBytes. These figures evolve every day but clearly indicate
which tables are the largest.
Typically, it takes about 5 minutes to store the daily tcpdump file of one Environment This means that
we need less than two hours to store every day all data from all platforms. This is perfectly acceptable.
To conclude, we can easily show the gain in terms of speed obtained thanks to the meta data. For this
example, we do imagine that the meta data listPortsDest does not exist in the database and we want to
know all ports sequences observed against all platforms. This comes down to running the following
SQL query:

 SELECT group_concat(distinct(tcp_dport),distinct(udp_port)) FROM Tiny_Session,

Source_To_Host_Traffic, tcphdr, udphdr WHERE Tiny_Session.Tiny_Session_Id =

Source_To_Host_Traffic.Tiny_Session_Id AND Source_To_Host_Traffic.Cid =

tcphdr.cid AND Source_To_Host_Traffic.Cid = udphdr.cid GROUP BY

Tiny_Session.Tiny_Session_Id

The answer is provided after 7 hours 48 minutes 21seconds during which almost 100 % of the CPU of
the machine was devoted to this single request. The major reason of such an important delay is that the
tcphdr table contains more than 17’700’000 entries. On the other hand, thanks to the integrated meta
data, we can submit this Mysql query:

 SELECT list_desc FROM Tiny_Session, listPortsDest where

Tiny_Session.List_Id=listPortsDest.list_id

Now, the time required to get an answer is reduced to 34seconds. This means that we gain almost
two orders of magnitude in speed! In addition, the first SQL query does not give the exact sequence of
ports with respect to the dates they were probed. It only gives the list of ports (TCP and UDP) that
have been targeted. Asking for the sequence information would have made the request even more

complex with an execution delay exceeding one day.

6 CONCLUSION
In this paper, we have presented in detail the design of the centralized database used in the

context of the Leurré.com project. We have shown, step by step, the various tables that compose the
databases, the reasoning beyond their creation as well as their usefulness to extract meaningful
information easily from the database. We have explained why several tables have been created that do
contain redundant information and we have motivated our choice for efficiency in the querying
mechanism, at the cost of a greater storage need. Several examples have been given throughout the
text to illustrate the various notions.

As shown in this paper, the richness of the database and the flexibility of its design are such that
it enables a large diversity of analyses to be carried out on it. It is not the purpose of this paper to
report on a specific analysis. Other publications have focused on some of these issues and some more
work is ongoing. We have shown though by means of examples that this database helps in discovering
trends in the attacks and in characterizing them. Being able to conduct such analysis in a systematic
way is a prerequisite for establishing early warning information systems and, therefore, we believe our
work constitutes a foundational element towards the creation of such centers.

It is our wish to share the data contained in this database with those interested in carrying some
research on it. The authors can be reached by mail to get detailed information regarding how to join
the project in order to gain access to the database.

7 REFERENCES

[1] WORM 2004, The 2nd Workshop on Rapid Malcode, held in Association with the 11th ACM Conference on
Computer and Communication Security CCS, Oct. 2004, VA, USA. Home page at:
http://www.acm.org/sigs/sigsac/ccs/CCS2004/worm.html

[2] DIMVA 2004, The Detection of Intrusions and Malware & Vulnerability Assessment, July 2004, Dortmund,
Germany. Home page at: http://www.dimva.org/dimva2005

[3] SRUTI: Steps to Reducing Unwanted Traffic on the Internet, Usenix Workshop, July 2005, MA USA. Home page
at: http://nms.lcs.mit.edu/~dina/SRUTI/

[4] S. Staniford, V. Paxson, N. Weaver. “How to Own the Internet in Your Spare Time”. In the Proceedings of the 11th
USENIX Security Symposium, pages 149-167. USENIX Association, 2002.

[5] Z. Chen, L. Gao, K. Kwiat. “Modeling the Spread of Active Worms”. In the Proceedings of the IEEE INFOCOM
2003, April 2003, CA, USA.

[6] C.C. Zou, W. Gong, D. Towsley. “Worm Propagation Modeling and Analysis Under Dynamic Quarantine
Defense”. In Proceedings of the 1st Workshop on Rapid Malcode (WORM’03), Oct. 2003, WA, USA.

[7] E. Spafford. “The Internet Worm Program: An Analysis”. Purdue Technical Report CSD-TR-823, West Lafayette,
IN 47907-2004, 1988.

[8] D. Moore, C. Shannon, G.M. Voelker, S. Savage. “Code Red, a Case Study on the Spread and Victims of an
Internet Worm”. In Proceedings of the ACM/USENIX Internet Measurement Workhop, Nov. 2002.

[9] McAFEE Security Antivirus. “Virus Profile: W32/deloder worm”. Available at: http://us.mcafee.com/virusInfo/
[10] F-Secure Corporation. “Deloder worm analysis”. Available at: http://www.f-secure.com
[11] J. McHugh. “Sets, Bags, and Rock and Roll Analyzing Large Data Sets of Network Data”. In Proceedings of the

9th European Symposium on Research in Computer Security USENIX’04, Sept. 2004, Sophia-Antipolis, France.
[12] Honeyd Virtual Honeypot from N. Provos, home page: http://www.honeyd.org
[13] M. Dacier, F. Pouget, H. Debar. “Honeypots, A Practical Mean to Validate Malicious Fault Assumptions”. In

Proceedings of the 10th Pacific Ream Dependable Computing Conference (PRDC’04), Feb. 2004.
[14] F. Pouget, M. Dacier. “Honeypot-based Forensics”. In Proceedings of the AusCERT Asia Pacific Information

Technology Security Conference 2004 (AusCERT2004), May 2004, Australia.
[15] F. Pouget, M. Dacier, V.H. Pham. “Understanding Threats: a Prerequisite to Enhance Survivability of Computing

Systems”. In Proceedings of the International Infrastructure Survivability Workshop (IISW 2004), Dec. 2004,
Portugal.

[16] F. Pouget, M. Dacier, H. Debar. “Attack Processes found on the Internet”. In Proceedings of the NATO Symposium
IST-041/RSY-013, April 2004, France.

[17] VMWare Corporation. User’s Manual version 4.1 available at: http://www.vmware.com
[18] TCPDUMP utility home page: http://www.tcpdump.org
[19] LEURRE.COM, the Eurecom Honeypot Project home page: http://www.eurecom.fr/~pouget/leurrecom.html
[20] F. Pouget, M. Dacier, V.H. Pham. “On the Advantages of Deploying a Large Scale Distributed Honeypot

Platform”. To appear in the Proceedings ot the E-Crime and Computer Evidence Conference 2005, Monaco, Feb.
2005.

[21] H. Garcia-Molina, J.D. Ullman, J.D. Widom. “Database Systems: he Complete Book”. 2002.

http://www.acm.org/sigs/sigsac/ccs/CCS2004/worm.html
http://www.dimva.org/dimva2005
http://nms.lcs.mit.edu/~dina/SRUTI/
http://us.mcafee.com/virusInfo/
http://www.f-secure.com/
http://www.honeyd.org/
http://www.vmware.com/
http://www.tcpdump.org/
http://www.eurecom.fr/~pouget/leurrecom.html

[22] J.D. Ullman. “A First Course in Database Systems”, 2nd Edition, 1989.
[23] SNORT Intrusion Detection Sytem home page: http://www.snort.org
[24] MySQL Open Source Database home page: http://www.mysql.com
[25] “Blacklist Scanner” in Security Focus Home Tools: http://www.securityfocu.com/tools/1962
[26] CAIDA Project. “Netgeo utility – the Internet geographical database” home page:

http://www.caida.org/tools/utilities/netgeo/
[27] A. Rosin. “Measuring Availability in Peer-to-Peer Networks”. Sept. 2003. Available at: http://www.wiwi.hu-

berlin.de/fis/p2pe/paper_A_Rosin.pdf
[28] A. Zeitoun, C.N. Chuah, S. Bhattacharyya, C. Diot. “An AS-level study of Internet path delay characteristics”.

Technical report, 2003. Available at: http://ipmon.sprint.com/pubs_trs/trs/RR03-ATL-051699-AS-delay.pdf
[29] S.H. Hook, H. Jeong, A.L. Barabasi. “Modeling the Internet’s large scale topology”. In PNAS –vol. 99, Oct. 2002.

Available at: http://www.nd.edu/networks/PDF/Modeling
[30] T.S. Eugene Ng, H. Zhang. “Predicting Internet Network Distance with Coordinates-based Approaches”. In

Proceedings of INFOCOM 2002. Available at: http://www-2.cs.cmu.edu/eugeneng/papers/INFOCOM02.pdf
[31] MaxMind GeoIP Country Database Commercial Product, home page: http://www.maxmind.com/app/products
[32] IP2location products, home page: http://www.ip2location.com
[33] GeoBytes IP Address Locator Tool, home page: http://www.geobytes.com/IPLocator.htm
[34] ISO 3166-1 alpha-2, Introduction to the 2-letter code for countries names. Available at:

http://encyclopedia.thefreedictionary.com/ISO%203166-1
[35] Symantec Antivirus Corporation. Symantec Security Response w32.welchia.worm, 2004, available at

http://response.symantec.com/avcentr/venc/data/w32.welchia.b.worm.html
[36] “Internet Worm squirms into Linux Servers”. CNET Tech report available at: http://news.com.com/2100-1001-

251071.html?legacy=cnet
[37] “Ramen Linux Worm seen in Wild”. InfoWorld News available at:

http://www.infoworld.com/articles/hn/xml/01/01/25/010125hnramen.html?p=br&s=3
[38] Disco Passive Fingerprinting Tool home page: http://www.altmode.com/disco
[39] P0f Passive Fingerprinting Tool, version 2.0 home page: http://lcamtuf.coredump.cx/p0f-beta.tgz
[40] Ettercap NG-0.7.1 Sourceforge Project available at: http://ettercap.sourceforge.net
[41] Comprehensive Perl Archive Network CPAN home page: http://www.cpan.org
[42] “Exchanging Routing Information Across Provider Boundaries in the CIDR Environment”. IETF RFC 1520

available at: http://www.ietf.org/rfc/rfc1520.txt
[43] CAIDA Project: The UCSD Network Telescope. http://www.caida.org/outreach/papers/2001/BackScatter/
[44] D. Moore, G. Voelker, S. Savage. “Infering Internet Denial-of-Service activity”. In Proceedings of the 2001

USENIX Security Symposium, Aug. 2001, CA, USA.

http://www.snort.org/
http://www.mysql.com/
http://www.securityfocu.com/tools/1962
http://www.caida.org/tools/utilities/netgeo/
http://www.wiwi.hu-berlin.de/fis/p2pe/paper_A_Rosin.pdf
http://www.wiwi.hu-berlin.de/fis/p2pe/paper_A_Rosin.pdf
http://ipmon.sprint.com/pubs_trs/trs/RR03-ATL-051699-AS-delay.pdf
http://www.nd.edu/networks/PDF/Modeling
http://www-2.cs.cmu.edu/eugeneng/papers/INFOCOM02.pdf
http://www.maxmind.com/app/products
http://www.ip2location.com/
http://www.geobytes.com/IPLocator.htm
http://encyclopedia.thefreedictionary.com/ISO 3166-1
http://response.symantec.com/avcentr/venc/data/w32.welchia.b.worm.html
http://news.com.com/2100-1001-251071.html?legacy=cnet
http://news.com.com/2100-1001-251071.html?legacy=cnet
http://www.infoworld.com/articles/hn/xml/01/01/25/010125hnramen.html?p=br&s=3
http://www.altmode.com/disco
http://lcamtuf.coredump.cx/p0f-beta.tgz
http://ettercap.sourceforge.net/
http://www.cpan.org/
http://www.ietf.org/rfc/rfc1520.txt
http://www.caida.org/analysis/

	INTRODUCTION
	HONEYPOTS
	Initial Set Up
	Distributed Honeypots

	RAW COLLECTED DATA
	Raw Data
	New Definitions
	Database Construction
	Illustrative Examples

	ADDITIONAL INFORMATION
	IP Geographical location
	Various Information
	Database Modifications
	Examples

	Passive OS Fingerprinting
	Various Utilities
	Database Modifications
	Some Applications

	Domain Name Resolution
	DNS and other network features
	Examples

	META DATA
	Meta-Data definition
	Flexible Database Interface
	Some Interesting Meta-Data Outputs

	CONCLUSION
	REFERENCES
	�

