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Abstract
Flash crowds, which result from the sudden increase

in popularity of some online content, are among the most
important problems that plague today’s Internet. Affected
servers are overloaded with requests and quickly become
“hot spots.” They usually suffer from severe performance
failures or stop providing service altogether, as there are
scarcely any effective techniques to scalably deliver content
under hot spot conditions to all requesting clients. In this
paper, we propose and evaluate collaborative techniques to
detect andproactivelyavoid the occurrence of hot spots.
Using our mechanisms, groups of small- to medium-sized
Web servers can team up to withstand unexpected surges of
requests in a cost-effective manner. Once a Web server de-
tects a sudden increase in request traffic, it replicates on-
the-fly the affected content on other Web servers; subse-
quent requests are transparently redirected to the copies to
offload the primary server. Each server acts both as a pri-
mary source for its own content, and as a secondary source
for other servers’ content in the event of a flash-crowd; scal-
ability and dependability are therefore achieved in a peer-
to-peer fashion, with each peer contributing to, and bene-
fiting from, the service. Our proactive hot spot avoidance
techniques are implemented as a module for the popular
Apache Web server. We have conducted a comprehensive
experimental evaluation, which demonstrates that our tech-
niques are effective at dealing with flash crowds and scal-
ing to very high request loads.

1. Introduction
Flash crowds, which result from the sudden increase in

popularity of some online content, are among the most im-
portant problems that plague today’s Internet. This phe-
nomenon, sometimes called the “slashdot effect” [1] af-
ter the name of a major technology-oriented Web site, fre-
quently happens when a Web server that usually experi-
ences moderate traffic is linked to by a very popular server.
The source server is overwhelmed by simultaneous requests
from a large number of clients for which it was not ade-
quately provisioned, and quickly becomes a “hot spot.” A
server under hot spot condition has its bandwidth and/or
processing capacity saturated and typically exhibits faulty

behavior, ranging from rather benign performance failures
to crashes or even arbitrary behavior. It most frequently
stops providing service altogether, as happened to major
media companies during the events of 9/11.

While there exist technical solutions to deal with such
surges in traffic, they usually involve over-provisioning the
service for peak demand and are prohibitively expensive
given the infrequent, temporary, and unpredictable nature
of flash crowds. Non-commercial sites and small companies
cannot justify the cost of such solutions and need cheaper
alternatives to survive through transient bursts of massive
request traffic.

The goal of this work is to design and evaluate collabo-
rative techniques for quickly offloading the source (or pri-
mary) server once the formation of a hot spot is detected.
When the traffic reaches a pre-defined threshold for a given
Web resource, the primary server replicates the resource on
peer servers and subsequently redirects the traffic to the
copies using a configurable load-balancing strategy. The
servers cooperate in a peer-to-peer manner in that each of
them contributes to, and benefits from, the service by shar-
ing the load during periods of high traffic. The proposed
techniques are “proactive” in the sense that content repli-
cation is performed when detecting a traffic surge and an-
ticipating a flash crowd; they are meant toavoid the actual
creation of hot spots, rather than heal them. They can be de-
scribed best as a poor man’s approach to increasing the scal-
ability of a Web server by capitalizing the idle bandwidth of
other servers.

This paper makes the following contributions. First,
we perform an in-depth analysis of the flash crowd phe-
nomenon from the perspective of a Web server. This
study shows that flash crowds are very sudden events
with an extremely high magnitude, and that only a few re-
sources hosted by the Web server are actually requested
by the clients during a flash crowd. Second, we pro-
pose practical techniques to anticipate the appearance of
hot spots, and to proactively divert the traffic off the pri-
mary source. These techniques capitalize the common
bandwidth of many Web servers organized in a peer-to-peer
manner, in order to sustain a flash crowd while con-
tinuing providing service. Third, we present an imple-



mentation of our proactive hot spot avoidance mecha-
nisms as a portable module for the popular Apache Web
server. This implementation operates transparently to the
Web server and can be deployed easily. Finally, we eval-
uate the effectiveness of our techniques by conducting
experiments under high load conditions and under repro-
duced real-life flash crowd events.

The rest of this paper is organized as follows: We first
discuss related work in Section 2. We then study the mod-
elization and detection of flash crowds in Section 3 and in-
troduce our hot spot avoidance mechanisms in Section 4.
Section 5 discusses our Web server module implementa-
tion, and Section 6 presents results from the experimental
evaluation. Section 7 concludes the paper.

2. Related Work
Web server scalability has been an active field of research

over the past few years. Some systems have been explicitly
designed to support massive demand and degrade gracefully
under high load. For instance, the Flash Web server [18]
combines an event-driven server for access to cached work-
loads with multi-threaded servers for disk-bound work-
loads, to reduce resource requirements while increasing the
capacity of the service. SEDA [27] relies on event-driven
stages connected by explicit queues that prevent resources
to become over-committed when demand exceeds service
capacity. The JAWS Web server framework [13] supports
multiple concurrency, I/O, or caching strategies to better
customize the server to various deployment scenarios. Our
approach is different in that we do not try to optimize the
Web serverper se, but rather to improve scalability by cap-
italizing the common bandwidth and processing resources
of several Web servers organized in a peer-to-peer manner
(note that the scalability of our techniques will also depend
on the performance of the individual Web servers).

Some systems avoid most severe outages by limiting
the network traffic upon flash crowds. Several Web servers
(e.g., [25]) implement “throttling” mechanisms to limit the
number of simultaneous clients, or the bandwidth assigned
per client or Web resource; although such mechanisms pre-
vent the server from failing, they provide degraded service
to the clients under high load conditions. The NEWS sys-
tem [7] protects servers from flash crowds by regulating
request traffic on the access router, based on observed re-
sponse performance.

Scalability can also be achieved, albeit at a high cost,
through combinations of software and hardware solutions
such as traffic load balancers and clusters of servers. For
instance, the Google service [12] load-balances queries
to one of multiple data centers, each hosting large clus-
ters of machines. Commercial Content Delivery Networks
(CDNs) such as Akamai [2] provide scalable Web service
by replicating content over a large network of distributed
servers, and redirecting clients to local copies using pro-

prietary algorithms added to the domain name system. The
most traditional technique to avoid hot spots involves over-
provisioning the source servers for peak demand, but given
the unpredictable nature of flash-crowds such preventive ap-
proaches require a good understanding of traffic patterns. In
general, hardware solutions and CDNs have a prohibitive
cost and are mostly appropriate when the server is consis-
tently operating under high traffic conditions and hosts crit-
ical information.

When dealing with static content, Web caching prox-
ies (e.g., [22]) can be deployed between the servers and
the clients (usually at the edge of an ISP) to store con-
tent close to the requesting site and make it available to
other users [6]. Caching offloads the Web servers, while
reducing access time and bandwidth consumption. In [3],
the authors evaluate the performance of various multi-level
caching techniques to deal with flash crowds. Adaptive
caching strategies are discussed in [19]. In practice, how-
ever, the cache deployment and configuration policies are
locally controlled by individual ISPs or companies and
client browsers are often not configured to use Web prox-
ies at all. In addition, for effective caching a proxy must be
shared by many clients interested in the same content (the
cache hit ratio must be large enough to justify the overhead
of the proxy).

Several recent studies have tried to characterize the flash
crowd phenomenon [15, 28] and a few proposals have been
put forth to leverage peer-to-peer architectures for tolerat-
ing such events as well as improving the scalability of Web
content distribution. SQUIRREL [14] is a client-side peer-
to-peer Web cache that stores recently accessed documents
on the client peers, and looks for a reasonably fresh copy
in the local caches before fetching a Web resource from
the origin server. It does not operate transparently as it re-
quires specific software to be installed on the client com-
puters. PROOFS [24] is a peer-to-peer network that uses
randomized overlay construction and scoped searches to ef-
ficiently locate and deliver content under heavy demand.
When some content cannot be obtained from a server, peer
clients try to obtain it from other peers instead. This ap-
proach does not heal the hot spotsper se, rather their symp-
toms, and it requires specific software to be deployed on the
clients. In [23], the authors propose a server-side peer-to-
peer Web caching scheme for load balancing client requests
under hot spot conditions. The approach is essentially reac-
tive and uses an underlying DHT for storing the content at
risk. Our system is most similar to Globule [20] in its imple-
mentation. Globule is a Web server module that replicates
documents according to observed access patterns, in order
to spontaneously create cache copies on peer servers close
to the clients. It mostly focuses on improving perceived ac-
cess latency and overall throughput and operates as a cost-
effective CDN; it has not been explicitly designed to cope



with flash crowds. In contrast, we perform an in-depth study
of real-world flash crowd events, and we specifically ana-
lyze and evaluate the applicability of dynamic replication
of Web resources to anticipate and gracefully handle such
events.

3. Flash Crowds and Performance Failures
To better understand the flash crowd phenomenon, we

have studied the log of a server that has been hit by a sudden
surge of traffic immediately after being linked on the highly
popularslashdotWeb site (http://slashdot.org ). The
site affected by the flash crowd was hosted on a commer-
cial server, provisioned to cope with reasonably high load; it
has not failed, but has quickly become saturated by the data
traffic, which typically results in clients experiencing de-
graded service (e.g., many stalled connections, only a frac-
tion of the requests served). Such a performance failure may
not only affect the site hit by the flash crowd and its clients,
but may also have an adverse impact on other sites hosted
by the same server infrastructure and sharing the same net-
work connections.

The server log covers a period of28 days in Novem-
ber 2003. It lists 3, 936, 422 requests representing a total
51 GB of data sent by the server. The flash crowd occurred
on November18 and lasted about two days. The most se-
vere spike occurred within minutes after the link posting
and lasted less than one hour, which tends to indicates that
many users were readingslashdotat that very time. The
traffic remains higher than usual for a few days, probably
caused by the users who consultslashdotoccasionally.
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Figure 1. Number of requests per second re-
ceived by the Web server during flash crowd.

Figure 1 shows the number of requests per second ob-
served in the log during the whole period, averaged over
time slots of10 minutes. We clearly see the impressive spike
corresponding to the arrival of the flash crowd, where the
traffic increases by two orders of magnitude to reach more
that100 requests per second. This can be observed more ac-
curately in the inner graph, which shows the number of re-
quests averaged over time slots of1 minute during the three-

days period of the flash crowd. The raw log even lists a max-
imum of 215 requests during the busiest second. Note that
the amplitude of a flash crowd is generally independent of
the popularity of a Web site: a server that receives only a
few requests per days can be hit by a flash crowd of the
same magnitude as a popular server, but the latter is usu-
ally better provisioned to sustain high traffic.
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Figure 2. Throughput of data sent by the Web
server during flash crowd.

Figure 2 shows the throughput of the data sent by the
server averaged over time slots of10 minutes. We can ob-
serve the daytime cycle with less traffic transferred during
the night (the site was hosted in the USA, where most of
the regular visitors also came from). The flash crowd is
clearly visible, with a surge of traffic one order of magni-
tude higher than usual traffic spikes. When zooming in the
flash crowd with time slots of1 minute, we observe that
the data throughput reaches10 Mb/s, which corresponds to
the server bandwidth capacity and effectively saturates its
network access links. We have been informed by the site’s
administrator that he quickly configured the server to stop
sending large content to offload the network connection and
sustain higher request traffic for small resources. Indeed, the
server was also hosting some large software files, seldom re-
quested but representing a non-negligible portion of the in-
stantaneous traffic at times. Such requests for large content
are difficult to account for, because the logs do not store in-
formation about the download durations and completions
necessary for an accurate study of the throughput. We have
thus ignored for the rest of the analysis the0.28% of the re-
quests bigger than500 kB, as well as the0.35% of the re-
quests that were downloaded in multiple parts (some clients
were downloading large files by requesting different seg-
ments in parallel).

We have designed our proactive hot spot avoidance tech-
niques on the premise that only a small number of Web re-
sources (e.g., pages, images) are targeted by a flash crowd.
These few resources can then easily be mirrored on the fly
to peer servers and traffic redirected to the copies. To vali-



date our hypothesis, we have analyzed the popularity of the
6, 705 distinct resources requested by the clients that ap-
pear in the server log (to distinguish between different ver-
sions of the same resource, i.e., having same URI, we have
considered the size of the server reply). Figure 3 shows the
cumulative number of requests for each of the resources
sorted by order of popularity. We observe that the request
frequency for a resource is inversely proportional to its pop-
ularity, with most of the requests targeting only a few pages.
A closer look at the most popular requests using logarithmic
scales (inner graph) show that the most popular resource
(the page linked to byslashdot) is requested approximately
85, 000 times during that day, more than twice more fre-
quently than the second one. The resources with popular-
ity ranks between 2 and 23 are also requested very often;
they probably correspond to the resources (images) embed-
ded in the linked page, which are typically requested auto-
matically by client browsers. Thereafter, resource popular-
ity follows a classical Zipf distribution.
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Figure 3. Number of requests for a file upon
flash crowd, as a function of its popularity.

Given that the popularity of the resources is highly bi-
ased, we have analyzed the request traffic and data volume
that the most popular resources were accounting for during
the flash crowd. Figure 4 shows that the100 most popular
resources account for99% of the requests during the high-
est spike, the top50 resources for94%, and the top30 re-
sources for84%. Therefore, mirroring only a fraction of the
resources can dramatically reduce the number of requests
processed by the server.

In terms of data throughput, the most popular resources
represent a smaller portion of the total data volume, ac-
counting for95%, 80%, and63% respectively (inner graph
of Figure 4). This can be explained by the fact that some of
the less-requested resources were significantly bigger than
the most popular resources. In addition, the Web server logs
the entire size of each requested resource even if the trans-
fer does not complete, e.g., when the user interrupts in-
terrupt a lengthy download. In situations where the server
is bandwidth-limited and resources have widely different

sizes, it might be desirable to focus on the resources that
consume most of the network capacity instead of those
that are most requested. Thus, there is a trade-off between
request processing and bandwidth optimization, and one
might use distinct strategies for offloading the server de-
pending on whether the network or the CPU is first satu-
rated.
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Figure 4. Number of requests per second
(outer graph) and data throughput (inner
graph) for the most popular resources (MPR).

Interestingly, we observe two small spikes in request
traffic and data volume before the actual flash crowd, both
when considering all resources and only the most popular
ones. This limited activity probably corresponds to the link-
ing of the resources on moderately popular sites. The actual
flash crowd that results from theslashdotposting occurs16
hours after the first spike, and more than4 hours after the
second one. This substantiates our intuition that we can of-
ten predict a flash crowd in advance by observing traffic pat-
terns and take proactive measure to best sustain it. Consid-
ering again Figure 4, it appears that by mirroring the most
popular resources and redirecting the clients to the copies,
the bandwidth utilization of the primary server would be
significantly reduced (given that a redirection message has
an empty payload). If HTML pages were “rewritten” while
mirroring, i.e., the links to the local resources embedded in
the page were modified to refer to mirror copies, the num-
ber of requests sent to the primary server would also shrink
dramatically (by more than one order of magnitude in the
analyzed flash crowd, as the page linked to byslashdotcon-
tained more than20 embedded images).

4. Hot Spot Avoidance
The general principle of hot spot avoidance, depicted

in Figure 5, essentially consists of four mechanisms. First,
the detection of flash crowds achieved by maintaining per-
resource hit statistics. Second, the replication of affected
content to mirror servers. Third, the redirection of client re-
quests to the replicas. Finally, the return to normal opera-



tion once the flash crowd has disappeared. These mecha-
nisms are described in the rest of the section.

4.1. Flash Crowd Detection
As observed in Section 3, a flash crowd is often preceded

by smaller spikes of traffic. In order to anticipate the arrival
of a flash crowd, we need to keep track of the frequency of
requests to the resources hosted by a server, so as to detect
which resources are becoming hot spots (e.g., because they
are linked to by a very popular site). In general, proactive
actions must be taken for those resources only.
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Figure 5. Principle of hot spot avoidance.

To maintain hit statistics for frequently-accessed re-
sources in a space-efficient manner (i.e., without having
to keep track of all past requests), we dynamically com-
pute an exponential weighted moving average of the re-
quest inter-arrival times, along the same lines as TCP
computes its estimated round-trip time. Specifically, we
compute an average of the inter-arrival times using the fol-
lowing formula:
IAT (x) = (1−α) ∗ IAT (x− 1)+α ∗ (at(x)− at(x− 1))

We record the arrival time of every hit (at(x)) and com-
pute the difference with the previous one. We then combine
this value with the previous average inter-arrival time (IAT )
to obtain the new average. The constantα is a smoothing
factor that puts more weight on recent samples than on old
samples and smooths out important variations. Low (high)
values ofα will increase the stability (volatility) of the mov-
ing average. We have used a value ofα = 0.125, which is
also the value recommended for TCP in RFC 2988. Tak-
ing into account the uneven popularity of the resources (see
Section 3), we maintain individual hit statistics for each re-
source.

4.2. Resource Replication
Once the arrival of a flash crowd has been detected, the

server needs to take proactive measures to avoid becoming a
hot spot. It does so by replicating—or mirroring—the most
requested content to a set of servers chosen from a pool of
cooperating sites. The number of mirror servers necessary
to withstand a flash crowd obviously depends on its inten-
sity, as a set ofn servers will typically each receive1n of the

requests of the source server. The way servers discover and
monitor each other is orthogonal to our problem; it can be
achieved by various means, from static configuration files
to sophisticated peer-to-peer substrates.
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Resource replication takes place once the average inter-
arrival time reaches a pre-defined “copy threshold”TC (see
Figure 6). The copying process may involve rewriting some
of the hyperlinks of HTML documents. Replication can be
achieved by either pushing content to the mirror server (e.g.,
using an HTTP PUT or POST request), or by asking the
mirrors to pull the content from the source (e.g., using an
HTTP GET request). We generally favor the push model,
as it gives more control on the transfer process to the pri-
mary source. Further, when copying an HTML file, we will
preferably also copy all the resources embedded in the file
(e.g., images) so that they are requested from the mirror;
this will significantly decrease the request rate experienced
by the primary source.

4.3. Request Redirection
After a resource has been replicated on mirror servers,

the source server can start redirecting clients toward the
copies. This is achieved by sending an HTTP response with
code302 indicating to the client that the resource has tem-
porarily moved to another address. When receiving such a
reply, client browsers automatically fetch the resource from
the address specified in the HTTP message header. The pri-
mary server can use simple load sharing policies, such as
choosing a mirror at random or following a round-robin
strategy, or even more sophisticated techniques, such as es-
timating the load of the mirrors based on their capacity and
the traffic previously redirected. We have found the round-
robin strategy to be effective in practice, while imposing
very low processing overhead on the primary server.

As we dimension the copy threshold to proactively repli-
cate resources before being network- or CPU-saturated, it is
usually not necessary to immediately redirect traffic to the
mirrors after the replication process has completed. There-
fore, we introduce a second “redirection threshold”TR, typ-



ically twice smaller thanTC , to trigger the actual redirec-
tion of requests (see Figure 6). This combination of thresh-
old values enables us to fine tune the proactive (replication)
and reactive (redirection) operating modes of the server. Of
course, optimal performance can only be achieved if these
thresholds are adequately provisioned.

Note that, in case a mirror becomes overloaded with too
many redirected requests, it can in turn replicate some mir-
rored content further to another set of servers. Thus, the
whole process can be applied recursively, at the price of ad-
ditional redirections.

4.4. Return to Normal Operation
After a flash crowd has passed and the hit frequency de-

creases past a certain threshold, the primary server should
return to normal operation, i.e., serve the files directly to the
clients. In order to avoid that small oscillations of the aver-
age inter-arrival time around the redirection threshold re-
peatedly activate and deactivate request redirection, we in-
troduce a distinct “service threshold”TS , typically several
times bigger thanTR, to delay the return to normal service
(see Figure 6).
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with k = 1, 000.

Once request redirection has been deactivated for a given
resource, the mirror servers can reclaim the local storage as-
sociated with the resource’s replicas. To that end, we pro-
pose a simple distributed garbage collection scheme that
requires each server to allocate a limited amount of cache
storage for mirrored resources. When the cache is full, the
servers remove the least recently accessed resources (note
that we could also use cooperative caching strategies, such
asN-Chance Forwarding[9], to improve the overall cache
efficiency). If a mirror receives a redirected request for some
content that it no longer holds, it first checks the HTTP re-
quest header, which carries the address of the primary server
in the “referrer” field. It then replies to the client by redirect-
ing it back to the primary server. When the source receives
the request (now redirected twice), it learns that the mir-
ror server specified as referrer does not hold the requested
content anymore and must be removed from the list of ac-
tive mirrors for that resource. The same mechanisms can be

used to indicate to the source that a server is not able, or
willing, to serve some mirrored content anymore (e.g., be-
cause it is becoming overloaded).

4.5. Size-Dependant Triggering
The size of the requested resources plays an important

role in the bandwidth usage of the source server. Large re-
sources can consume a significant portion of the network ca-
pacity even when requested at a reasonably low frequency.
Conversely, very small resources may not even need to be
replicated on mirror servers, as they are scarcely larger than
a redirection message. It is therefore important to take the
size of the resources into account when triggering resource
replication and redirection.

Therefore, we introduce a size-dependent weighting fac-
tor β: resource replication, redirection, and normal service
are triggered when the average inter-arrival timemultiplied
by β reaches the threshold valuesTC , TR, andTS , respec-
tively. We defineβ as:

β = logb

(
1 +

size

k

)
wheresize is the size of the requested resource,k specifies
a constant size reference, and baseb controls how muchβ
is affected by size variations. For instance, givenb = 2 and
k = 10 kB, a resource of10 kB will yield a weighting fac-
tor β = 1. Smaller documents will quickly bring its value
down close to0, thus delaying or preventing request redi-
rection altogether. Larger documents will increase the value
of β and trigger redirection at lower hit frequencies. Fig-
ure 7 illustrates the evolution of the weighting factorβ as
a function of the baseb and the size of the requested re-
source, with the constantk = 1, 000 bytes. We can observe
thatβ is more dependent on the size for smaller values ofb.

5. Web Server Module
We have developed a prototype hot spot avoidance mod-

ule in Perl using the modperl extension of the Apache Web
server. The module maintains hit statistics for each of the re-
cently accessed resources. These statistics include the time
of the last access, the estimated average inter-arrival time of
requests, and the list of all servers that have a copy of that
resource (or an empty list if the resource is not mirrored).
Since Apache uses multiple independent child processes
to handle client requests, the module maintains a consis-
tent copy of the statistics in a hash table stored in shared
memory. Our first version of the prototype keeps both the
hit statistics and the mirroring information in shared mem-
ory (Figure 8 left), which guarantees that all processes see
the same consistent inter-arrival times and reach the differ-
ent thresholds simultaneously. We observed that the runtime
cost of shared memory accesses and mutual exclusion (in-
curred for every request) led to a noticeable degradation of
the performance. Therefore, we also implemented an alter-
native strategy where the hit statistics are kept in the local



memory of the processes and only the mirroring informa-
tion is stored in shared memory (Figure 8 right). This strat-
egy still guarantees that a resource is replicated only once
and by a single process, but it has much lower runtime over-
head because the processes need to access the shared mem-
ory only when the thresholds are reached. The drawbacks
are that processes may start redirecting requests at different
times if the load is not equally distributed and the thresh-
olds have to be dimensioned so as to take into account that
each process will only see a fraction of the requests.
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Figure 8. Consistent (left) and fast (right) op-
eration modes of the module.

Our module replicates files by the means of point-to-
point HTTP POST requests sent to a script installed on each
of the servers. Optionally, content replication can be per-
formed using SSL to ensure proper authentication of the
servers, as only trusted servers should be able to store con-
tent by one another. The module can be configured to inter-
cept all the requests received by a server or only those tar-
geted at specific resources. Further, one can specify a mini-
mum size for the resources that our module will watch and
replicate, as well as their type (e.g., only HTML content and
images). Finally, the module can be configured to only repli-
cate individual resources, optionally rewriting some of the
relative links, or to also replicate embedded resources (e.g.,
images). All of the module options, including the thresh-
olds, are specified declaratively in a configuration file.

A major limitation of our approach is that it is only ap-
plicable to static content. Note, however, that “rich content”
(e.g., images, movies) in the Web is mostly static and rep-
resents a major portion of the requests and data volume.
Transparent replication of dynamic pages that use server-
side scripting or back-end databases is a challenging en-
deavor, given that there is no a priori knowledge of which
content is at risk of being hit by a flash crowd. Various tech-
niques to support spikes of traffic in the context of dynamic
content have been proposed in [11, 5, 26, 16, 8].

6. Experimental Evaluation

We have conducted an experimental evaluation of our
prototype implementation in order to assess its performance
and effectiveness at sustaining flash crowds. This section
presents the results of our experimental study.

6.1. Experimental Setup

We have deployed our proactive hot spot avoidance mod-
ule on a1.5 GHz Intel Pentium IV machine with512 MB
of main memory running Linux 2.4.18. We used Apache
2.0.48 as Web server with Perl 5.8.0 and modperl 1.99.08.
This configuration ensures good processing performance of
the primary source, with the likely bottleneck being the net-
work bandwidth. For the mirror servers, which have lower
performance expectations, we used a set of15 identical
Sun Ultra 10 workstation with a440 MHz processor and
256 MB of memory, running Solaris 2.8 and the Apache
2.0.47 Web server. All machines were part of the same
switched network, with100 Mb/s (full duplex) bandwidth
capacity and under normal traffic conditions (note that, in
practice, the maximum throughput of an Ethernet network is
typically no more than90% of the rated maximum). To sim-
ulate a typical distributed environment with the moderate-
cost Web servers we are targeting with our hot spot avoid-
ance mechanisms, we have limited the server bandwidth to
10 Mb/s (half duplex) by configuring the switch appropri-
ately. This setup is adequate to run stress tests on the server
and assess its scalability and performance, but it does not
model the “user experience” of clients over wide area net-
works: end users will experience additional delays that de-
pend on their connectivity and distance from the source and
mirror servers.

To measure the performance of the Web server, we have
primarily used thehttperf [17] and Autobench[4] tools,
which allow us to generate heavy HTTP workloads and sim-
ulate simultaneous connections from large client popula-
tions. To observe the impact of our module as a function of
time during the flash crowd, we have used a modified ver-
sion of thesiege[21] application. The clients were running
on a separate machine configured identically to the primary
source server.

We have generated realistic data workload on the basis
of the analysis of Section 3. The size of the HTML con-
tent most affected by the flash crowd was approximately
10 KB, with a 50 KB image embedded in the page (we ig-
nored other embedded resources of less than1 KB, such as
logos, which do not significantly impact bandwidth usage).
Further, the HTML page links to larger resources, such as
a 400 KB brochure, which were also often requested dur-
ing the flash crowd. We have therefore generated three rep-
resentative data workloads with documents of size10 KB,
50 KB, and 100 KB respectively. To better study the im-
pact of the size, we have accessed the same resource repeat-
edly for each of the experiments, without mixing resources
of different sizes. This corresponds to a best-case scenario
for the Web server when not using our module, as the re-
quested page is likely to be cached in memory.



6.2. Raw Server Performance

We have first observed the performance of the Web
server under high request load. To that end, we have config-
uredhttperf to create20, 000 connections, with10 requests
per connection and a number of new connections created
per second varying between10 and 150; this correspond
to a maximum demanded rate of1, 500 requests per sec-
ond. We have set the response timeout to5 seconds, which
means that the lack of any server activity on the TCP con-
nection for this duration will be considered to be an error,
i.e., a performance failure (note that, due to TCP control
traffic, this does not prevent the client from successfully re-
ceiving a reply after the timeout without reporting an error).
All numbers are averages computed byhttperf over all con-
nections.

Figure 9 (a) shows the effective response rate achieved
by the Web server for documents of various sizes, and
Figure 9 (b) shows the corresponding network throughput
(computed as the number of bytes sent and received on
the TCP connections, i.e., without accounting for network
headers or possible TCP retransmissions). The figures show
results when the module is disabled and all files are served
by the source server (10 KB, 50 KB, 100 KB), as well as
when the module is active and only redirects the clients to-
ward the mirrors (REDIRECT). In the latter case, we pre-
enabled redirection mode (TR = ∞) and we only measured
the traffic at the server, i.e., without any subsequent request
that regular clients would send to the mirror servers. Ob-
viously, the performance of redirection does not depend on
the size of the requested resource (we used the100 KB file
for the experiments).

We observe that the server can sustain the requested rate
only up to a certain limit, which directly depends on the size
of the requested document:10, 20, and90 requests per sec-
ond for documents of10 KB, 50 KB, 100 KB respectively.
Figure 9 (b) clearly shows that this limit is reached when the
network becomes saturated around1, 000 KB/s, which cor-
responds to approximately8 Mb/s. One can note that the
network throughput decreases after the saturation point for
large documents; this can be explained by the large num-
ber of TCP retransmissions that are not accounted for in the
statistics.

For the tests with the hot spot avoidance module, we
observe a maximum effective rate of approximately900
requests per second with a bandwidth that never exceeds
700 KB/s (less than6 Mb/s). In this configuration, the pro-
cessing capacity of the server becomes saturated before its
network bandwidth because of the runtime overhead of the
non-trivial computations performed by our module. Yet, the
effective response rate is high enough to easily sustain a
flash crowd like that analyzed in Section 3, with a peak rate
of 215 requests during the busiest second, given that it does
not depend on the size of the requested content. Clearly,

redirections allow us to scale to much larger client pop-
ulations than when directly serving the requested content.
As we shall discuss next, clients also experience fewer per-
formance failures because the server reaches its saturation
point at higher request rates.

6.3. Performance Failures
When a Web server becomes saturated, it suffers from

performance failures and clients experience long response
delays or loss of service. To determine the impact of this
problem, we have measured the response time and the num-
ber of timeout errors as a function of the demanded request
rate. Note that, as clients are located nearby the server, the
response time is an indication of the additional delay that a
remote client will experience on top of the usual request la-
tency (without taking into account the redirected request, if
any).

We observe in Figures 9 (c) and 9 (d) that the server
scales up to900 requests per second with redirections be-
fore clients start experiencing errors. In contrast, when di-
rectly serving the documents, the response time becomes
significant after only90 requests per second for documents
of 10 KB—earlier for larger documents—and a large pro-
portion of the clients are not served in time (within 5 sec-
onds) or are not served at all. Thus, in addition to increas-
ing the success rate, redirections can also improve the re-
sponse time experienced by clients under high load, even
when taking into account the extra indirection to the mir-
ror server.

6.4. Latency
We have finally studied the evolution of the response

time during the occurrence of a flash crowd. To that end, we
have simulated the arrival of an increasing number of clients
that continuously request the same5 resources from the
server. We have used files of various sizes between2, 639
and 51, 100 bytes corresponding to the largest resources
(HTML page and images) among those requested more than
25, 000 times on the day of the flashcrowd. Clients wait for
a random delay up to1 second between successive requests,
and a new client arrives every2 seconds until100 concur-
rent connections have been established. Clients terminate
after they have issued300 requests. We ran experiments us-
ing the consistent operation mode of the Web module and a
random mirror selection strategy, withb = 10, k = 1, 000,
TC = 1, TR = 0.5, andTS = 10. We deployed8 mir-
ror server, so that each of them receives a small fraction
of the original traffic and never becomes network- or CPU-
saturated. As all computers were running in the same in-
tranet, network latency is negligible under normal opera-
tion and saturation of the source server is exacerbated upon
flash crowd.

Figure 9 (e) shows the evolution of the response time ex-
perienced by the clients when the source directly serves the
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Figure 9. Left and center: response rate (a), network throughput (b), response time (c), and error rate
(d) as a function of the demanded request rate (inner graphs zoom out on redirection mode). Right:
response time experienced by clients during flash crowd without (e) and with (f) redirections.

requested resources. We observe that the latency increases
steadily with the number of clients, which experience de-
lays of more than20 seconds at the peak of the flash crowd.
We clearly see dense groups of responses around3, 9, and
22 seconds that correspond to TCP retransmissions. Further,
the throughput never exceeds80 requests per second, i.e.,
less than half the request rate expected from a non-saturated
server under the same client workload.

Figure 9 (f) shows the results of the same experiment
when using the hot spot avoidance module (note that the
measured response time includes both the request to the
source server and the subsequent request to the mirror). We
initially observe some contention at the source server as the
number of concurrent clients increases. After11 to 16 sec-
onds, the resources are copied to the mirrors. This event ap-
pears clearly in Figure 9 (f), as resource replication is per-
formed while processing a client request and delays the re-
ply until after the copying process has completed (unsur-
prisingly, the replication of the largest file is the most time-
consuming). Redirection is activated after14 to 21 seconds
and the response time remains generally small (except for
minor spikes resulting from the uneven and fluctuating load
of the servers) despite the high traffic and the delay intro-
duced by the additional requests to the mirror servers. At
the peak of the flash crowd, the throughput reaches200 re-
quests per second, which demonstrates that redirections al-

low us to serve more clients with a better quality of service.

7. Conclusion
In this paper, we have discussed the problem of flash

crowds and their negative impact on Web servers, which
may quickly become saturated by request traffic and suffer
from various kind of failures, mostly performance and crash
failures. We have analyzed the flash crowd phenomenon by
studying a real log from a Web server that has been hit by a
sudden surge of traffic immediately after being linked on a
highly popular Web site. We have observed huge spikes in
the request traffic and data volume at the occurrence of the
flash crowd, and we have noticed that only a small set of re-
sources has been requested repeatedly.

On the basis of this analysis, we have proposed a proac-
tive hot spot avoidance mechanism implemented as a soft-
ware module for the Apache Web server. The module is in-
stalled downstream from the servers in order to detect unex-
pected bursts of traffic. When this happens, the overloaded
server performs on-the-fly replication of the affected con-
tent to peer servers, and subsequently redirects clients to
the copies. This approach is “proactive” in the sense that
the content replication is performed when detecting a traffic
surge and anticipating a flash crowd. Using such techniques,
groups of small- to medium-sized servers can team up and
capitalize their common bandwidth to support temporary
high traffic load. Experimental evaluation has demonstrated



that our mechanisms can significantly increase the scala-
bility of Web servers and that hot spots can effectively be
avoided at low cost without need to upgrade the servers.

Besides extending the support of our mechanisms to
some types of dynamic content, we are exploring the issue
of locality-driven server organization and selection, in or-
der to mirror content close to the clients and redirect them
to nearby copies. To that end, we envision to use techniques
similar to those put forth in the TOPLUS topology-aware
peer-to-peer substrate [10], which organizes peers based on
efficient proximity metrics derived from IP prefixes.

Acknowledgments:We are extremely grateful to Sean
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