
1

Automatic Detection and Masking of

Non-Atomic Exception Handling

Christof FETZER Karin HÖGSTEDT Pascal FELBER

AT&T Labs — Research Institut EURECOM

Florham Park, NJ, USA Sophia Antipolis, France

{christof, karin}@research.att.com felber@eurecom.fr

A short version of this article appeared in the Proceedings of the IEEE International Conference on Dependable Systems and

Networks (DSN), June, 2003.

June 10, 2004 DRAFT

2

Abstract

The development of robust software is a difficult undertaking, and is becoming increasingly more

important as applications grow larger and more complex. Although modern programming languages such

as C++ and Java provide sophisticated exception handling mechanisms to detect and correct runtime

error conditions, exception handling code must still be programmed with care to preserve application

consistency. In particular, exception handling is only effective if the premature termination of a method

due to an exception does not leave an object in an inconsistent state. We address this issue by intro-

ducing the notion offailure atomicity in the context of exceptions. We propose practical techniques to

automaticallydetect and mask thenon-atomic exception handlingsituations encountered during program

execution. These techniques can be applied to applications written in various programming languages

that support exceptions. We perform experimental evaluation on both C++ and Java applications to

demonstrate the effectiveness of our techniques and measure the overhead that they introduce.

Index Terms

D.2 Software Engineering, D.2.4 Software/Program Verification, D.2.4.gReliability, D.2.5 Testing

and Debugging, D.2.5.fError handling and recovery, D.2.5.hReliability, D.2.5.rTesting tools

I. I NTRODUCTION

Developing robust software is a challenging, yet essential, task. A robust program has to

be able to detect and recover from a variety of faults such as the temporary disconnection

of communication links, resource exhaustion, and memory corruption. Ideally, robust software

has to be able to recover from faults without substantially increasing the code complexity. An

increase in code complexity can increase the probability of design and coding faults and can

thus decrease the robustness of the software. Of course, code complexity and robustness are not

antonymous if one can avoid or remove design and coding errors in the error handling code.

Language-levelexception handlingmechanisms allow programmers to handle errors with only

one test per block of code. In programming languages without exception handling, such as C,

programmers have to check for error return codes after each function call. The use of exception

handling mechanisms can thus simplify the development of robust programs.

Although the use of exceptions simplifies the detection of failures, the elegance of language-

level exception handling mechanisms might lead to the neglect of recovery issues [1]. The

premature exit of a method due to an exception might leave an object in an inconsistent state.

June 10, 2004 DRAFT

3

If this inconsistency is not resolved in the error handling code, it might prevent a later recovery,

and thus decrease the robustness of the program. In this article, we show how to automatically

detect and correct such state inconsistencies.

1) Problem Description:Modern programming languages, such as C++ and Java, provide

explicit exception handling support. When a semantic constraint is violated or when some

exceptional error condition occurs, an exception isthrown. This causes a non-local transfer

of control from the point where the exception occurred to a point, specified by the programmer,

where the exception iscaught. An exception that is not caught in a method is implicitly

propagated to the calling method. The use of exceptions is a powerful mechanism that separates

functional code from the error handling code and allows a clean path for error propagation (see

Figures 1 and 2). It facilitates the development of applications that are robust and dependable

by design.

1 int err = openFile ();
2 if (err == NO FILE) { ... }
3 else if (err == CANT OPEN){ ... }
4 else { // OK, file open
5 err = readFile ();
6 if (err == CANT READ) { ... }
7 else { // OK, read it
8 err = testFormat ();
9 if (err == UNKNOWN) { ... }

10 else { // OK, keep going
11 ... } } }

Fig. 1. Error handling based on return codes.

1 try {
2 openFile ();
3 readFile ();
4 testFormat ();
5 }
6 catch(NO FILE e) { ... }
7 catch(CANT OPEN e){ ... }
8 catch(CANT READ e) { ... }
9 catch(UNKNOWN e) { ... }

Fig. 2. Error handling based on exceptions.

Exception handling code must however be programmed carefully to ensure that the application

is in a consistent state after catching an exception. Recovery is often based on retrying failed

methods. Before retrying, the program might first try to correct the runtime error condition

to increase the probability of success. However, for a retry to succeed, a failed method also

has to leave changed objects in a consistent state. Consistency is ensured if any modification

performed by the method prior to the occurrence of the exception is reverted before the exception

is propagated to the calling method. This behavior is hard to implement because, when catching

exceptions, a programmer has to consider all possible places where an exception might be thrown,

and has to make sure that none of these exceptions can cause a state inconsistency.

In this article, we address the challenging problem of ensuring that failed methods always

June 10, 2004 DRAFT

4

leave objects in a consistent state after throwing an exception. We classify methods as either

failure atomic or failure non-atomic, depending on whether they do or do not preserve state

consistency, respectively. Informally, we say that theexception handling is atomicif it ensures

failure atomicity. Otherwise, we say thatexception handling is non-atomic. In general, it is

impossible to automatically determine if a given method is failure atomic in all executions. Our

main objectives are thus to find mechanisms that help identify failure non-atomic methods, and

to develop techniques to automatically transform these methods into failure atomic methods.

2) Approach: In order to identify failure non-atomic methods, we propose a system that

systematically tests and validates the exception handling code of applications. Our system au-

tomatically injects both declared (i.e., anticipated) and undeclared (i.e., unexpected) exceptions

at runtime, and evaluates if the exception handling code ensures failure atomicity. It notifies the

programmer of any failure non-atomic method, as in many situations minor code modifications

are sufficient to implement failure atomicity (e.g., changing the order of some instructions, or

introducing temporary variables). When manual modifications are not possible or not desired,

our system can in many cases automatically generate wrappers to render a given method failure

atomic with the use of checkpointing and rollback mechanisms.

Our infrastructure for detecting and masking non-atomic exception handling comes in two

flavors, which support the C++ and Java programming languages, respectively. The C++ version

is optimized for performance, but requires access to the application’s source code. The Java

version is less efficient, as it uses a combination of load-time and runtime reflection mechanisms,

but it also works with applications for which source code is not available.

Note that our current two infrastructures come with a few restrictions that we plan to relax in

the future. First, so far we only support one form of consistency (which we call failure atom-

icity) and in particular, we do not yet support the definition of application specific consistency

specifications. Second, our definition of consistency does not yet consider external side effects

(e.g., IO) that might need to be compensated for after an exception.

3) Contributions: The contribution of this article is twofold. First, we introduce and for-

malize the failure atomicity property in the context of exception-based error handling. Second,

we introduce novel techniques forautomaticallydetecting and masking non-atomic exception

handling. These techniques can be applied to both C++ and Java applications, and do not always

require access to the application’s source code. Furthermore, we present experimental results

June 10, 2004 DRAFT

5

that demonstrate the effectiveness and the performance overhead of our techniques.

The organization of this article is as follows: In Section II, we first discuss related work.

Section III introduces the failure atomicity problem, and Section IV presents our approach for

detecting and masking failure non-atomic methods. In Section V we discuss the implementation

details of our system, and Section VI elaborates on the performance of our C++ and Java

infrastructures. Section VII concludes the article.

II. RELATED WORK

Exception handling has been investigated for several decades. Goodenough [2] proposed to

add explicit programming language constructs for exception handling in 1975, and Melliar-Smith

and Randell [3] introduced the combination of recovery blocks [4] and exceptions to improve

the error handling of programs in 1977.

Exception handling is still actively investigated. For example, a complete issue of ACM

SIGAda Ada Letters [5] was recently dedicated to exception handling, and a 2001 Springer

LNCS book addresses advances in exception handling [6]. One of the major issues addressed

by researchers is a better separation of functional code and exception handling code. Recent

studies have proposed to combine exception handling and reflection to increase this division [7],

or to use aspect-oriented programming for reducing the amount of code related to exception

handling [8].

Although the goal of exception handling code is to increase the robustness of programs,

it has been noted by Cristian in [9] that exception handling code is more likely to contain

software bugs (calledexception errors[10]) than any other part of an application. This can be

explained intuitively by a couple of factors. First, exceptions introduce significant complexity

in the application’s control flow, depending on their type and the point where they are thrown.

Second, exception handling code is difficult to test because it is executed only rarely and it

may be triggered by a wide range of different error conditions. Furthermore, one study [10] has

shown that reducing the occurrence of exception handling failures would eradicate a significant

proportion of security vulnerabilities. Therefore, eliminating exception failures would not only

lead to more robust programs, but also more secure programs.

Several approaches have been proposed to address the issue of exception errors [10]: code

reviews, dependability cases, group collaboration, design diversity, and testing. Testing typically

June 10, 2004 DRAFT

6

results in less coverage for the exception handling code than for the functional code [9]. The

effectiveness of dependability cases, design diversity, and collaboration for reducing exception

handling errors has been studied in [10]. In this article we introduce a novel approach based on

exception injection to address certain kinds of exception errors. We do not consider our approach

as a replacement of other approaches; we rather believe that it complements other techniques

such as dependability cases and collaboration. The advantages of our approach lie essentially

in its highly automated operation and fast detection of functions that contain certain exception

errors.

The robustness of programs can be evaluated using fault injection techniques [11]. There

exist software-implemented, hardware-implemented, and simulation-based fault injectors. Our

tool performs software-implemented fault injections. Software-implemented fault injectors have

been investigated for various types of failures, such as memory corruption [12], [13], invalid

arguments [14], or both [15]. There are also various techniques for injecting faults. Some tools,

such as FERRARI [16] and Xception [17], inject faults without modifying the applications. Other

tools, such as DOCTOR [18], modify the application at compile time, and yet others during

runtime. Our tool injects faults in the form of exceptions, by modifying the application either

at compile time or at load time. Unlike FIG [19], which tests the error handling of applications

by returning error codes to system calls, our tool only injects application-level exceptions.

Our tool does not only evaluate the robustness of programs by performing exception injections,

but it also automatically corrects the problems discovered by the fault injections. The automatic

wrapping of shared libraries based on injection results has been previously demonstrated in [20].

In this article, we address different types of failures (exception handling vs. invalid arguments)

and hence, we use different fault injection and wrapping techniques. Our tool automatically mod-

ifies problematic methods by saving the state of specific objects and restoring it upon failure to

roll back to a consistent state. This behavior is very similar to transactional systems, which ensure

atomicity by “undoing” the actions of a transaction that does not complete successfully [21].

While transactions are traditionally a feature of database systems, several programming languages

have been designed or extended to directly incorporate various levels of transactional support,

independently of any underlying database management system and with little runtime overhead.

Much research has been conducted by the parallel computing community [22] on the concurrency

control aspects (i.e., transaction isolation) when multiple processors simultaneously access shared

June 10, 2004 DRAFT

7

data and a few programming language actually implement abortable transactions. Recent work

of Harris and Fraser [23] adds support for lightweight transactions to the Java programming lan-

guage. We consider this work as complementary to our own research in the sense that lightweight

transactions could advantageously replace our checkpointing techniques to automatically mask

the failure non-atomic behavior of specific objects and methods. Transactional mechanisms would

further improve the robustness and alleviate some of the limitations of our fault recovery, as our

system does not explicitly address issues such of concurrency control (i.e.,isolation). Integrating

the techniques proposed by Harris and Fraser would however require new tools, as memory

needs to be accessed through special functions that cannot be implemented with our current

source and object code transformation techniques. As it is true in our current system, one would

still need to determine which functions would need to be wrapped in transactions and to reduce

the overhead of masking, one would still prefer to fix the source code instead of using automatic

masking with the help of transactions.

III. PROBLEM DESCRIPTION ANDMOTIVATION

Robust software has to be able to detect and recover from failures that might occur at runtime.

One way of performing failure recovery is to take advantage of the exception handling mechanism

that is provided in many programming languages. Using this mechanism, a method can signal

to its caller that it has encountered a failure, be it memory depletion or an unexpected result of

a calculation, by throwing an exception. The exception can then be caught by the caller, which

provides the programmer with an opportunity to recover from the failure and consequently to

increase the robustness of the application.

Failure recovery is however likely to fail, unless extreme care is taken during the programming

of the exception handling code. Due to the incomplete execution of the method that threw the

exception, one or more objects might be in inconsistent states. Unless consistent states are

restored, the application might crash or terminate with an incorrect result.

Example1: Consider methodvector::alloc in Figure 3. This method allocates a new array

with nb entrieselements of typeT . It stores the new address of the array and the number of

entries in the instance variablesx and size, respectively. The call tonew on line 9 throws an

exception if there is not enough memory available or if the constructor ofT throws an exception.

If this happens, the object upon which the method is called will be in an inconsistent state, since

June 10, 2004 DRAFT

8

1 class T;
2

3 class vector {
4 T ∗x;
5 int size ;
6 public :
7 void alloc (int nb entries){
8 size = nbentries ;
9 x = new T[nb entries];

10 }
11 };
12

13 class vector2D{
14 T ∗x, ∗y;
15 int size ;
16 public :
17 void alloc (int nb entries){
18 x = new T[nb entries];
19 y = new T[nb entries];
20 size = nbentries ;
21 }
22 };

Fig. 3. Sample classes with failure non-atomic methods.

1 void vector :: alloc (int nb entries){
2 x = new T[nb entries];
3 size = nbentries ;
4 }
5

6 void vector2D:: alloc (int nb entries){
7 T ∗tmp x = NULL, ∗tmp y = NULL;
8 try {
9 tmp x = new T[nb entries];

10 tmp y = new T[nb entries];
11 size = nbentries ;
12 x = tmp x;
13 y = tmp y;
14 } catch (...) {
15 delete tmp x;
16 delete tmp y;
17 }
18 }

Fig. 4. Methods of Figure 3 transformed to be failure
atomic.

the value ofsizehas already been set to its new value whilex still holds its old value. This is

a common mistake, even for experienced programmers: the sketched problem was discovered by

our fault-injection tool in a C++ class that we checked.

This problem can easily be solved by swapping lines 8 and 9, as shown in Figure 4: if thenew

on line 2 throws an exception, the state of the object upon which this method is called remains

unaffected. Consequently, the object is in a consistent state when the exception is caught, and the

caller can safely recover and reissue the invocation (after having reclaimed additional memory

or with reduced capacity requirements).

Another problem that our tool discovered in an existing C++ class is illustrated in method

vector2D::allocof Figure 3. This method performs two operations that can throw exceptions. If

only one of the operations succeeds, the object can be left in an inconsistent state. To solve this

problem, one can use the “update a temporary and swap” idiom as shown in Figure 4 (note

that it is safe to calldeleteon a null pointer).

The system presented in this article helps programmers detect which methods might leave an

object in an inconsistent state when an exception is thrown. Our system can also automatically

revert an object back to a consistent state by automating the “checkpoint, execute, and roll-back

on exception” idiom, if the programmer so desires. This is further explained in Section IV and V.

June 10, 2004 DRAFT

9

v

[0] val = 0

[1] val = 0

size = 2

Object
graph of v

refers−to

x

part−of

Fig. 5. A sample object graph of an objectv of classvector in Figure 3.

Before describing our system in more detail, we formally introduce the important notions of

object graphs, failure non-atomic methods, and failure atomic methods.

Definition 1: An object graph is a graph whose nodes are objects or instances of primitive

data types, and whose edges are part-of and refers-to relationships, with a single distinguished

root object. Nodes are labeled with the associated variable name (if it exists) and, for all basic

data types except pointers, with the value of the variable. The instance variables of an object

are referred to by the part-of relation. Each non-null pointer has a refers-to edge to the node

which is referenced by the pointer. The object graph of an objecto is the graph rooted ato.

This definition corresponds to the notion of object graphs traditionally used in object-oriented

languages to delimit the scope of deep copying. Note that multiple pointers may refer to the

same node. It follows that the object graph of an objecto holds the state ofo (i.e., the values

of its fields), as well as the state of all objects referenced directly or transitively byo. As an

example, the object graph of a sample objectv of classvector defined in Figure 3 is depicted

in Figure 5. For the purpose of the illustration, we let classT have a single instance variable

val of type int.

We say that two object graphso1 ando2 areequal if the two root nodes have the same labels

and there exists a one-to-one mapping between each childc1 of one of the root nodes reachable

via relationR (part-of or refers-to) and a childc2 of the other root node reachable via the same

relationR such that the object graphs rooted atc1 andc2 are equal.

Definition 2: Let C be a class, andm a method of classC. Given an invocation of method

m on an objecto with argumentsα1, · · · , αn, we define thepre-invocation object graphfor that

invocation ofm as the object graph consisting of a virtual root node with, as children, the

n + 1 object graphs ofo and the argumentsα1, · · · , αn taken just beforem is executed. The

June 10, 2004 DRAFT

10

post-invocation object graphfor an invocation ofm that returns with an exception is defined

similarly, except that the children of the virtual root node are taken just afterm returns with

the exception.

Definition 3: Let C be a class. A methodm of classC is failure atomicif for all objectso of

classC and all executions ofm on o with argumentsα1, · · · , αm that returns with an exception,

the pre-invocation and post-invocation object graphs are equal. A method isfailure non-atomic

if it is not failure atomic.

The failure atomicity definition is modelled along the lines of transactional semantics: an

exception causes an abort of the enclosing transaction (i.e., method call) and a roll back to

the initial state at the start of the transaction. Alternate exception semantics might also make

sense. For example, our definition of failure atomicity property does not enforce the pointers

in the pre-invocation and post-invocation object graphs to be the same. Some applications may

require such strong semantics (e.g., for pointers to shared objects), but in general we cannot

decide automatically which form of equivalence a program needs. Because every two “pointer

equivalent” object graphs are also equivalent according to our definition, we only test for the

weaker definition. This might result in a slight increase in the number of false negatives, i.e.,

we do not detect when a method should enforce pointer equivalence but only enforces value

equivalence.

On the other hand, our definition of failure atomicity might be too conservative for some

applications. For instance, a class using lazy data allocation or caching might modify some

member variables (e.g., an “allocated” or a “dirty” flag) without changing the actual content of

its objects and graph equivalence comparisons would report inconsistencies. As automatic tools

cannot easily detect this kind of behavior, our approach is to provide the developer with simple

tools to ignore such problematic methods using a Web-based interface. Given the wide range of

application designs and requirements, one could also extend our system to allow the programmer

to specify customizable failure semantics based on the pre-invocation and post-invocation object

graphs.

It can be shown that the failure atomicity problem is undecidable, i.e., one cannot accurately

determine if a method is failure atomic, by a simple reduction to the halting problem. Therefore,

we rather focus on approaches to obtain good approximations of the problem, as discussed in

the next section.

June 10, 2004 DRAFT

11

IV. A PPROACH

Our approach to identify and transform failure non-atomic methods consists of two phases:

a detectionand amaskingphase. The detection phase uses automated injection of exceptions

to identify failure non-atomic methods, and the masking phase transforms failure non-atomic

methods into failure atomic methods.

A. Detection Phase

The goal of the detection phase is to determine which methods are failure non-atomic.

However, as we mentioned earlier, the failure atomicity problem is not computable. To address

this issue, we relax the accuracy requirement. Our system classifies a method as non-atomic

only if it has proof that the method is non-atomic, i.e., the system found an execution in which

the method is non-atomic (a counter example). If the system cannot find such an execution, it

classifies it as atomic. Note that to prove that a methodm is atomic one would need to show

that m is atomic in all executions—a task impossible to compute.

We use automated exception-injection experiments to classify methods as either failure atomic

or failure non-atomic. Although static program analysis may be possible for certain applications

and programming languages, we chose to only explore the more widely applicable—but also more

time-consuming—approach of dynamic program analysis. In general, the techniques proposed

in this article would benefit from being combined with static analysis, when applicable, to speed

up the detection phase.

The automated exception-injection experiments are run on test programs or end-user appli-

cations that call the methods we want to investigate. We automatically transform the code of

these programs to inject exceptions at specific points of their execution. These exception injector

programs are then run to generate a list of failure non-atomic methods to be used as input to

the masking phase. This process corresponds to steps 1 through 3 in Figure 6.

Step 1: To create an exception injector programPI from a programP , we first find all methods

that are potentially called during the execution ofP . To that end, we instrument all the classes

that are defined and used byP and we execute the program to discover which methods are

invoked at runtime. For each of these method, we identify the exceptions that may be thrown. In

Java this includes all the exceptionsdeclaredas part of the method’s signature and that can be

determined using Java’s reflection mechanisms. Additionally, we assume that each method may

June 10, 2004 DRAFT

12

Process

Detection Phase

Step 2 Step 4 Step 5Step 3Step 1

Masking Phase

Injection
Wrappers

Run &
Weaver

Code

Weaver

Code Exception
Injector
Program Methods

Non−atomic
List of Failure Masking

Wrappers
Corrected
ProgramAnalyzerAnalyzer

Program

Fig. 6. We automatically transform applications to inject exceptions in their execution, and we use the experimental

results to correct the applications.

throw a runtime exception, which represents exceptions that may be thrown during the normal

operation of the virtual machine but do not need to be declared or caught (e.g., invalid argument

or null pointer). In C++, we only inject one type of exception because most methods do not

explicitly declare the exceptions they throw.

TheAnalyzertool then creates aninjection wrapperfor each called method as follows: Assume

that methodm declares exceptions of typesE1, · · · , Ek and may also throw runtime exceptions

Ek+1, · · · , En. The Analyzercreates an injection wrapperinj wrapperm for m, which either

throws one of these exceptions, or calls methodm. In the injection wrapper ofm, there aren

potential injection points (see lines 2-5 in Figure 7). We determine whether to throw an exception

at any of these injection points using a global counter (Point), incremented every time the control

flow reaches one of these potential injection point; an exception is injected when the counter

reaches a preset threshold value (InjectionPoint).

1 return type inj wrapperm(α1, · · · , αm) throw (E1, · · · , Ek) {
2 if (++Point == InjectionPoint)throw E1();
3 if (++Point == InjectionPoint)throw E2();
4 ...
5 if (++Point == InjectionPoint)throw En();
6 pre invocationgraph = createobjectgraph (this , α1, · · · , αm);
7 try {
8 return m (...);
9 } catch (...) {

10 if (pre invocationgraph . equal(this , α1, · · · , αm))
11 mark(”m”, ”atomic”, InjectionPoint); // Atomic in this call
12 else
13 mark(”m”, ”non−atomic”, InjectionPoint);
14 throw ;
15 }
16 }

Fig. 7. Pseudo-code for the injection wrapper of methodm
(detection phase).

1 return type atomicm(α1, · · · , αm) {
2 pre invocationgraph = createobjectgraph (this , α1, · · · , αm);
3 try {
4 return m (...);
5 } catch (...) {
6 pre invocationgraph . replace (this , α1, · · · , αm);
7 throw ; // Rethrow exception
8 }
9 }

Fig. 8. Pseudo-code for the atomicity wrapper of
methodm (masking phase).

June 10, 2004 DRAFT

13

Step 2: After the Analyzerhas created the injection wrappers for all methods called byP , the

Code Weavertool makes sure that these wrappers, as opposed to the original methods, are called.

Modifications can be performed on the program’s source files (source code transformation), or

by directly instrumenting the application’s compiled bytecode (low-level transformation). The

result of this transformation is an exception injector programPI .

Step 3:Once the exception injector programPI is created, we execute it repeatedly. We increment

the threshold valueInjectionPointbefore each execution to inject an exception at a different point

in each run. (As we shall see in Section IV-C, injections can be performed in a more efficient

manner.) Each wrapper intercepts all exceptions and checks if the wrapped method is failure

non-atomic before propagating the exception to the caller.

To determine whether a methodm is failure non-atomic, the injection wrapper (Figure 7)

takes a snapshot of the pre-invocation object graph (analogous to cloning or performing a deep

copy of the target objects). Ifm returns with an exception, the wrapper catches the exception

and compares the saved snapshot with the value of the post-invocation object graph. If they are

are equal, we mark the method as failure atomic; otherwise, we mark it as failure non-atomic.

Since different injections may result in different classifications for a method, we classify a

methodm as failure atomic if and only if it is never marked as failure non-atomic, i.e., if

and only if for each injection the pre-invocation and post-invocation object graphs are equal.

The output of this phase is a list of all the failure non-atomic methods detected in the original

program.

B. Masking Phase

The goal of the masking phase is to transform the failure non-atomic methods identified during

the injection phase into failure atomic methods. By doing so, the resulting program becomes

more robust, since the incomplete execution of a method due to an exception does not result in

an inconsistent program state.

Note that the masking phase is optional, i.e., a programmer might prefer to fix a program man-

ually instead of using automatic masking. Similar to programming level transaction mechanisms,

we assume that rolling back the state to a previous checkpoint results in an internally consistent

state. However, the program still needs to deal with the effects of non-abortable actions, such

June 10, 2004 DRAFT

14

as the sending a message via a socket. Typically, the code that catches the exception needs to

handle this issue.

The masking phase consists of steps 4 and 5 in Figure 6.

Step 4: The failure non-atomic methods are automatically transformed into equivalent failure

atomic methods. TheAnalyzerperforms this task by generating anatomicity wrapper atomicm

for each methodm in the list of failure non-atomic methods provided by the detection phase.

Before the invocation of the target method, the atomicity wrapper (Figure 8) takes a snapshot of

the pre-invocation object graph. Ifm returns with an exception, the wrapper restores the state of

the objects using the snapshot and re-throws the exception. This wrapper exhibits failure atomic

behavior to its callers.

Step 5:After theAnalyzerhas generated an atomicity wrapper for each of the methods that should

be transformed, theCode Weavertransforms the original programP into an equivalent (corrected)

programPC by replacing all calls to these methods by calls to their atomicity wrappers. This

process is similar to Step 2.

The implementation details of both the detection and the masking phases for C++ and Java

are discussed in Section V.

C. Speedup of the Detection Phase

In a programP with N method calls andK exception classes, our system injectsN ∗ K

exceptions. The approach sketched in Section IV-A performs this task by executing the program

N ∗ K times. The time complexity of Step 3 (in terms of number of methods called) is hence

O(N2K). For large values ofN , this process can be time-consuming in comparison to the normal

running time ofO(N). Therefore, we implemented a variant that can reduce the complexity to

O(NK).

To reduce the execution time of Step 3, we checkpoint the application state before injecting

an exception by forking a child process. The child process injects the exception while the parent

process waits for the child process to terminate. The child process needs to check the atomicity

of all methods that are in execution at the time the exception is injected, i.e., of all methods for

which there exists a return address on the stack at the time of the exception injection.

If an application can tolerate the injected exception, i.e., the injected exception does not

terminate the application, the child process will run to completion. Hence, for such applications

June 10, 2004 DRAFT

15

the time complexity is still quadratic even if the system is using application state checkpointing.

To reduce the time complexity, the system terminates a child process as soon as the exception

stops propagating. Note that the failure atomicity property is restricted to methods returning with

an exception, i.e., the systems stops learning about method failure atomicity after an injected

exception has finished propagating.

A child process can thus terminate in two distinct manners after an exception has been

injected. First, if the exception propagates to the topmost wrapper on the call stack of the child

process, the wrapper terminates the child immediately after determining the failure atomicity

classification of the wrapped method. Second, any wrapper that detects that an injected exception

has stopped propagating (i.e., a wrapped method that was called before the exception was injected

but that returned normally after the injection) terminates the child process. When using this

approach, Step 3 now has a time complexity inO(NK). The performance gain resulting from

this optimization in C++ is discussed in Section VI.

D. To Wrap or Not To Wrap

There are situations where a failure non-atomic method shouldnot be wrapped during the

masking phase. First, although very unlikely, the failure non-atomic behavior of a method might

have been intended by the programmer. Since transforming a method to become failure atomic

changes its semantics, the transformation mightcausean incorrect result or crash, instead of

avoiding it. To deal with this situation, our system provides an easy-to-use Web interface that

allows the programmer to indicate which of the methods classified as failure non-atomic should

not be transformed.

Second, some failure non-atomic methods can easily be rendered failure atomicmanually,

e.g., by swapping lines of code or by using temporary variables as shown in Figure 4. In that

case, the programmer most likely would prefer to rewrite the method himself, since the resulting

code is likely to be more efficient. After the programmer corrects these methods, he can re-run

the detection phase to validate his modifications.

Third and most interestingly, a method might exhibit failure non-atomic behavior only because

the methods it calls are failure non-atomic. We call such methodsdependent failure non-atomic

methods:

Definition 4: A dependent failure non-atomicmethod is a failure non-atomic method that

June 10, 2004 DRAFT

16

would be failure atomic if all the methods that it calls (directly or indirectly) were failure

atomic. All other failure non-atomic methods arepure failure non-atomicmethods.

During the execution of the corrected program (produced by the masking phase), all methods

called by a dependent failure non-atomic methodm will exhibit failure atomic behavior. Thus,

by definition, methodm is no longer failure non-atomic and it is not necessary to wrap it.

Therefore, distinguishing between pure and dependent failure non-atomic methods can help us

significantly improve the performance of the corrected program.

To distinguish dependent from pure failure non-atomic methods, we examine the order in

which failure non-atomic methods were reported during exception propagation for each run of

the exception injector program (Step 3 in Figure 6). If there exists a run in which methodm is

the first method to be reported failure non-atomic, thenm is pure failure non-atomic. Indeed,

any failure non-atomic method called bym would be detected and reported beforem because

of the way exceptions propagate from callee to caller (see Figure 7). If there exists no such run,

thenm is dependent failure non-atomic.

E. Limitations

The approach that we use to detect and mask failure non-atomic methods has some limitations.

First, our approach does not address external side effects of methods: we do not attempt to detect

inconsistent external state changes caused by an exception, nor do we try to mask such external

state inconsistencies. The proper handling of external state changes in the face of exceptions

remains the task of the code that catches such exceptions.

Second, since our (non fork-based) exception injector executes an instrumented program

repeatedly to inject exceptions at each possible injection point, the program must behave deter-

ministically to ensure good code coverage. If the program is not deterministic, then our system

might inject exceptions in only a subset of the possible injection points and overlook some failure

non-atomic methods that would have been detected otherwise. In contrast, a fork-based injector

(See Section IV-C) makes sure that an exception is injected at all injection points of a single

execution and should therefore be used for non-deterministic applications. One should note that

our system only tests the methods that are called by the original program, and the completeness

of the results depends on how extensively the program exercises its own objects and methods.

June 10, 2004 DRAFT

17

Third, our system does not explicitly deal with concurrent accesses in multi-threaded pro-

grams. Such concurrency issues could be addressed using a transaction mechanism instead of a

checkpointing mechanism to mask failure non-atomicity.

Finally, our system only injects exceptions in method calls (including object constructors and

destructors), and exclusively for exception classes that have a default constructor. It does not take

into account failures such as arithmetic errors (e.g., division by zero) or asynchronous events

(e.g., signals, thread interruption). Such failures are extremely challenging to account for, as

they are often completely unpredictable. In that sense, our approach implements “best-effort”

detection mechanisms and may fail to report failure non-atomic methods (false negatives). This

limitation also applies for failure non-atomic methods thatby chanceexhibit atomic behavior

for all injected exceptions.

Conversely, our system can also produce “false positives” by classifying as failure non-atomic

a method that exhibits seemingly inconsistent behavior that was intended by the programmer, or

by injecting exceptions in methods that are unlikely to fail such as accessor methods that simply

returns the value of a member variable. In practice, however, it is often difficult to determine

whether a method is by definition “exception-free” as all the runtime conditions that might lead

directly or indirectly to application level exceptions are not necessarily known. For instance,

there is always a risk of a method invocation producing a stack overflow. To completely avoid

false positives, we need to determine not only whether a method can throw an exception, but also

which exceptions it can throw. For instance, the recovery code of a method might correctly handle

stack overflows but exhibit failure non-atomic behavior when injecting an arbitrary exception

type that cannot occur in practice.

V. I MPLEMENTATIONS

We have investigated two approaches for implementing our system: source code and bytecode

program transformation techniques. The first approach requires access to the source code of a

program, while the second does not, but instead relies on the strong typing of the language and the

large amount of structural information embedded in the bytecode. Both kind of transformations

can be aided by the use of aspect oriented programming [24], which allow programmers to easily

capture and integrate crosscutting concerns in their applications.

June 10, 2004 DRAFT

18

A. Source Code Transformation

We have implemented a first prototype of our system that performs source code transformations

to inject and mask non-atomic exception handling in C++ applications. We use the C/C++

interpreter CINT [25] to parse the source code of a given program and gather the type information

necessary to generate the checkpointing code and wrappers for each method during the detection

phase, as well as the atomicity wrappers for pure failure non-atomic methods during the masking

phase. The wrappers are implemented asaspectsfor the AspectC++ [26] aspect-oriented language

extension for C++, which are then woven with the source code of the program in such a way

that each call to a methodm calls instead the wrapper ofm. We also generate, for each class, a

function createobjectgraph to checkpoint the state of an instance of that class, and a function

replaceused during the masking phase to restore the state of a previously checkpointed object.

The exception injector program is executed repeatedly to inject exceptions at all possible injection

points (for the given program input) and the results of online atomicity checks are written out

to log files by the injection wrappers. These log files are then processed offline to classify each

method.

Due to restrictions of C++ and the tools we are using, our implementation has a few limitations.

First, CINT does not support templates and ignores exception specifications. Using a better C++

parsing tool would solve this limitation.

Second, checkpointing C++ objects is not trivial. In particular, C++ allows pointer manipula-

tions that make it hard, in some situations, to discover the complete object graph of an object

at runtime. While there exist techniques to address this problem, they can be prohibitively

expensive: in particular, we experimented with a variant where the masking wrapper saves the

state of the complete process by forking a child process before executing a call to a purely

non-atomic methodm. If an exception occurs during the execution ofm, the state is rolled

back by terminating the parent process and letting the child process throw the same exception

as the parent without actually executingm. This approach has the advantage that the recovered

post-invocation object graph is not only equal but also identical to the pre-invocation object

graph, and it allows us to also recover the state of all global and static variables. Using fork

to checkpoint processes has been proposed and implemented previously, e.g., in [27]. Unlike

our approach, most checkpointing systems save the state of a process to disk. The authors

June 10, 2004 DRAFT

19

of [28] proposed mechanisms to save the content of a process in memory and showed that

application checkpointing can be performed very efficiently. As these mechanisms were not

available on our target operating systems, we had to rely on process forking instead. Fork uses

copy-on-write to optimize the copying, which might be advantageous to checkpoint large objects

that experience few updates during the execution of an non-atomic method. While our initial

performance measurements showed that process forking introduces significant runtime overhead

as we shall see in Section VI, we believe based on the results of [28] that a very well tuned

process checkpointing mechanism might provide acceptable performance.

Third, unlike Java, C++ does not enforce thrown exceptions to be declared as part of the

method’s signature. Hence, for completeness, the C++ exception injector might have to inject a

wide range of different exception types in application that do not declare exceptions. This problem

can be solved using source code analysis or through automated fault injection experiments.

Fourth, one needs to clean up the memory that is implicitly discarded when rolling back to

an object checkpoint. To do so, our tool adds an automatic reference counting mechanism to

objects. However, this mechanism only works for acyclic pointer structures. For cyclic pointer

structures, one can use an off-the-shelf C++ garbage collector. Using the fork mechanism to

checkpoint objects solves this problem too.

B. Bytecode Transformation

With languages that offer adequate reflection mechanisms, it is possible to add functionality

to an application without having access to its source code, by applying transformations on

the compiled bytecode. We have followed this second approach in the Java version of our

infrastructure for detecting and masking non-atomic exception handling. The key properties

that make this approach possible are Java’s strong typing, and the comprehensive structural

information embedded in the bytecode and exposed by the virtual machine.

To inject and mask failures in Java classes, we have developed a tool, called the Java Wrapper

Generator (JWG), which uses load-time reflection to transparently insert pre- and post-filters to

any method of a Java class. These generic filters allow developers to add crosscutting functionality

(as with aspect-oriented programming) tocompiledJava code in a transparent manner. Filters

are attached to specific methods at the time the class is loaded by the Java virtual machine, by

using bytecode instrumentation techniques based on the BCEL bytecode engineering library [29].

June 10, 2004 DRAFT

20

Filters can be installed at the level of the application, individual classes, instances, or methods.

They can modify the behavior of a method by catching and throwing exceptions, bypassing

execution of the active method, or modifying incoming and outgoing parameters.

The Java implementation of our framework works along the same lines as its C++ counterpart,

with just a few notable differences. Wrappers are attached to the application at load-time, by

instrumenting the classes’ bytecode. These wrappers have been programmed to be generic, i.e.,

they work with any class; they obtain type information about classes, methods, parameters, and

exceptions at runtime using Java’s built-in reflection mechanisms. The methods that checkpoint

and restore the state of an object are also generic; they essentially perform a deep copy of the

object’s state using Java’s reflection and serialization mechanisms.

A major limitation with Java bytecode transformation is that a small set of core Java classes

(e.g., strings, integers) cannot be instrumented dynamically. This limitation applies to all systems

that perform Java bytecode transformations, and is not specific to our implementation. It can

be overcome by instrumenting the bytecode of core classes offline and replacing their default

implementations by the instrumented versions.

In addition, the Java version of our framework does not incorporate the fork-based optimiza-

tions previously mentioned because of the lack of adequate mechanisms to spawn child processes

in Java.

VI. EXPERIMENTAL RESULTS

To validate our exception injection tool, we first developed a set of synthetic “benchmark”

applications in C++ and Java. These benchmarks are functionally identical in both languages,

and contain the various combinations of (pure/dependent) failure (non-)atomic methods that may

be encountered in real applications. We used these benchmarks to make sure that our system

correctly detects failure non-atomic methods during the detection phase, and effectively masks

them during the masking phase. These applications were used for the code coverage experiments

and some performance experiments presented in the section.

We then performed stress tests and assessed the robustness of some legacy applications. For

that purpose, we tested two widely-used Java libraries implementing regular expressions [30]

and collections [31]. Such libraries are basic building blocks of numerous other applications and

are thus expected to be robust. We also tested Self? [32], a component-based framework in C++

June 10, 2004 DRAFT

21

that we are currently developing. We ran experiments with several applications that use Self?
to help us detect failure non-atomic methods and improve the robustness of the framework.

Application # Classes # Methods Total # Injections
C++ adaptorChain 16 44 10122

stdQ 19 74 9585
xml2Ctcp 5 19 6513
xml2Cviasc1 23 102 12135
xml2Cviasc2 23 89 13959
xml2xml1 18 70 8068

Java CircularList 8 58 5912
Dynarray 7 50 2528
HashedMap 10 40 3271
HashedSet 8 32 1149
LLMap 10 41 7543
LinkedBuffer 8 38 2737
LinkedList 9 62 7500
RBMap 11 55 7133
RBTree 9 51 8056
regexp 4 32 1015

TABLE I

C++ AND JAVA APPLICATION STATISTICS.

Table I lists the number of classes and methods in the applications that we used for our ex-

perimental evaluation, together with the total number of exceptions injected during the detection

phase (note that this value corresponds to the number of method and constructor calls during

the execution of the test programs). We ran separate experiments for each individual application;

however, because of the inheritance relationships between classes and the reuse of methods,

some classes have been tested in several of the experiments.

Experiments were conducted following the methodology described in Section IV: we gener-

ated an exception injector program for each application, and ran it once for each method and

constructor call in the original program, injecting one exception per run. The C++ experiments

were run on a 866 MHz Pentium 3 Linux machine (kernel 2.4.18) with 512 MB of memory and

the Java tests were run using Java 1.4.1 on a 2 GHz Pentium 4 Linux machine (kernel 2.4.18)

with 512 MB of memory.

A. Fault Injection Results

We first computed the proportion of the methods defined and used in our test applications

that are failure atomic, dependent failure non-atomic, and pure failure non-atomic. The results,

presented in Table II and Figure 9(a), show that the proportion of “problematic” methods, i.e.,

June 10, 2004 DRAFT

22

Methods reported as: # Method calls reported as: # Classes reported as:
Application Atomic Dep. N-A Pure N-A Atomic Dep. N-A Pure N-A Atomic Dep. N-A Pure N-A

C++ adaptorChain 43 0 1 6331 0 12 15 0 1
stdQ 73 0 1 5944 0 8 18 0 1
xml2Ctcp 18 0 0 3982 0 0 5 0 0
xml2Cviasc1 95 1 6 7261 1 21 18 0 5
xml2Cviasc2 84 0 5 8360 0 30 19 0 4
xml2xml1 68 0 2 4887 0 3 17 0 1

Java CircularList 36 5 17 4894 72 612 5 0 3
Dynarray 26 11 13 1844 211 459 5 0 2
HashedMap 29 3 8 2542 45 441 7 0 3
HashedSet 23 3 7 874 34 171 5 0 3
LLMap 31 2 8 6821 30 455 7 0 3
LinkedBuffer 28 3 7 1919 163 634 5 0 3
LinkedList 37 7 18 6463 79 580 6 0 3
RBMap 40 1 14 6339 120 863 7 0 4
RBTree 34 5 12 6949 288 958 5 0 4
regexp 19 4 9 872 35 57 2 0 2

TABLE II

FAILURE-ATOMICITY PROPERTIES OF EACHC++ AND JAVA APPLICATION , IN TERMS OF NUMBER OF METHODS, METHOD

CALLS, AND CLASSES.

ad
ap

to
rC

ha
in

st
dQ

xm
l2

C
tc

p

xm
l2

C
vi

as
c1

xm
l2

C
vi

as
c2

xm
l2

xm
l1 �

C
irc

ul
ar

Li
st

D
yn

ar
ra

y

H
as

he
dM

ap

H
as

he
dS

et

LL
M

ap

Li
nk

ed
B

uf
fe

r

Li
nk

ed
Li

st

R
B

M
ap

R
B

T
re

e

re
ge

xp

P
er

ce
nt

40

50

60

70

80

90

100

Distribution of Methods

Pure N−A
Dep. N−A
Atomic

(a)

ad
ap

to
rC

ha
in

st
dQ

xm
l2

C
tc

p

xm
l2

C
vi

as
c1

xm
l2

C
vi

as
c2

xm
l2

xm
l1 �

C
irc

ul
ar

Li
st

D
yn

ar
ra

y

H
as

he
dM

ap

H
as

he
dS

et

LL
M

ap

Li
nk

ed
B

uf
fe

r

Li
nk

ed
Li

st

R
B

M
ap

R
B

T
re

e

re
ge

xp

P
er

ce
nt

40

50

60

70

80

90

100

Distribution of Method Calls

Pure N−A
Dep. N−A
Atomic

(b)

ad
ap

to
rC

ha
in

st
dQ

xm
l2

C
tc

p

xm
l2

C
vi

as
c1

xm
l2

C
vi

as
c2

xm
l2

xm
l1 �

C
irc

ul
ar

Li
st

D
yn

ar
ra

y

H
as

he
dM

ap

H
as

he
dS

et

LL
M

ap

Li
nk

ed
B

uf
fe

r

Li
nk

ed
Li

st

R
B

M
ap

R
B

T
re

e

re
ge

xp

P
er

ce
nt

40

50

60

70

80

90

100

Distribution of Classes

Pure N−A
Dep. N−A
Atomic

(c)

Fig. 9. Failure-atomicity properties of each C++ and Java application, in terms of percentage of (a) methods, (b) method calls,

and (c) classes. Absolute numbers are given in Table II.

those that are pure failure non-atomic, remains pretty small with C++. This may indicate that

the tested Self? applications have been programmed carefully, with failure atomicity in mind. In

contrast, the Java results exhibit a different trend. The proportion of pure failure non-atomic is

pretty high, as it averages20−25% in the considered applications. The proportion of dependent

failure non-atomic methods is smaller, but still significant. These relatively high numbers can be

explained by the fact that the Java code, unlike its C++ counterpart, contains a significant number

of trivial methods, such as accessors, which are unlikely to throw an exception (although this

June 10, 2004 DRAFT

23

can still happen in some situations, e.g., when the call stack cannot be further extended in low

memory conditions). By explicitly disabling exception injections in these methods, we observed

a reduction of50% of the failure non-atomic methods. Furthermore, we observed that the average

depth of the calling stack in the Java programs was higher than in the C++ applications; this

can explain why we observe more dependent failure non-atomic methods in Java than in C++.

While different programming language encourage different programming styles, the proportion of

failure non-atomic methods depends in priority on the nature, the design, and the implementation

of the considered application.

Table II and Figure 9(b) show the results of the method classification weighted by the

number of invocations to each method. Results show that failure non-atomic methods are called

proportionally less frequently than failure atomic methods. This trend may be explained by the

fact that bugs in methods frequently called are more likely to have been discovered and fixed by

the developer. Since problems in methods that are infrequently called are harder to detect during

normal operation, our tool is quite valuable in helping a programmer find the remaining bugs in

a program. For example, the pure failure non-atomic methods of the “xml2Cviasc” applications

are called very rarely, and would probably not have been discovered without the automated

exception injections of our system.

As another illustration of the usefulness of our system, the output of the fault injector allowed

us to discover some severe bugs in rarely executed error-handling code of theLinkedListJava

application. In particular, when adding a set of elements to a list, if any of the new elements but

the first is invalid (e.g., it has a null value), an “illegal element” exception is correctly thrown

and the elements are not inserted; however, the variable storing the size of the list is incremented,

which leaves the list in an inconsistent state that soon triggers a fatal error. This kind of bug is

hard to detect without automated exception injections. Using just trivial code modifications, and

by identifying methods that never throw exceptions (see Section IV-D), we managed to reduce

the number of pure failure non-atomic methods in that application from 18 (representing 7.8%

of the calls) to 3 (less than 0.2% of the calls). This further demonstrates the importance of

carefully testing error handling code.

Finally, Table II and Figure 9(c) show the proportion of the classes in our test applications

that are failure atomic (i.e., only contain failure-atomic methods), pure failure non-atomic (i.e.,

contain at least one pure failure non-atomic method), and dependent failure non-atomic (i.e., all

June 10, 2004 DRAFT

24

other classes). The results clearly demonstrate that failure non-atomic methods are not confined

in just a few classes, but spread across a significant proportion of the classes (up to 25% for

C++ tests, and from 30 to 50% for Java tests).

B. Completeness of Failure Atomicity Detection

C
irc

ul
ar

Li
st

D
yn

ar
ra

y

H
as

he
dM

ap

H
as

he
dS

et

LL
M

ap

Li
nk

ed
B

uf
fe

r

Li
nk

ed
Li

st

R
B

M
ap

R
B

T
re

e

re
ge

xp

A
vg

. #
 R

ep
or

ts
 /

N
−

A
 M

et
ho

d

0

10

20

30

40

50

60

70

80

90

False Negative Rate

Reported Atomic
Reported N−A

(a)

Li
nk

ed
B

uf
fe

r.
0

Li
nk

ed
B

uf
fe

r.
1

Li
nk

ed
B

uf
fe

r.
2

Li
nk

ed
B

uf
fe

r.
3

Li
nk

ed
B

uf
fe

r.
4

Li
nk

ed
B

uf
fe

r.
5

Li
nk

ed
B

uf
fe

r.
6

Li
nk

ed
B

uf
fe

r.
7

Li
nk

ed
B

uf
fe

r.
8

Li
nk

ed
B

uf
fe

r.
9

N
um

be
r

of
 R

ep
or

ts

0

50

100

150

200

False Negative Rate

Reported Atomic
Reported N−A

(b)

Fig. 10. Completeness of the failure atomicity detection mechanisms, in terms of false negatives, for (a) all Java applications,

and (b) each of the failure non-atomic method of the “LinkedBuffer” class.

To assess the completeness of our failure atomicity detection mechanisms, we computed the

ratio of “false negatives” for each failure non-atomic methodf , i.e., the ratio of the number of

injections that reported failure atomicity to the total number of injections intof . A high ratio

of false negatives indicates that the method only exhibits failure non-atomic behavior in rare

situations and is hard to detect, and our mechanisms are hence greatly useful. On the other

hand, low ratios mean that the method behaves in a failure non-atomic manner most of the

time and it is thus critical to fix it. Note that as long as there is at least one report of failure

non-atomicity, our system correctly classifies that function as failure non-atomic, i.e., these are

false negatives for a single run but not for the classification of the method. This experiment

gives an indication of the number of injections necessary to discover that a method is failure

non-atomic.

June 10, 2004 DRAFT

25

Figure 10(a) shows the average, over all failure non-atomic methods of each Java application,

of the number of runs where the method was correctly reported as failure non-atomic, and the

number of runs where it was incorrectly reported as failure atomic. We observe ratios of false

negative in the range of20% to 30%, i.e., failure non-atomic methods may prevent consistent

error recovery in3 out of 4 runs. Figure 10(b) details the failure atomicity reports for each of

the failure non-atomic methods of the application with the highest average number of injections

per method, i.e.,LinkedBuffer. We notice that most methods consistently behave non-atomically,

while false negatives are confined in only3 of the methods with ratios from50% to 75%;

these failure non-atomic methods may have been easily overlooked without systematic exception

injections.

C. Code Coverage

Original Injected

P
er

ce
nt

0

20

40

60

80

100

Coverage

Line

Branch

Branch Taken

(a)

Original Injected

P
er

ce
nt

0

20

40

60

80

100

Coverage

Line

Branch

Branch Taken

(b)

Fig. 11. Injecting exceptions can increase the line coverage by exercisingcatchblocks. Even for code with100% line coverage,

injecting exceptions can help to improve the coverage of branches that are evaluated and branches that are taken.

As previously mentioned, our system helps detecting problems in code and methods that are

executed only rarely. In particular, exception injections allows us to systematically test exception

handling code and to increase the line and branch coverage by executing the statements incatch

blocks. Moreover, even for programs withoutcatch blocks, branch coverage can be increased

with exception injections because of the “hidden” branches that are only exercised during the

propagation of exceptions. These branches are taken, for example, during the unwinding of the

June 10, 2004 DRAFT

26

0

5000

10000

15000

20000

25000

30000

35000

0 1000 2000 3000 4000 5000 6000 7000

R
un

-t
im

e
[s

ec
on

ds
]

Number of injections

Injections without fork
Injections with fork

Fig. 12. Time needed to injectx exceptions at the firstx

injection points of an application (xml2Cviasc).

stack to call the destructors of the objects that were allocated on the stack, and they are important

because the programmer has to make sure that the program maintains failure atomicity for each

branch.

We ran test coverage experiments to quantify the additional portions of code that can be

tested by our system. Of course, the increase in coverage depends on many factors such as the

test cases and the structure of the program and in particular, one cannot give guarantees on

by how much the coverage will increase. Our experiments were conducted on two benchmark

programs: the first one had acatch block, while the second one had none. To ensure a fair

comparison of the coverage, these two programs were not transformed; instead, exceptions were

injected via external methods. The first application shows an increase in line and branch coverage

(Figure 11(a)). The second application had already100% line coverage and, hence, shows no

increase (Figure 11(b)). The branch coverage, however, is more than10% higher with exception

injections. Code coverage can thus strongly benefit from automated exception injections: not

only does the line coverage increase for code withcatch blocks, but also the branch coverage

for code without catch blocks.

June 10, 2004 DRAFT

27

D. Speedup of Fork-based Injection

The performance of the Detection phase might not always be of great importance. However,

the injection performance is important in situations such as when (1) there are only a limited

number of machines that can be used for the injection experiments, (2) runs take a very long time,

or (3) the software is changing rapidly and developers want fast feedback about the behavior of

the current version of the software.

To evaluate the performance gain resulting from the fork-based optimization described in

Section IV-C, we measured the time needed to inject exceptions in an application (xml2Cviasc),

both with and without forking child processes. Figure 12 depicts the time to injectx exceptions

by forking x child processes versus running the programx times. This measurement shows the

linear increase in injection time when forking a child process to do the injection, versus the

quadratic increase without a fork. Using a fork-based exception injector can thus be very useful

for applications with large numbers of injections points.

E. Fault Masking Results

0.5

1

1.5

2

A
bs

ol
ut

e
ov

er
he

ad
 [

m
s]

(×
10

 f
or

 J
av

a)

C++ Implementation
Java Implementation

0 10 20 30 40 50 60 70 80 90 100
Percentage Atomic [%] 1

10

100

1000

10000

Object Size [bytes]

0

1000

2000

3000

4000

Overhead [%]

(a)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
bs

ol
ut

e
ov

er
he

ad
 [

µs
]

(×
10

 f
or

 J
av

a)

C++ Implementation
Java Implementation

90
92

94
96

98
100

Percentage Atomic [%] 0
100

200
300

400
500

Object Size [bytes]

0

10

20

30

40

50

60

70

Overhead [%]

(b)

Fig. 13. (a) Performance overhead for masking a fixed-duration method in C++ (≈ 0.5µs) and in Java (≈ 5µs). (b) Zoom on

the front-right corner of (a).

We measured the overhead of method masking in C++ and Java, as a function of the check-

pointed object size and percentage of failure atomic method calls. Results are shown in Figure 13.

Each data point is the median of100 runs and the fixed processing time per method in the original

June 10, 2004 DRAFT

28

program was set to0.5µs in C++, and5µs in Java.1 Exactly one byte in the object is read and

written during each method execution. Note that the C++ overhead does not increase linearly with

the object size because the function called to copy the state of an object uses byte copy for small

objects and word copy for large objects. We observe a similar behavior with the Java overhead

for objects larger than500 bytes, most probably caused by the size increase and reallocation of

the buffers used for object serialization.

Not surprisingly, the performance of our automated masking mechanism is highly dependent

of the frequency of calls to the transformed methods. Obviously, we have to pay a higher

performance penalty as the percentage of calls to the transformed methods increases. The

overhead typically grows with the size of the checkpoints and, as there is no upper limit to

the size of objects, this overhead cannot be bounded. We observe the same behavior in both

the C++ and Java implementations, although the performance loss is more than one order of

magnitude higher in the Java implementation. When analyzing the source of the overhead in

Java, we observed that the generic filters inserted during load-time instrumentation added a

fixed cost of around6µs per masked method, and the reflection and serialization mechanisms

used in our generic checkpointing wrappers had a variable overhead5 to 10 times higher than

when using a custom wrapper tailored for the method. This demonstrates that performance could

be significantly improved by also performing source-code modifications in Java.

In the programs we investigated, we observed that the checkpoint sizes and the percentage

of failure non-atomic method calls remain small. For example, the largest percentage of calls

to failure non-atomic methods in our C++ applications was less than0.4% (Figure 9(b)). In

the Java programs, the pure non-atomic methods that we could not easily render failure atomic

(by performing trivial modifications) accounted for less than0.2% of the calls. Although the

performance overhead seems to be high, we can obtain reasonable performance as long as the

object sizes and the percentage of failure non-atomic method calls remain reasonably small, as

shown in Figure 13(b).

The actual performance overhead of the masking mechanism clearly depends on the amount

of work done by a method. The measurements shown in Figure 13 assumed a fixed amount of

work independent of the size of the object. We also measured the overhead for a method that

1We use different values for the processing time because C++ is inherently faster than Java.

June 10, 2004 DRAFT

29

C++ Implementation
Java Implementation

0 10 20 30 40 50 60 70 80 90 100
Percentage Atomic [%] 1

10
100

1000
10000

100000

Object Size [bytes]

0

50

100

150

200

250

300

Overhead [%]
(×10 for Java)

(a)

C++ Implementation
Java Implementation

90
92

94
96

98
100

Percentage Atomic [%] 0
100

200
300

400
500

Object Size [bytes]

0
5

10
15
20
25
30
35
40
45

Overhead [%]
(×10 for Java)

(b)

Fig. 14. (a) Performance overhead for masking a variable-duration method (proportional to the object size) in C++ and Java.

Note the different scaling of the vertical axis for Java measurements. (b) Zoom on the front-right corner of (a).

C++ Implementation

0 10 20 30 40 50 60 70 80 90 100
Percentage Atomic [%] 1

10
100

1000
10000

100000

Object Size [bytes]

0

20000

40000

60000

80000

100000

Overhead [%]

(a)

C++ Implementation

90
92

94
96

98
100

Percentage Atomic [%] 0
100

200
300

400
500

Object Size [bytes]

0

2000

4000

6000

8000

10000

Overhead [%]

(b)

Fig. 15. (a) Performance overhead for masking a variable-duration method (proportional to the object size) in C++ using

fork-based checkpointing. (b) Zoom on the front-right corner of (a).

clears the state of the object, i.e., the work performed by the method depends directly on the

size of the object. As we can see in Figure 14, the relative overhead actually decreases for larger

objects, because the method performs a higher amount of work per byte than the checkpointing

code does. As for the fixed-length method, the Java implementation is consistently more than

one order of magnitude slower than its C++ counterpart.

We finally measured the overhead of forking a child process to checkpoint the state of an

object in C++: a child process is forked before a each call to a pure non-atomic method and, if

June 10, 2004 DRAFT

30

an exception is caught in the wrapper, the application state is rolled back to the state of the child

process before propagating the exception (now in the child process). The performance results,

shown in Figure 15, indicate that this mechanism is too expensive. Fork-based checkpointing

does not appear to be practical, except for applications with very large objects and very few calls

to pure non-atomic functions. Based on results of [28], however, we believe this is an artifact

of our implementation and not inherent to the process checkpointing approach.

VII. C ONCLUSION

In this article we have introduced the failure atomicity problem and proposed a system that

addresses it. Our system can automatically detect which methods are failure non-atomic, and in

most cases automatically turn them into failure atomic methods. To discover failure non-atomic

methods, we inject exceptions at runtime into each method executed by an application, and we

compare the states of the objects before the method is called and after it was abruptly terminated

by the exception. Methods that cause an object to enter an inconsistent state are classified as

failure non-atomic. To transform a failure non-atomic method into a failure atomic method, we

take a snapshot of the state of the object before each call to the method; if an exception is

thrown, we restore that state before propagating the exception to the caller.

Our exception injection system alerts the programmer when finding failure non-atomic meth-

ods. In many situations, the programmer can correct the problem by applying simple modifi-

cations to his code (such as reordering a couple of statements). In other cases, more elaborate

modifications are required to implement failure atomicity. In those situations, the programmer

can use the automatic masking mechanisms provided by our system.

We have implemented our infrastructure for detecting and masking non-atomic exception

handling in both Java and C++. Experimental results have shown that our system is effective

and can be of great help to the developer of robust applications.

REFERENCES

[1] T. Cargill, “Exception handling: A false sense of security,”C++ Report, vol. 6, no. 9, November-December 1994.

[2] J. B. Goodenough, “Exception handling: issues and a proposed notation,”Communications of the ACM, vol. 18, no. 12,

pp. 683–696, 1975.

[3] P. M. Melliar-Smith and B. Randell, “Software reliability: The role of programmed exception handling,” inProceedings

of an ACM conference on Language design for reliable software, 1977, pp. 95–100.

June 10, 2004 DRAFT

31

[4] J. X. B. Randell, “The evolution of the recovery block concept,” inSoftware Fault Tolerance, M. Lyu, Ed. Wiley, 1995,

pp. 1–21.

[5] “Exception handling for a 21st century programming language proceedings,”ACM SIGAda Ada Letters, vol. XXI, no. 3,

2001.

[6] A. Romanovsky, C. Dony, J. L. Knudsen, and A. Tripathi, Eds.,Advances in Exception Handling Techniques. Springer

Verlag, 2001.

[7] S. E. Mitchell, A. Burns, and A. J. Wellings, “Mopping up exceptions,”ACM SIGAda Ada Letters, vol. XXI, no. 3, pp.

80–92, 2001.

[8] M. Lippert and C. V. Lopes, “A study on exception detection and handling using aspect-oriented programming,” in

Proceedings of the 22nd international conference on Software engineering. ACM Press, 2000, pp. 418–427.

[9] F. Cristian, “Exception handling and tolerance of software faults,” inSoftware Fault Tolerance, M. Lyu, Ed. Wiley, 1995,

pp. 81–107.

[10] R. Maxion and R. Olszewski, “Eliminating exception handling errors with dependability cases: a comparative, empirical

study,” IEEE Transactions on Software Engineering, vol. 26, no. 9, pp. 888 – 906, 2000.

[11] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J. C. Fabre, J. C. Laprie, E. Martin, and D. Powell, “Fault injection for

dependability validation: A methodology and some applications,”IEEE Trans. on Software Eng., vol. 16, no. 2, pp. 166–

182, 1990.

[12] Z. Segall, D. Vrsalovic, D. Siewiorek, D. Yaskin, J. Kownacki, J. Barton, D. Rancey, A. Robinson, and T. Lin, “Fiat —

fault injection based automated testing environment,” inProc. 18th Int. Symp. on Fault-Tolerant Computing (FTCS-18),

Tokyo, Japan, June 1988, pp. 102–107.

[13] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson, “Goofi: Generic object-oriented fault injection tool,” inProc.

International Conference on Dependable Systems and Networks (DSN 2001), Gothenburg, Sweden, 2001.

[14] N. P. Kropp, P. J. K. Jr., and D. P. Siewiorek, “Automated robustness testing of off-the-shelf software

components,” in Symposium on Fault-Tolerant Computing (FTCS), 1998, pp. 230–239. [Online]. Available:

citeseer.nj.nec.com/kropp98automated.html

[15] J.-C. Fabre, M. Rodriguez, J. Arlat, and J.-M. Sizun, “Building dependable cots microkernel-based systems using mafalda,”

in 2000 Pacific Rim International Symposium on Dependable Computing (PRDC’00), Los Angeles, California, December

2000, pp. 85–94.

[16] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham, “Ferrari: A tool for the validation of system dependability properties,”

in Proc. of 22nd International Symposium on Fault Tolerant Computing (FTCS-22). Boston, Massachusetts: IEEE, 1992,

pp. 336–344.

[17] J. Carreira, H. Madeira, and J. G. Silva, “Xception: A technique for the experimental evaluation of

dependability in modern computers,”Software Engineering, vol. 24, no. 2, pp. 125–136, 1998. [Online].

Available: citeseer.nj.nec.com/carreira98xception.html

[18] S. Han, K. Shin, and H. Rosenberg, “Doctor: An integrated software fault injection environment for distributed real-time

systems,” 1995. [Online]. Available: citeseer.nj.nec.com/han95doctor.html

[19] P. Broadwell, N. Sastry, and J. Traupman, “Fig: A prototype tool for online verification of recovery mechanisms,” inACM

ICS SHAMAN Workshop, Ney York, NC, June 2002.

[20] C. Fetzer and Z. Xiao, “An automated approach to increasing the robustness of C libraries,” in

International Conference on Dependable Systems and Networks, Washington, DC, June 2002. [Online]. Available:

June 10, 2004 DRAFT

32

http://www.research.att.com/c̃hristof/papers/rwrapper.pdf

[21] J. Gray and A. Reuter,Transaction Processing: Concepts and Techniques. Morgan Kaufmann, 1993.

[22] D. Skillicorn and D. Talia, “Models and languages for parallel computation,”ACM Computing Surveys, vol. 30, no. 2, pp.

123–169, 1998.

[23] T. Harris and K. Fraser, “Language support for lightweight transactions,” inProceedings of the 2003 ACM SIGPLAN

Conference on Object-Oriented Programming Systems, Languages and Applications, (OOPSLA 2003), Anaheim, CA,

USA, October 2003, pp. 388–402.

[24] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin, “Aspect-oriented program-

ming,” in Proceedings European Conference on Object-Oriented Programming, M. Akşit and S. Matsuoka, Eds. Berlin,

Heidelberg, and New York: Springer-Verlag, 1997, vol. 1241, pp. 220–242.

[25] M. Goto, “CINT C/C++ interpreter,” http://root.cern.ch/root/Cint.html.

[26] O. Spinczyk, A. Gal, and W. Schrder-Preikschat, “AspectC++: an aspect-oriented extension to C++,” inProceedings of the

40th International Conference on Technology of Object-Oriented Languages and Systems (TOOLS Pacific 2002), Sydney,

Australia, February 18-21 2002.

[27] J. S. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: Transparent checkpointing under unix, Tech. Rep. UT-CS-94-242,

1994. [Online]. Available: citeseer.ist.psu.edu/plank95libckpt.html

[28] D. E. Lowell and P. M. Chen, “Discount checking: Transparent, low-overhead recovery for general applications, Tech.

Rep. CSE-TR-410-99, November 1998.

[29] The Apache Software Foundation, “BCEL: Byte Code Engineering Library,” http://jakarta.apache.org/bcel.

[30] ——, “Regexp,” http://jakarta.apache.org/regexp.

[31] D. Lea, “Collections,” http://gee.cs.oswego.edu/dl/classes/collections.

[32] C. Fetzer and K. Ḧogstedt, “Self*: A component based data-flow oriented framework for pervasive dependability,” in

Eighth IEEE International Workshop on Object-oriented Real-time Dependable Systems (WORDS 2003), Jan 2003.

June 10, 2004 DRAFT

