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ABSTRACT

Blind and semiblind channel estimation techniques are de-
veloped and usually evaluated for a given channel realiza-
tion, i.e. with a deterministic channel model. Such blind
channel estimates, especially those based on subspaces in
the data, are often only partial and ill-conditioned. On the
other hand, in wireless communications the channel is typ-
ically modeled as Rayleigh fading, i.e. with a Gaussian
(prior) distribution expressing variances of and correlations
between channel coefficients. In recent years, such prior
information on the channel has started to get exploited in
pilot-based channel estimation, since often (as e.g. in 3G
WCDMA systems) the pure pilot-based (deterministic) chan-
nel estimate is of limited quality. The fading in wireless
communications leads indeed often to a poor data to param-
eter ratio. In this paper we introduce a Bayesian approach
to (semi-)blind channel estimation, exploiting a priori infor-
mation on fading channels. Two case can be considered,
either given prior information or joint estimation of chan-
nel and prior. In the second case there are still identifiabil-
ity issues whereas in the first case there are typically none.
However, the identifiability issues can be resolved with a re-
duced amount of training in a semiblind approach. Various
models/parameterizations for the channel correlation struc-
ture and the fading process can be considered.

1. INTRODUCTION

Blind and semiblind channel estimation techniques have been
developed and are usually evaluated for a given channel re-
alization, i.e. with a deterministic channel model, see [1]
for an overview of such techniques. Such blind channel
estimates, especially those based on subspaces in the data,
are often only partial and ill-conditioned. Indeed, only part
of the channel is blindly identifiable, especially in the case
of MIMO channels. The type of blind channel estimation
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techniques we are mostly referring to here involve an FIR
multichannel and are typically based on the second-order
statistics of the received signal. Two types of techniques can
be considered, treating the unknown input symbols as either
deterministic unknowns or Gaussian white noise. In the first
case, the techniques are often based on the subspace struc-
ture induced in the data by the multichannel aspect. The
part of the channel that can be identified blindly is larger in
the Gaussian input model case than in the deterministic in-
put model case, but is in any case incomplete. Many of the
deterministic input approaches are also quite sensitive to a
number of hypotheses such as correct channel length (filter
order) and no channel zeros. In general this means that these
blind channel estimates can often become ill-conditioned,
when the channel impulse response is tapered (e.g. due to
a pulse shape filter) or when the channel is close to having
zeros. In fact this means that the blind information on the
channel can be substantial, but is limited to only part of the
channel.

1.1. Time-Varying Channels

Blind channel estimation techniques have also been devel-
oped for time-varying channels, by using so-called Basis
Expansion Models (BEMs), in which the time-varying chan-
nel coefficients are expanded into known time-varying ba-
sis functions, and the unknown deterministic parameters are
now no longer the channel coefficients but the combination
coefficients in the BEM. The BEM model was introduced
by Y. Grenier around 1980 for time-varying filtering, by
E. Karlsson in the early 1990’s for time-varying channel
modeling and by M. Tsatsanis and G. Giannakis in 1996
for blind time-varying channel estimation. A. Sayeed in-
troduced his related canonical coordinates approach around
the same time frame.

In wireless communications the channel is typically mod-
eled as Rayleigh fading, i.e. with a Gaussian (prior) dis-
tribution expressing variances of and correlations between
channel coefficients. Below we shall elaborate on possible
models for such a channel distribution. In recent years, such



prior information on the channel has started to get exploited
in pilot-based channel estimation, since often (as e.g. in
3G WCDMA systems) the pure pilot-based (deterministic)
channel estimate is of limited quality, see e.g. [2],[3].

Here we propose to combine Gaussian prior information
on the channel with (semi-)blind information, in a Bayesian
approach. The time-variation can be modeled at two levels.

1.1.1. Frame-based Processing

In a first model, block-wise variation, the channel realiza-
tion is assumed to be piece-wise constant over blocks of
data. Within each block, a classical (semi-)blind channel
estimate gets performed. The channel estimation errors are
then typically independent between blocks. We may have
correlation though between the a priori channel in consecu-
tive blocks. This first model is inspired by what can easily
be justified in training-based channel estimation, in which
case the channel is estimated from concentrated training
bursts that occur at a regular pace and that are separated by
data bursts. In the case of (semi-)blind channel estimation,
all data gets involved in the channel estimation and hence,
depending on the time scale, the temporal variation of the
channel over the data may be difficult to ignore.

1.1.2. Continuous Processing

This leads to a second model, continuous variation, in which
the time-varying channel gets expanded into a BEM and
prior information gets formulated on the basis expansion
coefficients. A simple BEM can correspond to a subsam-
pling and temporal interpolation operation, which is moti-
vated by the fact that the channel will show a maximum
Doppler spread.

1.2. Bayesian Channel Estimation

The Bayesian (semi-)blind channel estimation problem can
be formulated at two levels.

1.2.1. Known Prior

In the given prior case, the issue becomes simply one of
properly combining deterministic and prior information, e.g.
in the form of

‖h + b(h) − ĥ‖2
C−1

ĥĥ
+ ‖h − ho‖2

C−1

hh
(1)

where h contains the whole channel impulse reponse in a
vector, and we assumed for the estimate ĥ ∼ N (h+b, Cĥĥ),
where b(h) is a potential bias, and for the prior h ∼ N (ho, Chh).
The given prior case becomes particularly simple when com-
bined with the block-wise variation model. For a proper

choice of prior, channel identifiability is no longer an is-
sue since the prior information by itself already makes the
channel covariance matrix bounded. Hence this Bayesian
approach can in principle be appplied to channels with lim-
ited blind identifiability, such as even SISO channels (with
Gaussian symbol model).

1.2.2. Prior with Unknown Parameters

The second Bayesian level would be joint channel and prior
estimation. In this (realistic) case we assume that we ob-
serve the channel over a number of fades so that we have
ergodicity for the presumed stationary prior channel distri-
bution. The parameters to be estimated are now both pa-
rameters related to instantaneous realizations of the channel
and parameters in the Gaussian prior distribution. Some of
the techniques in [2],[3] can be invoked here. Parameter
identifiability also becomes again an issue.

2. (MIMO WIRELESS) CHANNEL MODELS

In order to improve channel estimation and reduce MFB
loss, it is advantageous to exploit correlations in the chan-
nel, if present. For time-varying channel, two channel mod-
els can be considered according to two transmission modes:

1. continuous transmission: in this case the vectorized
channel impulse response can be modeled as a (lo-
cally) stationary vector signal; limited bandwidth usu-
ally allows downsampling w.r.t. symbol rate; station-
arity can only be local due to slow fading

2. bursty transmission: in this case, the time axis is cut
up in bursts, the channel (down)samples within each
burst can be rerepresented in terms of Basis Expan-
sion Models (BEMs); limited bandwidth leads to lim-
ited BEM terms.

Both models are equivalent as long as the temporal corre-
lation structure in the continuous mode gets properly trans-
formed to intra and inter burst correlation between BEM
coefficients.

RXTX
θi

Ai, fi, τi

φi

Fig. 1. MIMO transmission with NT transmit and NR re-
ceive antennas.



2.1. Specular Wireless MIMO Channel Model

Now consider a MIMO transmission configuration as de-
picted in Fig. 1. We get for the impulse response of the
time-varying channel h(t, τ) [4]

h(t, kT ) =
NP∑
i=1

Ai(t) ej2π fi t aR(φi) aT
T (θi) p(kT − τi) .

(2)
The channel impulse response h has per path a rank 1 contri-
bution in 3 dimensions; there are NP pathwise contributions
where

• Ai: complex attenuation

• fi: Doppler shift

• θi: angle of departure

• φi: angle of arrival

• τi: path delay

• a(.): antenna array response

• p(.): pulse shape (TX filter)

The fast variation of the phase in ej2π fi t and possibly the
variation of the Ai correspond to the fast fading. All the
other parameters (including the Doppler frequency) vary on
a slower time scale and correspond to slow fading.

2.2. MIMO Channel Prediction

Consider vectorizing the impulse response coefficients

(N ×1) h(t) = vec{h(t, .)} =
NP∑
i=1

hi Ai(t) ej2π fi t (3)

where hi = vec{aR(φi) aT
T (θi) p(.−τi)} and the total num-

ber of coefficients becomes N = NT NRNτ = number of
TX antennas times number of RX antennas times delay spread.
Due to the Doppler shift, the phase of the path complex
amplitude is varying rapidly. The actual path amplitude is
not varying rapidly unless what we consider to be a specu-
lar path is already the superposition of multiple paths that
are not resolvable in delay, Doppler and angles. With f i ∈
(−fd, fd), the Doppler shift for path i, the (fast fading) vari-
ation is bandlimited and hence the channel should be per-
fectly predictible! (not so due to the slow fading: the slow
parameters such as delays and angles will vary eventually).
When only the fast fading is taken into account as tempo-
ral variation, the matrix spectrum Shh(f) of the vectorized
channel can be doubly singular:

1. if Ai(t) ≡ Ai and NP finite: spectral support singu-
larity: sum of cisoids!

2. if Np < N : matrix singularity, limited source of ran-
domness (limited diversity)

When the channel spectral support becomes singular, the
channel becomes perfectly predictible. Hence channel pre-
diction should play an important role in channel estimation.

2.3. Subspace AR Channel Model

After sampling the temporal variation at t = kT , the vec-
torized impulse response can be represented as

h[k]︸︷︷︸
N×1

= H︸︷︷︸
N×NP

A[k]︸︷︷︸
NP ×1

(4)

where A[k] = [A1(kT ) ej2π f1 kT · · ·ANP (kT ) ej2π fNP
kT ]T

contains the fast fading part and H = [h1 · · · hNP
].

The important issue here is that the spectral modeling of
the channel coefficient temporal variation should be done
in a transform domain and not on the channel impulse re-
sponse coefficients themselves. Since each such coefficient
can be the result of the contributions of many paths, the
dynamics of the temporal variation of the coefficients are
necessarily of higher order, compared to the variation of
Ai(kT ) ej2π fi kT which can be of an order as low as one
(when Ai(kT ) is constant; the cisoid ej2π fi kT is perfectly
predictible with first-order linear prediction). Also, if the
impulse response coefficients are modeled directly, then their
(spatial and delay-wise) correlation has to be taken into ac-
count: Shh(f) cannot be modeled accurately as diagonal,
whereas SAA(f) can.

So the diagonal elements of A[k] are modeled as decor-
related stationary scalar processes. The channel distribution
is typically taken to be complex Gaussian. If the fast pa-
rameters A[k] are not too predictible, then the estimation er-
rors of the slow parameters H should be negligible (change
only with slow fading, hence their estimation error should
be small). From (4) we obtain the spectrum

Shh(f) = H SAA(f) HH , SAA(f) diagonal. (5)

The components of A[k] can conveniently be modeled as
AR processes, each spanning only a fraction of the Doppler
range (−fd, fd). In fact, a subsampled version of the fast
parameters A[k] could be introduced, with the subsampled
rate corresponding to the (maximum) Doppler spread. A
stationary (AR) model can be taken for the subsamples and
the other samples can be obtained by linear interpolation
from the subsamples. This is the case of a BEM with a
single basis function: the interpolation filter response.

2.4. Separable Correlation Channel Model

The subspace channel model is appropriate when the chan-
nel is fairly specular, with limited diversity so that the num-
ber of paths is not large w.r.t. the total number of channel co-
efficients. Now consider the other extreme of rich diversity,



when NP � N , in which case the dynamics of all paths
get mixed up and the spatial-delay correlations between the
channel impulse response elements become separable [5].
The spectrum of the temporal variation of the in this case
diffuse channel can then be written as

Shh(f) = Rτ ⊗ RT ⊗ RR Sd(f) (6)

where
Rτ : correlation matrix between delays, typically diagonal
with power delay profile
RT : TX side spatial correlation matrix
RR: RX side spatial correlation matrix
Sd(f): scalar common Doppler spectrum of all impulse re-
sponse coefficients. Such a completely separable 4D corre-
lation model is not very realistic though. Though separabil-
ity in spatial correlation between transmit and receive side
can be argued to some extent, both spatial correlation and
Doppler spectrum are typically delay-dependent.

Other cases of singular channel correlation as in (4) when
N > NP may occur. For instance, correlation in delay is
due to the pulse shaping filter, which extends the duration of
the channel impulse response without adding fading sources
and makes the impulse response taper off in both directions,
causing ill-conditioning for some blind channel estimation
approaches. To handle the pulse shape induced correlations,
one may write the (delay dimension aspect of) the impulse
response as in (4) where now H is a tall banded Toeplitz
pulse shape convolution matrix and A would contain mutu-
ally uncorrelated components (discrete-time representation
of the actual propagation channel).

3. BLIND AND SEMIBLIND BAYESIAN CHANNEL
ESTIMATION

Blind and semiblind versions of training based Bayesian
channel estimation such as in [2],[3] can in fact be formu-
lated in a fairly straightforward fashion. In [2],[3], training
based channel estimates are obtained at regular time inter-
vals, let’s say slots. So the temporal sampling period for the
channel variation would be one slot. The training based, un-
biased channel estimate ĥk provides a measurement equa-
tion for the channel hk in the slot k in which the measure-
ment noise h̃k is the channel estimation error

ĥk = hk + h̃k (7)

where training is typically designed for the channel estima-
tion error h̃k to be white in time and between components:

E h̃kh̃
H

n = σ2
h̃

I δkn (Kronecker delta). The Bayesian as-
pects comes from the fact that now hk gets modeled typi-
cally with a Gaussian distribution with zero mean (Rayleigh
fading) in which the complete statistical description resides
in the second-order moments. Two variations are possible

depending on whether the temporal variations are described
over a limited time frame with a BEM, to handle one frame
of a number of slots, or the time period over which chan-
nel coding gets performed. The other approach is to model
hk as a stationary process with a spectral density matrix
Shh(z) =

∑∞
n=−∞( E hk+nhH

k ) z−n which can be struc-
tured in a number of ways, as already alluded to earlier.
The Bayesian estimation problem then becomes the joint
estimation on the basis of the process ĥk the process hk and
the parameters in Shh(z) which are typically treated them-
selves as deterministic parameters. Although the Bayesian
approach tries to improve the estimation of the process hk

by invoking other parameters (in the description of Shh(z))
that need to be estimated, but these other parameters (which
are subject to the slow fading) evolve much more slowly
(than the fastly fading hk) so that their estimation is possi-
ble and beneficial.

The difference between (semi-)blind and training based
Bayesian channel estimation is not very substantial. Indeed,
if the training information in the semiblind approach suf-
fices to provide channel identifiability in a slot (unbiased
channel estimate), then the slot-wise measurement equa-
tion is again of the form (7) with only some correlation be-

tween the components of h̃k being introduced: E h̃kh̃
H

n =
σ2

h̃
Rh̃h̃ δkn where the correlation matrix Rh̃h̃ depends on

the semi-blind approach.
In the case of blind Bayesian channel estimation, the

measurement equation is more profoundly affected. The
measurement noise remains temporally white, but only part
of the channel impulse response gets observed, due to the
blind inidentifiability. The particular form of the measure-
ment equation depends on the blind method used. In general
it will not be possible to attain joint identifiablity of all pa-
rameters involved, unless the prior information is structured
in a particular fashion (e.g. the power delay profile is known
to be monotonically decreasing).

The Bayesian aspect tends to reduce blind inidentifia-
bility to a minimum, so that less training information in a
semiblind approach is required compared to semiblind de-
terministic channel estimation. For instance, consider the
blind estimation of a FIR SIMO channel with the input sig-
nal modeled as deterministic unkown. Then the channel
may become more inidentifiable if its vector transfer func-
tion exhibits zeros. However, those zeros occur with zero
probability if the power delay profile does not vanish over
the channel impulse response duration and if the subchan-
nels are not perfectly correlated. So inidentifiability in this
case gets reduced to a minimum, i.e. a global complex
scale factor. However, if the power delay profile support
gets overestimated, then so will be the channel impulse re-
sponses, and vice versa. This last instance is another exam-
ple of the next observation.

Bayesian model parameters inherit the inidentiability as-



pects of the blind channel estimate. Consider e.g. a SISO
channel of length 2: h(z) = h0 + h1 z−1, where the two
coefficients have a priori variances (power delay profile) σ 2

0 ,
σ2

1 and are uncorrelated. Consider blind channel estimation
in the case of a Gaussian model for the unknown input (and
suppose we know the additive white noise variance). Then
h0, h1 can only be identified up to a common phase factor
of the form ejθ . This is the minimal inidentifiability in this
Gaussian case. However, we can also not identify blindly
whether the channel is minimum-phase or maximum-phase
(one bit of uncertainty). If we knew that either σ 2

0 > σ2
1 or

σ2
0 < σ2

1 then in the Bayesian blind approach, we could
jointly blindly estimate the channel (up to the minimum
inidentifiability) and the power delay profile. However, the
knowledge of the order of σ2

0 and σ2
1 is again one bit of in-

formation. For a longer SISO channel and Gaussian blind
channel estimation, the Bayesian problem should be identi-
fiable if it would be known that e.g. the power delay profile
is monotonically decreasing.

4. FURTHER OBSERVATIONS

The Bayesian framework may be/is the proper tool to handle
bias/variance trade-offs in channel estimation. In a Bayesian
approach, the bias corresponds to the prior information (mean).
If the blind information is ill-conditioned, the ill-conditioned
parts will automatically be overridden by the prior info. How
does the cleaning of unreliable information as in semiblind
estimation [1] fit in here? Is the denoising of the blind in-
formation still useful?

The Bayesian blind channel estimation formulation may
alo be the right framework for analyzing the oversampling
versus excess bandwidth issue, an issue in blind multichan-
nel estimation that has so far eluded a convincing analysis.
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